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a b s t r a c t

Subspace clustering has found wide applications in machine learning, data mining, and computer vision.
Latent Low Rank Representation (LatLRR) is one of the state-of-the-art methods for subspace clustering.
However, its effectiveness is undermined by a recent discovery that the solution to the noiseless LatLRR
model is non-unique. To remedy this issue, we propose choosing the sparest solution in the solution set.
When there is noise, we further propose preprocessing the data with robust PCA. Experiments on both
synthetic and real data demonstrate the advantage of our robust LatLRR over state-of-the-art methods.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

High-dimensional data in the real world are often structured. As
the basic assumption of manifold learning, the data usually distribute
near low-dimensional manifolds. Subspace clustering aims at cluster-
ing data into a union of subspaces [1] while recognizing possible
noises and outliers simultaneously [2]. It has found wide applications
in machine learning, data mining, and computer vision, such as image
segmentation [3], motion segmentation [2,4–7], saliency detection [8],
and face clustering [2,4–6].

1.1. Related work

According to Vidal [1], subspace clustering algorithms can be
divided into four approaches: statistical, algebraic, iterative, and
spectral clustering based. Spectral clustering based methods first
learn a similarity matrix for measuring the similarity between the
data points and then perform spectral clustering to segment
the samples. As a successful example of spectral clustering based
methods, Sparse Subspace Clustering (SSC) [7] expresses each data
sample as a sparse linear or affine combination of other samples
and uses the linear combination coefficients as similarity between
samples. The mathematical model of SSC is as follows:

min
Z

‖Z‖1; s:t: X ¼ XZ; diagðZÞ ¼ 0; ð1Þ

where X is the data matrix with samples as its columns. More
notations can be found in Table 1. The last constraint in problem (1)

is to avoid the trivial solution I. It is shown in [7] and [9] that, when
the subspaces are either disjoint or independent, the solution to
problem (1) is block diagonal, i.e., Zjk ¼ 0 if the corresponding
samples Xj and Xk lie in different subspaces. The block diagonality
reveals the structure of subspaces.

Low Rank Representation (LRR) [2,4] is another recently pro-
posed spectral clustering based method for subspace clustering. It
seeks the lowest-rank representation of the data samples. The
model of LRR in the noiseless case is

min
Z

‖Z‖n; s:t: X ¼ XZ; ð2Þ

where the nuclear norm J � Jn serves as a convex surrogate of the
rank function. It is shown by Liu et al. [4] that when the data are
noise free and drawn from independent subspaces, the optimal
solution to problem (2) is also block diagonal.

There are several successful trials on improving LRR. By combining
SSC with LRR, Zhuang et al. [10] computed non-negative low rank and
sparse graphs for semi-supervised learning. Wei and Lin [6] proposed
Robust Shape Interaction (RSI) by first denoising the data using robust
PCA [11] and then applying LRR to the denoised data. Favaro et al. [12]
proposed the same idea but integrated denoising with LRR.

LRR works well only when the samples are sufficient. To overcome
such a drawback, Liu et al. [5] proposed Latent Low Rank Representa-
tion (LatLRR). Another model for resolving such an issue is Fixed Rank
Representation [13] which bounds the rank of representationmatrix Z.
LatLRR assumes that the observed samples are linear combinations
of both observed and un-observed data. After some deduction, the
noiseless LatLRR is modeled as follows:

min
Z;L

‖Z‖nþ‖L‖n; s:t: X ¼ XZþLX; ð3Þ
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where Z can be used for subspace clustering, while L is for feature
extraction, thus integrating these two tasks into a unified framework.

1.2. Our contributions

Although LatLRR has been successfully applied, e.g., to motion
segmentation [5] and image classification [14], we have found
that the solution to noiseless LatLRR is not unique [15]. Actually,
there are infinitely many solutions to problem (3) as stated in the
following theorem.

Theorem 1.1 (Zhang et al. [15]). The complete solutions to the
noiseless LatLRR (3) are as follows:

Zn ¼ VXWVT
X and Ln ¼ UX ðI�WÞUT

X ; ð4Þ
where UXΣXV

T
X is the skinny singular value decomposition (SVD) of

the data matrix X and W is any block diagonal matrix satisfying

its blocks are compatible with ΣX ; i:e:;

if ½ΣX �iia ½ΣX �jj then Wij ¼ 0;
both W and I�W are positive semi�definite:

8><
>: ð5Þ

As a result, the effectiveness of LatLRR reported in the previous
literature may be questionable [15], because which one in the
solution set is chosen actually depends on the iteration process for
solving LatLRR. This paper aims at addressing this issue of LatLRR.
The contributions of this paper include the following:

� For noiseless LatLRR, we propose choosing the sparsest solution
Zn from set (4). We also design an Alternating Direction Method
(ADM) based algorithm to efficiently solve for the sparsest Zn.
In this way, we naturally combine the low-rankness, sparsity,
and positive semi-definiteness criteria for the solution, which
some researchers have elaborated on [10,16,17].

� When there are noises or sparse corruptions, we propose first
denoising the data with robust PCA [11] and then finding the
low rank and sparse solution by the method sketched above.
We call our approach as robust LatLRR. Experiments show that
our robust LatLRR outperforms state-of-the-art subspace clus-
tering methods.

2. Robust latent low rank representation

2.1. Choosing the sparsest solution

It is easy to see that there are infinitely many block diagonal
matrices W that satisfy properties (5). So we have to choose the
optimal solution Zn ¼ VXWVT

X such that it is most suitable for
subspace clustering.

According to Wright et al. [18], an informative similarity matrix
should have three characteristics: high discriminating power,

adaptive neighborhood, and high sparsity [10]. Since the graphs
constructed by LatLRR have been reported to have high discrimi-
nating power and adaptive neighborhood [5], we consider high
sparsity as the criterion to choose the optimal solution Zn. This
leads to the following optimization problem for selecting the best
Zn from solution set (4):

min
Z;W

‖Z‖1; s:t: Z ¼ VXWVT
X ; W is diagonal;

0rdiag ðWÞr1; trðWÞ ¼ 1; ð6Þ
where we require the trace of W to be 1 so as to avoid the trivial
solution Z ¼ 0. Note that here we requireW to be diagonal because
for randomly sampled data matrix X, its singular values are usually
distinct. So W has to be diagonal in order to be compatible with
ΣX . In this case, both W and I�W being positive semi-definite
becomes 0rdiagðWÞr1. Notice that VXV

T
X satisfies the constraint

in (6) and is block-diagonal when the data lie strictly in several
low-dimensional subspaces [2,4,6]. We could expect VXV

T
X to be

our sparsest solution when there is no noise.

2.2. Solving the optimization problem

Since W is diagonal, we may parameterize it by its diagonal
entries: w¼ diagðWÞ, where w¼ ðw1;w2;…;wrÞT and r is the rank
of X. Next, we introduce auxiliary variables c¼ ðc1; c2;…; crÞT in
order to decouple the constraints. So we reformulate (6) as

min
Z;w;c

‖Z‖1; s:t: Z ¼ ∑
r

i ¼ 1
wiViV

T
i ; 1

Tw¼ 1;

w¼ c; cZ0; ð7Þ
where we write ½VX �i, the ith column of VX, as Vi for brevity, and
cZ0 means ciZ0, i¼ 1;…; r.

Problem (7) could be easily solved by ADM, where the variables
are updated alternately by minimizing the augmented Lagrangian
function of (7):

LðZ;w; c;Y ;α;μÞ

¼ ‖Z‖1þtr YT ∑
r

i ¼ 1
wiViV

T
i �Z

 !" #
þαT ðw�cÞ

þμ
2

∑
r

i ¼ 1
wiViV

T
i �Z

����
����
2

F

þ‖w�c‖2F

 !
; ð8Þ

where Y and α are the Lagrange multipliers and μ40 is a penalty
parameter. More specifically, the update of variables goes as
follows:

Zðkþ1Þ ¼ arg min
Z

LðZ;wðkÞ; cðkÞ;Y ðkÞ;αðkÞ;μðkÞÞ;

wðkþ1Þ ¼ arg min
w;1Tw ¼ 1

LðZðkþ1Þ;w; cðkÞ;Y ðkÞ;αðkÞ;μðkÞÞ;

cðkþ1Þ ¼ arg min
c;cZ0

LðZðkþ1Þ;wðkþ1Þ; c;Y ðkÞ;αðkÞ;μðkÞÞ; ð9Þ

where the superscript k is the number of iterations. Then Y, α, and
μ are updated. More details can be found in Algorithm 1, where
we have worked out the solutions to (9).

Algorithm 1. Solving problem (7) by ADM.

Initialize: Zð0Þ ¼ Y ð0Þ ¼ 0, wð0Þ ¼ cð0Þ ¼ 1=r1, αð0Þ ¼ 0, μð0Þ ¼ 10�3,

μmax ¼ 1020, ρ¼1.75.
while not converged do
1. Update Z by

Zðkþ1Þ ¼ arg minZ
1
μðkÞ‖Z‖1þ1

2‖Z�W ðkÞ‖2F ¼Θ1=μðkÞ ðW ðkÞÞ,
where W ðkÞ ¼∑r

i ¼ 1w
ðkÞ
i V iV

T
i þY ðkÞ

μðkÞ and

ΘεðxÞ ¼ signðxÞmaxðjxj�ε;0Þ is the soft-thresholding
operator [11].

Table 1
Summary of main notations used in this paper.

Notations Meanings

Capital letter A matrix
I, 0, 1 The identity matrix, all-zero matrix, and all-one vector
Vi The ith column of the matrix V
Vij The entry at the ith row and jth column of matrix V
‖ � ‖n Nuclear norm, the sum of all the singular values
‖ � ‖1, ‖ � ‖F ‖V‖1 ¼∑i;jjVijj, ‖V‖F ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑i;jðVijÞ2

q
tr ð�Þ, j � j tr ðVÞ ¼∑iV ii , ½jV j�ij ¼ jVijj
diag ð�Þ The diagonal entries of a matrix
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2. Update w by

wðkþ1Þ
i ¼ 1

2ðVT
i Z

ðkþ1ÞViþcðkÞi � 1
μðkÞðβðkÞ þVT

i Y
ðkÞViþαðkÞ

i ÞÞ,
i¼ 1;…; r, where

βðkÞ ¼ μðkÞ

r ∑r
i ¼ 1½VT

i Z
ðkþ1ÞViþcðkÞi � 1

μðkÞðVT
i Y

ðkÞViþαðkÞ
i Þ��2

n o
.

3. Update c by c¼maxðwðkþ1Þ þαðkÞ=μðkÞ;0Þ.
4. Update Y and α by

Y ðkþ1Þ ¼ Y ðkÞ þμðkÞð∑r
i ¼ 1w

ðkþ1Þ
i V iV

T
i �Zðkþ1ÞÞ,

αðkþ1Þ ¼ αðkÞ þμðkÞðwðkþ1Þ �cðkþ1ÞÞ.
5. Update μ by μðkþ1Þ ¼minðρμðkÞ;μmaxÞ.

end while

2.3. Extending to noisy case

When there are noises or corruptions, it is inappropriate to use the
noisy data X itself as the dictionary. BothWei et al. [6] and Favaro et al.
[12] have noticed this issue. Wei et al. [6] proposed to denoise the data
first by robust PCA [11] and then apply LRR to the denoised data.
Favaro et al. [12] proposed to integrate denoising and LRR in a unified
framework, resulting in a non-convex optimization problem. Here we
follow the idea by Wei et al. [6]. We first use robust PCA [11]

min
X;E

‖X‖nþλ‖E‖1; s:t: D¼ XþE; ð10Þ

to denoise the data, where D is the noisy data. Then we apply the
noiseless LatLRR to the denoised data X and use Algorithm 1 to choose
the sparsest solution among the solution set, as described in Section
2.1. Since robust PCA can remove noises and corruptions effectively
[11], we expect that our robust LatLRR will be robust to noises and
corruptions, as verified by our experiments. Note that the parameter of
robust PCA (10) is valid for a large range of values under some mild
conditions1 [11]. Thus the λ in our method is insensitive.

Algorithm 2. Robust LatLRR for noisy subspace clustering.

Input: Observed noisy data D, regularization parameter λ, the
subspace number k.
1. Conduct robust PCA on D with parameter λ and obtain the

skinny SVD UXΣXV
T
X of the X.

2. Perform Algorithm 1 on VX and get the optimal
representation matrix Zn.
3. Cut the graph with weight matrix jZnj into k classes by the
NCut algorithm.

Output: The label of each sample.

2.4. Clustering with robust LatLRR

After obtaining the optimal representation matrix Zn, we follow
the conventional way for clustering. We first build a graph with a
weight matrix jZnj, then perform Normalized Cut (NCut) [19] on
the graph to achieve clustering. The complete algorithm for our
robust LatLRR based clustering is summarized in Algorithm 2.

There are three advantages of robust LatLRR compared with
other state-of-the-art subspace clustering algorithms:

1. Robust LatLRR achieves both the low-rankness and the sparsity
of the representation matrix. Thus, according to [18], the graph
constructed by our method is more informative.

2. Robust LatLRR automatically obtains a symmetric representa-
tion matrix. So we do not have to use ðjðZnÞT jþjZnjÞ=2 as the
weigh matrix to construct a graph, as most of the spectral
clustering based methods did.

3. Robust LatLRR also obtains a semi-definite representation
matrix, which was advocated by Ni et al. and was explicitly
enforced in their formulation [17].

In summary, robust LatLRR elegantly produces a representation
matrix with good properties that some researchers have sought
after. As a result, robust LatLRR outperforms the state-of-the-art
methods for subspace clustering, as shown by our forthcoming
experiments.

3. Experiments

We test our robust LatLRR and other methods, including SSC
[7], LRR [2,4], RSI [6], LRSC [12], and LatLRR [5], on both synthetic
and real data. There are two real data sets: the Hopkins 1552

motion data set and the Extended Yale B3 face data set. These data
sets contain quite different noise levels, thus are suitable for
testing the influence of noise and corruption on the performance.
The codes of state-of-the-art methods are all provided by their
corresponding authors, including NCut algorithm4 [19]. For fair
comparison, all the specialized pre- and post-processing steps are
removed.

3.1. Synthetic experiment

We first test the performance of different algorithms on noisy
synthetic data with an increasing percentage of corruptions.
The data are generated as follows: we construct five independent
subspaces fSig5i ¼ 1 � R100 whose bases fUig5i ¼ 1 are 100�4 random
matrices consisting of orthonormal columns. By computing
Xi ¼UiQi; 1r ir5, where Qi is a 4�20 i.i.d. Nð0;1Þ matrix, we
sample 20 data vectors from each subspace and obtain a clean data
matrix X ¼ ½X1;X2;…;X5�. For comparing the robustness, we add
dense Gaussian noise, with a mean 0 and a variance 0:12, to the
clean data. We further corrupt the data by randomly choosing
different percentages of entries in X and adding them with noises
uniformly distributed on ½�1;1�.

Since the parameter λ depends on the percentage of corrup-
tions for several methods, we follow the procedure in [4] by
tuning λ to be the best at 20% corruptions for every method.
We repeat the experiment by 20 times. Fig. 1 reports the mean
accuracies of the six methods with respect to the percentage of
corruptions. It shows that our robust LatLRR outperforms other
state-of-the-art methods with a clear margin.

3.2. Real experiment on Hopkins 155 data set

The Hopkins 155 data set contains 156 sequences, each of
which is composed of 39–550 data points drawn from two or
three motion objects. Each sequence is independent. So there are
156 subspace clustering tasks in total. Since the data set contains
only complete trajectories and no outliers, we regard this test as a
slight corruption case.

We compare the performance of the six methods on the 156
tasks, where the parameters have been tuned to be the best so that
the mean errors are minimum. Table 2 tabulates the maximums,
the means, and the standard deviations of the misclassification

1 According to [11], the λ in (10) can be simply set as 1=
ffiffiffi
n

p
under some mild

conditions, where n refers to the size of the input matrix. In many applications
where these conditions do not hold, scholars prefer to tune the parameter by some
technology like cross validation.

2 http://www.vision.jhu.edu/data/hopkins155/.
3 http://vision.ucsd.edu/� leekc/ExtYaleDatabase/ExtYaleB.html.
4 http://www.cis.upenn.edu/� jshi/software/.
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rates of the six methods on all the 156 tasks. It shows that our
robust LatLRR has a clear advantage in two criteria, maximum
error and standard deviation, which shows that the performance
of robust LatLRR is much more stable. For the mean error, robust
LatLRR ranks the second. Actually, the differences among the
six methods are limited. This is mainly because the noises and
corruptions in the Hopkins 155 data set are small. As a result, all
the state-of-the-art methods perform excellently.

3.3. Real experiment on Extended Yale B data set

The Extended Yale B data set consists of face images of 38
persons. For each person, there are 64 frontal face images in
different illuminations. Thus each person corresponds to a sub-
space [20]. More than half of the face images are corrupted by
large area “shadows” and are also noisy. So the data set can be
regarded as heavily corrupted.

We test the performance of the six methods by choosing the
face images of different numbers of persons in the Extended Yale B
data set. Since SSC, LRR, and LatLRR all have a high computation

complexity, we scale the original images into a size of 42�48
pixels. Table 3 presents the segmentation accuracies of the six
methods with different numbers of persons. It shows that in this
test our robust LatLRR significantly outperforms other methods,
especially when the number of persons is larger. Moreover, the
optimal λ for different numbers of persons, 0.014, 0.013, and
0.0135, changes only slightly. This further shows that our robust
LatLRR is insensitive to the choice of λ.

4. Conclusion

This paper aims at addressing the non-unique-solution issue of
LatLRR. On the basis of the theoretical analysis in [15], we propose
robust LatLRR, which first denoises the data by robust PCA and
then chooses the sparsest representation matrix among the solu-
tion set of LatLRR with denoised data. Tests on both the synthetic
and the real data testify to the robustness of our robust LatLRR
when compared with other state-of-the-art methods.
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For every method, the parameter λ is tuned to be the best at 20% percentage
of corruptions.

Table 2
Segmentation errors (%) on the Hopkins 155 data set. For robust LatLRR, the
parameter λ is set as 0:806=

ffiffiffi
n

p
, which is within the suggested range of robust PCA

[11]. The parameters of other methods are also tuned to be the best.

Experiment Results on the
Hopkins 155 Data Set
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Table 3
Segmentation accuracy (%) on the Extended Yale B data set, with different numbers
of persons. For robust LatLRR, the parameter λ is set as 0.014, 0.013, and 0.0135. The
parameters of other methods are also tuned to be the best.

Experiment Results on the
Extended Yale B Data Set

SSC LRR RSI LRSC LatLRR Robust
LatLRR
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