|
Table of Contents
Introduction
Linear Models (Single Subspace Models, Multiple-Subspace Models, Theoretical Analysis)
Non-Linear Models (Kernel Methods, Laplacian and Hyper-Laplacian Methods, Locally Linear Representation, Transformation Invariant Clustering)
Optimization Algorithms (Convex Algorithms, Non-Convex Algorithms, Randomized Algorithms)
Representative Applications (Video Denoising, Background Modeling, Robust Alignment by Sparse and Low-Rank Decomposition, Transform Invariant Low-Rank Textures, Motion and Image Segmentation, Image Saliency Detection, Partial-Duplicate Image Search, Image Tag Completion and Refinement, Other Applications)
Conclusions (Low-Rank Models for Tensorial Data, Nonlinear Manifold Clustering, Randomized Algorithms)
|