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Abstract
We study the approximate recovery problem un-
der noise: Given corrupted 1-bit measurements of
the form sign(w∗ · xi), recover a vector w with a
small 0/1 loss w.r.t. w∗ ∈ Rd. In learning theory,
this is known as the problem of learning halfs-
paces with noise, and in signal processing, as 1-
bit compressed sensing, in which there is an addi-
tional assumption that w∗ is t-sparse. Direct for-
mulations of the approximate recovery problem
are non-convex and are NP-hard to optimize. In
this paper, we propose adaptively solving a se-
quence of convex optimizations to mitigate the
issue. Our algorithms output solutions with error
as small as the information-theoretic limit under
bounded and adversarial noise models. We also
show that the usual one-shot approach of min-
imizing a convex surrogate fails to achieve this
goal for a large family of loss functions.

1. Introduction
Designing noise-tolerant algorithms is a fundamental prob-
lem in machine learning, statistics, and signal process-
ing (Cristianini and Shawe-Taylor, 2000; Freund and
Schapire, 1997; Kearns and Vazirani, 1994; Valiant, 1984;
Vapnik, 1998). In machine learning and statistics, study
of such algorithms has led to significant advances in both
the theory and practice of robust prediction and regres-
sion. In signal processing, these algorithms are used to re-
cover sparse signals via a few noisy measurements. This
is known as noisy compressed sensing or sparse recovery.
In both cases, the problem can be stated as recovering a
vector w∗ ∈ Rd given noisy information about w∗ · xi or
sign(w∗ · xi), where the xi’s are drawn from a distribution
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D. The focus of this work is on the latter setting known
as classification or 1-bit compressed sensing in the respec-
tive communities. The goal is to output a solution that has
a small 0/1 error, or equivalently, that minimizes the non-
convex object function Prx∼D[sign(w ·x) 6= sign(w∗ ·x)].

Despite a large amount of work on designing noise-tolerant
algorithm, many fundamental questions remain unresolved.
In learning theory, one of the long-standing questions is
designing efficient noise-tolerant learning algorithms that
can approximate the unknown target vector w∗ to arbitrary
accuracy. In the absence of noise, the recovery problem
can be solved efficiently via linear programming. How-
ever when measurements are noisy, this problem becomes
more challenging in both its classification and 1-bit com-
pressed sensing forms. This is due to the fact that di-
rect formulations of the approximate recovery problem are
non-convex and are NP-hard to optimize (Guruswami and
Raghavendra, 2006). There is significant evidence to indi-
cate that without assumptions on the noise and the distri-
bution of xi, such recovery might not be computationally
possible (Daniely, 2015; Klivans and Kothari, 2014).

Due to the difficulty of the most general form of the prob-
lem, most positive results for obtaining arbitrarily good ap-
proximation have focused on the case of symmetric noise.
A noise process is called symmetric if the probability that
sign(w∗ · xi) is corrupted only depends on the magnitude
|w∗ · xi| (Plan and Vershynin, 2013). Symmetric noise has
many structural properties that one can exploit. For in-
stance, when the marginal distribution over the instance
space is symmetric, it can be shown that the sign weighted
average of the samples is a good approximation to w∗.
This is the main insight behind some of the existing works
on classification and 1-bit compressed sensing that use a
one-time application of convex optimization for recovering
w∗ (Servedio, 2001; Plan and Vershynin, 2013). However,
when the noise is asymmetric, it can be shown that a one-
shot application of convex optimization fails to recover the
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true signal for a wide range of convex loss functions. There-
fore, necessitating the design of non-convex methods.

1.1. Our Contribution

This paper is a summary of some of our recent
works (Awasthi et al., 2014; 2015; 2016). We tackle the
problem of approximate recovery under asymmetric noise
and advance the state-of-the-art algorithms. In particular,
we show how a sequence of carefully chosen convex op-
timization subproblems leads to a good approximation for
w∗. We also show that a one-shot application of convex
optimization does not achieve a desirable accuracy for a
wide range of convex surrogate loss functions. We believe
that our techniques have the potential to be applied to more
general settings for solving hard non-convex optimization
problems in machine learning.

Formally, we study a natural asymmetric noise model
known as the bounded noise (a.k.a Massart noise) model.
In this model, the probability of corrupting the sign(w∗ ·xi)
is upper bounded by a constant 1

2 −
β
2 , i.e., an adversary

flips the label of each point xi with probability η(xi) ≤
1
2 −

β
2 (Boucheron et al., 2005; Sloan, 1996). In this work,

we introduce a novel algorithm that efficiently approxi-
mates linear separators to arbitrary accuracy ε for any con-
stant value of β > 0 in time poly(d, 1ε ), when the marginal
distribution is isotropic log-concave in Rd. We also intro-
duce an attribute-efficient variation of this algorithm and
perform 1-bit compressed sensing with number of samples
scaling only polynomially in the sparsity parameter and
polylogarithmic in the ambient dimension.

We also consider the more challenging adversarial (a.k.a
agnostic) noise model. Here, an adversary can flip any τ
fraction of labels and no other assumption is made about
the nature of the noise. As a result, even information theo-
retically, approximate recovery within arbitrarily small er-
ror is not possible (Kearns and Li, 1988). However, one
could ask for recovering a w that satisfies Prx∼D[sign(w ·
x) 6= sign(w∗ · x)] ≤ cτ + ε, where ε > 0 can be arbi-
trarily small. One would like to keep c as small as possi-
ble, ideally a constant. We provide a polynomial time al-
gorithm that can approximately recover w∗ in this model
with c = O(1) and the dependence on the number of
samples is O( tε3 log( 1

ε )polylog(d)). This improves on the
best known result of (Plan and Vershynin, 2013) in three
ways: a) We improve the c to a constant, almost match-

ing the information theoretic limit, as opposed to
√

log 1
τ

used in the previous work; b) We improve the dependence
on the number of samples to 1

ε3 as opposed to 1
ε6 in pre-

vious work. Furthermore, our algorithm is an active learn-
ing algorithm by design with improved label complexity of
O( tε2 log( 1

ε )polylog(d)); And c) Our results hold when the
distribution of xi is any isotropic log-concave distribution.

Prior work on 1-bit compressed sensing only handles the
special case when the distribution is Gaussian.

Upper Bound: We discuss the case when the marginal dis-
tribution over xi’s is isotropic log-concave. We show that
our algorithm for learning linear separators in Rd outputs
a solution that can be arbitrarily close to the true classifier
under bounded noise model.

Theorem 1 (Bounded Noise, Learning Problem). Let the
optimal Bayes classifier be a halfspace denoted by w∗.
Assume that the bounded noise condition holds for some
constant β ∈ (0, 1]. For any ε > 0, δ > 0, there exist
absolute constants e0, C,C1, C2, c1, c2 such that there is
an Algorithm with parameters rk = e0

C12k
, γk = Crk,

ν = 3C1

8CC2
, eKKMS = β(ν/(4c1 + 4c2 + 2))4, and τk =

ν γk−1/(4c1 + 4c2 + 2) running in polynomial time, pro-
ceeding in s = O(log 1

ε ) rounds, where in round k it
takes nk = poly(d, exp(k), log( 1

δ )) unlabeled samples
and mk = poly(d, log(s/δ)) labels and with probability
1 − δ returns a vector w ∈ Rd such that Prx∼D[sign(w ·
x) 6= sign(w∗ · x)] ≤ ε.

For the 1-bit compressed sensing, our algorithm outputs a
solution that can be arbitrarily close to the underlying sep-
arator with fewer samples than the learning problem under
the bounded noise model.

Theorem 2 (Bounded Noise, 1-bit Compressed Sensing).
Let the optimal Bayes classifier be a halfspace denoted by
w∗ such that ‖w∗‖0 = t. Assume that the bounded noise
condition holds for some constant β ∈ (0, 1]. For any ε >
0, δ > 0, there exist absolute constants e0,C,C1, C2, c1, c2
such that there is an Algorithm with parameters rk = e0

C12k
,

γk = Crk, ν = 3C1

8CC2
, eKKMS = β(ν/(4c1 + 4c2 + 2))4,

and τk = ν γk−1/(4c1 + 4c2 + 2) running in polynomial
time, proceeding in s = O(log 1

ε ) rounds, where in round
k it takes nk = poly(t log(d), exp(k), log( 1

δ )) unlabeled
samples and mk = poly(t, log(sd/δ), exp(k)) labels and
with probability 1 − δ returns a vector w ∈ Rd such that
Prx∼D[sign(w · x) 6= sign(w∗ · x)] ≤ ε.

For the adversarial noise model, we study 1-bit compressed
sensing and show that there is an algorithm that outputs
a solution with error as small as the information-theoretic
limit O(τ) + ε

Theorem 3 (Upper Bound for Adversarial Noise, 1-bit
Compressed Sensing). Assume that the noise is adversar-
ial and let the optimal linear classifier be a halfspace de-
noted by w∗ such that ‖w∗‖0 = t. Let τ > 0 be the er-
ror of w∗. For any ε > 0, δ > 0, there exist absolute
constants e0, C,C1, C2, c1, c2 such that there is an Algo-
rithm with parameters rk = e0

C12k
, γk = Crk, ν = 3C1

8CC2
,

and τk = ν γk−1/(4c1 + 4c2 + 2) running in polynomial
time, proceeding in s = log 1

ε rounds, where in round k
it takes nk = poly(t, log(d), exp(k), log( 1

δ )) unlabeled
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samples and mk = O(t polylog(sd/δ)22k) labels and
with probability 1 − δ returns a vector w ∈ Rd such that
Prx∼D[sign(w · x) 6= sign(w∗ · x)] ≤ O(τ) + ε.

1.2. Our Technique: Iterative Convex Optimization

We use a localization technique inspired by the work of
(Balcan et al., 2007). Instead of doing one-shot mini-
mization, our algorithm chooses a sequence of optimiza-
tion problems to solve in an adaptive manner. The algo-
rithm is initialized with a classifier w0 with an appropriate
small constant excess error. The algorithm then proceeds in
rounds, aiming to cut down the excess error by half in each
round. By the properties of the noise and the log-concave
distribution, excess error of a classifier is a linear function
of its angle to w∗. Therefore, our algorithm aims to cut the
angle by half at each round and eventually outputs a w that
is close in angle to w∗.

In round k − 1, consider wk−1 with angle ≤ αk to w∗.
It can be shown that for a band of width γk−1 = Θ(αk)
around the separator wk−1, wk−1 makes most of its error
in this band. Therefore, improving the accuracy of wk−1
in the band significantly improves the accuracy of wk−1
overall. When considering vectors that are at angle ≤ αk
to wk−1, it can be shown that any vector wk that achieves
a small enough constant excess error with respect to the
distribution in the band, indeed, enjoys a much stronger
guarantee of having excess error that is half of wk−1 over-
all. Therefore, if such a vector wk can be found efficiently
in the presence of noise, a classifier of excess error ε can
be learned in O(log( 1

ε )) steps. In order to make the above
method work we need to achieve two goals: a) achieve a
constant excess error while tolerating noise rate of 1

2 −
β
2

in the band and b) the hypothesis output should be a halfs-
pace.

On one hand, efficient proper learning methods, such as
surrogate loss minimization in the band, readily achieve
goal (b). However, convex surrogate loss functions are only
a good approximation of the 0/1 loss when the noise is
small enough. Since the noise in the band can be as high
as 1

2 −
β
2 , this directly restricts the noise rate that can be

tolerated with such methods. Indeed, Awasthi et al. (2015)
demonstrated that when hinge-loss minimization is used
in the band, such a method only works if the probabil-
ity of flipping the label is as small as ≈ 10−6, i.e., when
β is very close to 1. On the other hand, the polynomial
regression approach of (Kalai et al., 2008) learns linear
separators to an arbitrary excess error of ε with runtime
poly(d, exp(poly(1

ε )) when the marginal distribution is
log-concave, requiring no additional assumption on noise.
Since the distribution in the band is also log-concave, this
method can achieve an arbitrarily small constant excess
error in the band thereby achieving goal (a). However, this

algorithm outputs the sign of a polynomial p(·) as a hy-
pothesis, which is not necessarily a halfspace.

Instead, our algorithm takes a novel two-step approach to
find wk for any amount of noise. This is done by first find-
ing a polynomial pk that has a small constant excess er-
ror in the band. To obtain such a polynomial, we choose
poly(d, log( log(1/ε)

δ )) labeled samples from the distribu-
tion in the band and use the algorithm by (Kalai et al., 2005)
to find a polynomial with a small enough but, importantly,
a constant excess error, eKKMS, in the band. Note that at
this point pk already satisfies goal (a) but it does not satisfy
goal (b) as it is not a halfspace. At a high level, since pk has
a small excess error with respect to w∗ in the band, using
a structural property of the noise that connects the excess
error and disagreement of a classifier with respect to w∗,
we can show that pk is also close in classification to w∗.
Therefore, it suffices to agnostically learn a halfspace wk
to a constant error for samples in the band that are labeled
based on sign(p(·)). To achieve this, we use localized hinge
loss minimization in the band over a set of samples that are
labeled based on predictions of pk to find wk. Therefore,
wk is close in classification to pk in the band, which is in
turn close to w∗ in the band. As a result, wk also has a
small error in the band as desired. The pseudocode of the
technique is displayed in Algorithm 1.

Algorithm 1 LEARNING HALFSPACES UNDER NOISE

Input: An initial classifier w0, a sequence of values γk, τk
and rk for k = 1, . . . , log(1/ε). An error value eKKMS.
1. Let w0 be the initial classifier with small constant error.
2. For k = 1, . . . , log(1/ε) = s

(a) Take poly(d, log( sδ )) labeled samples from D̃k,
the conditional distribution within the band {x :
|wk−1 · x| ≤ γk−1}, and place them in the set
T . Run the polynomial regression algorithm (Kalai
et al., 2005) over T to find a polynomial pk such
that errD̃k

(sign(pk)) ≤ errD̃k
(hw∗) + eKKMS.

(b) Take d(d+ log(k/δ)) unlabeled samples from D̃k

and label them according to sign(pk(·)). Call this
set of labeled samples T ′.

(c) Find vk ∈ B(wk−1, rk−1) that approxi-
mately minimizes the empirical hinge loss over
T ′ using threshold τk, i.e., Lτk(vk, T

′) ≤
minw∈B(wk−1,rk−1) Lτk(w, T ′) + ν

12 .
(d) Let wk = vk

‖vk‖2 .
Output: Return ws that has error ε with probability 1− δ.

1.3. On the Efficacy of One-shot Convex Surrogate

Approximating a non-convex optimization with a convex
surrogate loss is a common practice in the optimization
community. There are many positive results that prove the
validity of such a technique. For example, in sparse coding
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or LASSO, it has been shown that replacing the `0 norm
with its convex hull, the `1 norm, exactly outputs a solu-
tion that is sparse under some mild conditions (Tibshirani,
1996). A similar positive phenomenon occurs when replac-
ing the rank function with the nuclear norm in the matrix
completion (Candès and Recht, 2009) or robust PCA prob-
lem (Candès et al., 2011; Zhang et al., 2015). On the other
hand, there are negative results that provide counterexam-
ples on the efficacy of one-shot convex surrogate. For ex-
ample, it has been shown that nuclear norm minimization
does not necessarily guarantee a solution of low rank in the
subspace clustering problem (Zhang et al., 2013).

In classification problems or 1-bit compressed sensing, the
goal is to output a vector w that has a small 0/1 error in
presence of noise. Traditional approaches, e.g. the support
vector machine, replace the 0/1 error with a convex surro-
gate loss, e.g., the hinge loss, and perform one-shot con-
vex optimization. Below, we give a counterexample/lower
bound showing that even in the presence of a mild noise
model, such as bounded noise, the answer is negative for a
large family of surrogate losses. This justifies that an adap-
tive sequence of convex optimizations is indispensable to
achieving a small 0/1 error in presence of noise.

1.4. Lower Bound

In this section, we show that one-shot minimization does
not work for a large family of loss functions that include
any continuous loss with a natural property that points at
the same distance from the separator have the same loss.
This justifies why minimizing a sequence of carefully de-
signed losses, as we did in this paper, is indispensable to
achieving an arbitrarily small error under bounded noise.

Formally, let Pβ be the class of noisy distribution D̃ with
uniform marginal over the unit ball, and let (zw, ϕw) repre-
sent the polar coordinate of a point P in the instance space,
where ϕw represents the angle between the linear separa-
tor hw and the vector from origin to P , and zw is the L2

distance of the point P and the origin. Let `w+(zw, ϕw) and
`w−(zw, ϕw) denote the loss functions on point P with cor-
rect and incorrect classification by hw, respectively. The
loss functions we study satisfy the following properties.

Definition 1. Continuous loss functions `w+(zw, ϕw)
and `w−(zw, ϕw) are called proper, if and only if 1.
`w+(zw, ϕw) = `w+(zw, kπ ± ϕw) and `w−(zw, ϕw) =
`w−(zw, kπ±ϕw), for k ∈ N ; 2. For zw > 0, `w−(zw, ϕw) ≥
`w+(zw, ϕw); The equality holds if and only if ϕw = kπ,
∀k ∈ N .

Intuitively, Property 1 states that the loss `w+(zw, ϕw) (or
`w−(zw, ϕw)) on the points with the same angle to the sep-
arator (indicated by points of the same color) are the same.
Property 2 is a very natural assumption since to achieve low

error, it is desirable to penalize misclassification more.

In fact, most of the commonly used loss functions (Bartlett
et al., 2006) satisfy our two properties in Definition 1, e.g.,
the (normalized) hinge loss, logistic loss, square loss, ex-
ponential loss, and truncated quadratic loss. Furthermore,
we highlight that Definition 1 covers the loss even with
regularized term on w. A concrete example is traditional
1-bit compressed sensing, with loss function formulated
as `+(zw, ϕw) = −|zw sinϕw| + λ1‖w‖1 + λ2‖w‖2 and
`−(zw, ϕw) = |zw sinϕw|+ λ1‖w‖1 + λ2‖w‖2. Thus our
lower bound demonstrates that one-shot 1-bit compressed
sensing cannot always achieve arbitrarily small excess er-
ror under the Massart noise.

Theorem 4 (Bounded Noise, Lower Bound). For every
bounded noise parameter 0 ≤ β < 1, there exists a dis-
tribution D̃β ∈ Pβ (that is, a distribution over R2 ×
{+1,−1}, where the marginal distribution on R2 is uni-
form over the unit ball, and the labels {+1,−1} satisfies
bounded noise condition with parameter β) such that any
proper loss minimization is not consistent on D̃β w.r.t. the
class of halfspaces. That is, there exists an ε ≥ 0 and a
sample size m(ε) such that any proper loss minimization
will output a classifier of excess error larger than ε by a
high probability over sample size at least m(ε).

2. Conclusion and Open Problem
Our work improves the state of the art results on classifica-
tion and 1-bit compressed sensing in presence of asymmet-
ric noise. For the general non-sparse case, our work pro-
vides the first algorithm for finding a halfspace that is ar-
bitrarily close to w∗ in presence of bounded noise for any
constant maximum flipping probability. Furthermore, we
extend the platform used for approximate recovery in pres-
ence of bounded or adversarial noise to 1-bit compressed
sensing problem. By adaptively solving a sequence of con-
vex optimization problems, we get a solution with error as
small as the information-theoretic limit.

A family of interesting noise models lie between bounded
noise model and adversarial noise model. One of them is
Tsybakov model. Instead of having a constant (< 1

2 ) max-
imum flipping probability for each example, the Tsybakov
model allows the flipping probability to be arbitrarily close
to 1

2 , say 1
2−ε, provided that the density of the region where

the probability is that close decays as a polynomial function
of ε (Tsybakov, 2004; Boucheron et al., 2005; Castro and
Nowak, 2007). In the Tsybakov model, the noise level in-
creases in the band around the true separator w∗, and hence
a straightforward application of our localization technique
fails. It remains a fascinating open problem to design an
efficient algorithm that outputs a solution with arbitrarily
small error under the Tsybakov noise model.
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