Fast Compressive Phase Retrieval under Bounded Noise
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Proof of Measure of Concentration

Lemma 1 ((Shalev-Shwartz and Ben-David 2014)). Let F
be the class of linear predictors with the Lo norm of the
weights bounded by Ws. Assume that the Lo norm of the
instance is bounded by Xo. Then for the p-Lipschitz loss £
such that Max ., 2y e[- W, X, W, X [E(w, 2, y)| < U, with
probability at least 1 — § over the choice of an i.i.d. sample
T of size m,

Vw € {w: ||lw]l2 < Wa},
2
PW2X2+U 210%(2/5)_
N m

Lemma 2 (Lemma 3 in Main Body). Let z € {z : ||z|]2 <
1} and {w;}™ be random vectors i.i.d. sampled from the
standard Gaussian distribution N'(0,I). Fix x € R™ and

suppose that m > codlog4 (%) €2 with a universal con-
stant ¢y, then with probability at least 1 — 6,

|[fxo(2) = Efx,(2)] < € (1
uniformly holds for all z € R™.

|E€(w7 Zz, y) - K(U}, T)‘ <

Proof. The proof is basically based on Lemma 1. Note that
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fra2) = — " yplwl'2)? = — 37 (wl Wrxo)* ) (w] 2
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By Lemma 1, we have that
Pr [Slzlp |Efx(z) — fx(z)| > %\/%Xz + 5}

ms?
< 2exp <_2U2) , 3

where the supremum is taken over all z € {z : ||z||s < 1}.
To identify the parameters p, Ws, X5, and U above,

we exploit the property of standard Gaussian distribution.

Specifically, we see that Wy = 1. By Lemma 4, we have

[willa < O(y/dlog(1/6)) 2 X, with probability at
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least 1 — 6. Let £(wlz) = y;(wTz)?. Since by Lemma

3 and the fact that 7; is a global constant, |¢’ (WTZ)’ <
2ys|lwTz| < O(log®?(1/8)) for any w”'z with high prob-
ability. So ¢(w7z) is O(log®/?(1/6))-Lipschitz, i.e., p =
O(log®?(1/6)). Furthermore, [¢(a”z)| < O(log?(1/8)) £
U. Plugging in all those parameters, we can see that when
m > codlog? (§) €72, the RH.S. of (3) is no larger than §,
as desired. O

Property of Standard Gaussian Distribution

Lemma 3. Let X be the random variable drawn from stan-
dard Gaussian distribution N'(0, 1). Then for every t > 0,

Pr[|X| > ] < exp(—t*/2). 4)
Lemma 4. Let P be the isotropic Gaussian distribution in
R Then Pryp[|wl2 > o] < (%>d/2 o—a%/2
Proof. We have
Prl|wllz > o] = Pr[el™llz > =]
< M ®)

esa?

— e—s(xz(l _ 28)—(1/27

where the last equality is from the moment generating func-

tion of Chi-Square distribution. Setting s = “2a_2d, we obtain

the desired result. ]

Result on Standard Compressed Sensing

Theorem 5 ((Foucart and Rauhut 2013), Robust Recovery).
Let x € R™ be a t-sparse vector. Suppose that A € R™*"
is a randomly drawn standard Gaussian matrix. Assume that
the noisy measurements b = Ax + e are taken with ||e|| <

Vn/m. If
i > 2t (\/log(en/t) + \/10g(571)/t + T/\/i)

2
)

m+1
(6)

then with probability at least 1 — 0, every minimizer X to

i = m}in HXH17 S.1. |‘E_ lI’XH2 é n/m (7)



satisfies

Hi—xm<2;£;. ®)

Property of Bernoulli Model

Lemma 6. Let n be the number of Bernoulli trials and sup-
pose that Q) ~ Ber(d/n). Then with probability at least 1 —9,
|| = ©(d), provided that d > 41log(1/9).

Proof. Take a perturbation € such that d/n = dy/n + €. By
the scalar Chernoff bound which states that

Pr(|Q| < do) < e/, ©)
if taking dg = d/2, e = d/2n and d > 4log(1/), we have
Pr(jQ| <d/2) <e ¥* <. (10)

On the other hand, by the scalar Chernoff bound again
which states that

Pr(|Q] > dg) < e~ /3, (11
if taking dg = 2d, € = —d/n and d > 41og(1/0), we obtain

Pr(|Q > 2d) < e~ 43 < 4. (12)
Finally, according to (10) and (12), we conclude that
d/2 < || < 2d with probability at least 1 — 4. O
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