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Abstract

Prior research in human-centric Al has primarily addressed single-modality tasks
like pedestrian detection, action recognition, and pose estimation. However, the
emergence of large multimodal models (LMMs) such as GPT-4V has redirected
attention towards integrating language with visual content. Referring expression
comprehension (REC) represents a prime example of this multimodal approach.
Current human-centric REC benchmarks, typically sourced from general datasets,
fall short in the LMM era due to their limitations, such as insufficient testing
samples, overly concise referring expressions, and limited vocabulary, making them
inadequate for evaluating the full capabilities of modern REC models. In response,
we present HC-RefLoCo (Human-Centric Referring Expression Comprehension
with Long Context), a benchmark that includes 13,452 images, 24,129 instances,
and 44,738 detailed annotations, encompassing a vocabulary of 18,681 words.
Each annotation, meticulously reviewed for accuracy, averages 93.2 words and
includes topics such as appearance, human-object interaction, location, action,
celebrity, and OCR. HC-RefLoCo provides a wider range of instance scales and
diverse evaluation protocols, encompassing accuracy with various IoU criteria,
scale-aware evaluation, and subject-specific assessments. Our experiments, which
assess 24 models, highlight HC-RefLoCo’s potential to advance human-centric
Al by challenging contemporary REC models with comprehensive and varied
data. Our benchmark, along with the evaluation code, are available at https:
//github.com/ZhaoJingjing713/HC-RefLoCo.

1 Introduction

Prior research in human-centric Al has predominantly concentrated on single-modality algorithms
tasked with understanding, interacting with, or analyzing human behaviors and features. These tasks
include face detection [93, 10, 32, 69, 81, 94, 53] and recognition [63, 68, 52, 25, 24], pedestrian
detection [76, 95, 97, 9] and re-identification [19, 49, 12, 42, 86], action recognition [34, 14, 45,
51, 82], pose estimation [66, 58, 91, 77], among others. However, the recent emergence of large
multimodal models (LMMs) such as GPT-4V [54-56] and Google Gemini [70] has shifted the
research landscape towards integrating language semantics with visual content. This paradigm
shift heralds a new era in human-centric Al, emphasizing multimodality. Referring expression
comprehension (REC) [83, 67, 22, 40, 44, 90, 37, 47, 48, 99, 100, 43] is a prime example of such a
multimodal task. REC involves the localization of specific instances described by natural language
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“ The person is outfitted in a distinctive black and yellow full-body uniform, with the

i "DEWALT" brand emblazoned across the chest area. A black helmet, equipped with a
visor, adorns his head, and he is frozen in a dynamic action stance. His involvement
with a pit crew is suggested by the act of refueling a race car, which is indicated by the
sizeable red fuel container he is deftly handling and utilizing.

(a) Each detailed annotation includes subject labels covering appearance, HOI, location, action, celebrity and OCR.

The individual is a man wearing a dark

a gold-colored tie...The man's overall
appearance, aside from his obscured
face, conveys a professional demeanor.

(b) Appearance.

... The firefighter is holding a framed
certificate in front of her with both

She is standing in line with other

§ firefighters, all in similar uniforms,
inside what appears to be a fire station.
She is the second person from the right
in the row.

pinstripe suit with a white dress shirt and

hands. Her blond hair is styled in a bun.

1 —

...He accessorizes his look with a pocket
square that adds an element of sophistication to
his ensemble. He is holding what appears to be
a martini glass in one hand, suggesting he may
be at a social gathering or event. The man has a
bald head, and his posture exudes confidence
as he stands with one hand in his pocket.

(c) Human-Object-Interaction.

The individual in the image is a man with a
clean-shaven head, and he appears to be
engaged in the activity of washing or styling
someone's hair at a sink, which suggests he
may be a hairdresser or barber. He is wearing a
casual, long-sleeve, button-up shirt in a light
blue color...

(d) Location. (e) Action.

The individual appears to be a young boy
dressed in a casual long-sleeve heather
grey shirt with the brand "NIKE"
prominently displayed across the chest.
He is also wearing dark-colored pants. In
his hands, he holds what seems to be a
white rectangular object, possibly a game
case or a DVD case...

() Celebrity. (9) OCR.
Figure 1: (a) An Example from our HC-RefLoCo benchmark. For each target object, we provide a
comprehensive and detailed text description, with an average length of 93.2 words. Each sentence
within this description is classified into one of the following categories: (b) appearance, (c) human-
object interaction, (d) location, (e) action, (f) celebrity, (g) optical character recognition, or None.

| Lionel Messi.

inputs. Despite its relevance, there is a notable lack of benchmarks specifically designed to evaluate
REC in human-centered contexts. This paper aims to address this gap by developing benchmarks for
human-centric REC in the era of large multimodal models [33, 20, 36, 41, 101, 6, 2, 1, 39, 88, 62, 59].

Existing human-centric REC benchmarks primarily derive from general REC datasets, such as
RefCOCO [23], RefCOCO+ [23], and RefCOCOg [50], by filtering images and text annotations
related to human categories. These resulting benchmarks, termed HC-RefCOCO, HC-RefCOCO+,
and HC-RefCOCOg, where “HC” stands for human-centric, typically include a limited number of
test samples, as illustrated in Table 1. For instance, HC-RefCOCO comprises only 1,519 images
with 10,771 text annotations. Moreover, these benchmarks utilize brief text descriptions of the target
instances, with the average word count of annotations being 3.4, 3.3, and 8.9 for HC-RefCOCO,
HC-RefCOCO+, and HC-RefCOCOg, respectively. The advent of large language models, such as
GPT-4 [54] and LLAMA [71], has significantly enhanced the language understanding capabilities of
Al models, making the processing of short texts less challenging in the REC task. Consequently, there
is a pressing need for more comprehensive and challenging benchmarks that reflect the advanced
capabilities of contemporary Al models in human-centric REC.

In this work, we introduce a new benchmark called HC-RefLLoCo, which stands for Human-Centric
Referring Expression Comprehension with Long Context. Comprehensive statistics can be found in
Table 1. Our benchmark is characterized by the following five features:

Large Scale. Our benchmark includes 13,452 images accompanied by 24,129 instances with 44,738
annotations (referring expressions), providing a substantial dataset for HC-REC testing.
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Table 1: Comparison between human-centric (HC) referring expression comprehension benchmarks
and the proposed HC-RefLoCo benchmark. Statistics for HC-RefCOCO, HC-RefCOCO+, and
HC-RefCOCOg are derived from the combination of their respective validation and test sets. Vocab.:
vocabulary. Avg.: average.

. Avg. Instance .
Dataset Images Instances Annotations Word Vocab. Size Subjects
HC-RefCOCO [23] 1,519 3,754 10,771 3.4 2,251 114.0-603.2 -
HC-RefCOCO+ [23] | 1,519 3,754 10,908 33 2,702  114.0-603.2 -
HC-RefCOCOg [50] | 1,521 2,669 5,253 8.9 2,891  89.7-610.5 -

HC-RefLoCo (Ours) | 13,452 24,129 44,738 932 18,681 62.5-3720.7 6

Long and Detailed Descriptions. Utilizing the cutting-edge language model, GPT-4, we generate
extensive descriptions (annotations) for each target instance. Each annotation is meticulously reviewed
and manually revised to correct any hallucination issues. This rigorous process ensures the accuracy
of the benchmark. The descriptions vary in length from 15 to 241 words, averaging 93.2 words. They
encompass an extensive vocabulary of 18,681 words. An example can be found in Figure 1(a).

Subject Labels. Each text annotation is an extensive paragraph comprising multiple sentences. We
manually categorize each sentence into one of the following subjects: appearance, human-object
interaction (HOI), location, action, celebrity, optical character recognition (OCR), or None, as
illustrated in Figure 1. This detailed labeling process enables a focused evaluation of modern REC
models, assessing their proficiency in interpreting and processing varied linguistic inputs associated
with specific subjects. By incorporating a wide range of subjects, we aim to provide a robust
benchmark that challenges and advances the current capabilities of REC models, ensuring they can
adeptly handle the complexity and diversity present in real-world applications.

Broader Coverage of Instance Scales. Compared to existing HC-REC benchmarks like HC-
RefCOCO, HC-RefCOCO+, and HC-RefCOCOg, our dataset spans a wider range of instance scales.
The square root of the instance size varies from 62.5 to 3720.7, with an average of 313.8, providing a
more comprehensive representation of different object sizes.

Various Evaluation Protocols. Accuracy is a commonly used metric in evaluating existing REC
models. An instance is considered successfully located if the Intersection over Union (IoU) between
the predicted bounding box and the ground truth exceeds 0.5. This standard evaluation metric is
referred to as Accgs. To provide a comprehensive understanding of the models’ strengths and
weaknesses, we introduce various evaluation protocols, including:

* Accuracy using different IoU criteria such as Accg 5, Accg.75, Accq.g, and mean Accuracy (mAcc)
across all ToU criteria, to thoroughly assess the models’ localization capabilities.

* Accuracy on small, medium, and large instances to evaluate the models’ efficiency across varying
instance sizes.

* Subject-specific evaluation, which involves assessing models based on distinct subjects to validate
the performance of REC models in managing diverse linguistic inputs and correlating detailed
descriptions with precise visual elements.

In our experiments, we evaluate a total of 24 training-unconstrained models, which utilize any
available data for training, including GPT-4V, bounding box-output models, and mask-output models,
employing a range of evaluation protocols. With its extensive test samples, detailed annotations, the
incorporation of subject labels, the broad coverage of instance scales, and the introduction of diverse
evaluation protocols, we hope our benchmark will advance research in human-centric Al

2 Related Work

REC Benchmarks. Referring expression comprehension (REC) refers to the process of localizing
the specific instances described by natural language inputs. Current human-centric REC bench-
marks primarily originate from general REC datasets like RefCOCO [23], RefCOCO+ [23], and
RefCOCOg [50]. RefCOCO, which stems from the COCO2014 [38] dataset, contains 50,000 an-
notations across 19,994 images. The expressions in this benchmark are typically short and concise,
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including many locational descriptions such as “Right guy”, “Far left man”, and “Guy on left”. In
contrast, RefCOCO+ is of a similar scale, with 49,856 annotations across 19,992 images, but inten-
tionally omits locational prepositions like “left” and “right”, thereby increasing semantic complexity.
Examples include “Man with light hat” and “Guy in white”. RefCOCOg, on the other hand, offers
more extensive annotations compared to its predecessors, with examples like “A person in a hat on a
wooden bench” and “A man in white playing Frisbee”. To improve performance on these benchmarks,
datasets like GRIT [59], GranD [62] and RecapD [17] are commonly utilized as training sources.
Although not exclusively designed for REC, datasets like Flickr30k Entities [60, 89] and Visual
Genome [29] are also frequently used for training. Compared to previous testing benchmarks, our
HC-RefLoCo provides longer expressions, with an average length of 93.2 words, covering a vast
vocabulary of 18,681 words.

LMMs for Visual Grounding. Recent advancements in large multimodal models (LMMs) such
as Flamingo [1], BLIP-2 [33], MiniGPT-4 [101, 4], InstructBLIP [4], mPLUG-Owl [87], and
LLaVA [41], have significantly enhanced the integration of vision and language modalities by lever-
aging the progress in large language models (LLMs) [54, 55, 70-72, 8]. These models have shown
remarkable improvements in tasks related to image understanding and visual question answering.
However, instance localization remains a challenging aspect that requires LMMs to not only compre-
hend the relationship between visual elements and language but also to accurately generate bounding
boxes for target instances. The REC task serves as a critical benchmark to evaluate the localization
capabilities of these models. Pioneering models like KOSMOS-2 [59], Shikra [5], Grounding-
GPT [36], Qwen-VL [3], and the SPHINX series [39, 15] typically employ an auto-regressive causal
Transformer with tokenized bounding box representations to tackle the REC task. To achieve more
precise representations of target instances, recent approaches have suggested the use of masks instead
of bounding boxes as outputs. Models such as LISA [30, 84], PixelLLM [98], PSALM [96], and
GlaMM [62] extend the segmentation paradigm initially developed by SAM [26]. Another closely
related area is open-vocabulary object detection and segmentation [16, 11, 79, 80], which aims to
locate any objects and identify their class labels using a word or phrase. However, this task still
differs from the REC task, where the models have to identify the target based on an extended text
description rather than a single word or phrase.

3 Benchmark Construction and Analysis

3.1 Benchmark Construction

Data Sources and Pre-Processing. Our HC-RefLoCo benchmark is derived from several public
object detection datasets, including the validation sets of COCO 2017 [38] and Objects365 [65], as
well as the validation and testing sets of Openlmage v7 [28]. For COCO 2017 and Objects365, we
retain all instances labeled as “person”, whereas for Openlmage v7, we keep instances labeled as
“human”. We also exclude extremely small instances, specifically those occupying less than 1% of the
total image area. We adopt the original bounding box annotations in these datasets. We also collect
images of 367 celebrities from the LAION-5B [64] dataset. Each image in the dataset contains at
least one of these celebrities and includes at least two people. The bounding boxes for the celebrities
are manually annotated. Consequently, we compile a total of 3,520 images, each containing a single
annotated instance.

In conclusion, our HC-RefLoCo benchmark comprises 200 images with 419 instances from COCO,
4,772 images with 10,070 instances from Objects365, 4,960 images with 10,120 instances from
Openlmage v7, and 3,520 images with the same number of instances from LAION-5B.

Referring Expression Generation. Figure 2 illustrates the procedure for generating a referring
expression (a.k.a. description) for each target instance. Given a target instance and its corresponding
image, this involves a three-step process:

1. Employing GPT-4V to generate an instance-level description by inputting the cropped instance,
following the prompt outlined in Section A.1.

2. Feeding the raw image into GPT-4V to expand the initial description generated in Step.1 by
incorporating the context around the target instance, using the prompt described in Section A.2.
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Figure 2: The process of generating a referring expression for each target instance. Inspired by
recent studies on GPT-4V [85], which demonstrate that GPT-4V can pay more attention to instances
highlighted by a red circle within an image, we similarly encircle the target instance in red in Step-2.

144 3. Subsequently, we manually review each referring expression to correct any errors, particularly
145 those arising from hallucination issues in GPT-4V, ensuring that the descriptions accurately and
146 uniquely identify the target instances.

147 Annotation Expansion. Up to now, our benchmark includes 13,452 images with 24,129 instances,
148 each accompanied by a referring expression (annotation). Leveraging GPT-4’s exceptional language
149 capabilities, we prompt it to rewrite each referring expression, using the prompt detailed in Section A.3.
150 This process effectively doubles the annotations. We then conduct a manual review of each rewritten
151 referring expression, eliminating those that are improper or ambiguous to ensure that the revised
152 annotations uniquely describe their respective target instances. Consequently, our final benchmark
153 comprises 13,452 images, with 44,738 annotations describing 24,129 instances.

154 Subject Labels. We manually categorize each sentence within these expressions into one of the
155 following subjects: appearance, human-object interaction (HOI), location, action, celebrity, optical
156 character recognition (OCR), or None. The label criteria for each subject can be found in Section B.
157 Data Format. Each instance I is associated with an image X, a bounding box b =
18 {z,y,w, h}—where (x,y) represents the coordinates of the top left corner, and w and % denote
159 the width and height—and a referring expression S = {sy, ..., s,, } containing N sentences. Each
160 sentence s; within the expression S has a subject label [;.

©

a

©

161 3.2 Analysis
162 Annotation Length. Figure 3a visualizes the distribution of annotation lengths for four different

163 benchmarks: HC-RefCOCO, HC-RefCOCO+, HC-RefCOCOg, and our HC-RefLoCo. The distribu-
164 tion of our HC-RefLoCo is markedly different from the other three benchmarks—there is a distinct
165 peak around 100 words, indicating that the referring expressions in HC-RefLL.oCo are significantly
166 longer than those in the others, which have peaks within the 4-8 word range. Additionally, the
167 distribution of HC-RefLoCo spans from around 50 to 150 words, showing a much broader range.

168 Sentence Length. The HC-RefLLoCo benchmark features annotations composed of multiple sentences.
169 Figure 3b illustrates the distribution of sentence lengths across four benchmarks, using all sentences
170 from all annotations for statistical analysis. Our benchmark notably peaks at a sentence length of
171 approximately 18-20 words. In contrast, the other three benchmarks, HC-RefCOCO, HC-RefCOCO+,
172 and HC-RefCOCOg, generally use single-sentence annotations, typically around 4-8 words.
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Figure 3: Statistical analysis of annotation length and sentence length across four benchmarks.
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The instance size is represented by its square root. Note that there is a high distribution overlap
among HC-RefCOCO, HC-RefCOCO+, and HC-RefCOCOg since they derive from the same dataset.
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Figure 5: (a) Per-subject analysis. (b) Distribution of instance center. We compare our HC-RefLoCo
benchmark with the combination of HC-RefCOCO, HC-RefCOCO+ and HC-RefCOCOg.

Image Size. Figure 4a compares the image size distributions of our benchmarks against HC-
RefCOCO, HC-RefCOCO+, and HC-RefCOCOg. Since all three compared benchmarks derive from
the same COCO dataset, there is a high distribution overlap. In contrast, our HC-RefLoCo benchmark
covers a wider range of image sizes.

Instance Size. In Figure 4b, we visualize the instance size distribution across four benchmarks. Our
benchmark spans a wider range of instance scales. The square root of the instance size varies from
62.5 to 3720.7, with an average of 313.8.
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Table 2: Performance evaluation across 24 models on our HC-RefLLoCo benchmark. Models indicated
with a | generate mask outputs, which we convert into tight bounding boxes to enable evaluation.
Refer to Section D for the details of each model. NVIDIA A100 (80G) GPUs are used for evaluation.

| Val+Test | Val | Test
Model | Accos  Accors  Accpg mAcc | mAcc | mAcc
GPT-4V [54-56] 17.4 2.6 0.3 5.5 5.5 5.6
GroundingGPT [36] 56.6 27.2 5.3 29.8 30.0 29.8
Ferret 7B [88] 449 32.6 11.7 30.0 30.6 29.7
Ferret 13B [88] 52.9 38.5 15.6 35.7 359 35.6
MiniGPT4-v2 [4] 47.1 31.7 11.6 30.3 30.7 30.1
KOSMOS-2 [59] 45.3 38.0 20.0 34.1 34.2 34.0
Shikra [5] 56.8 35.6 10.3 34.4 34.6 34.3
OFA [73] 48.4 37.0 21.7 35.3 35.2 353
OFA-Large[73] 70.5 61.6 44.0 58.1 57.9 58.1
Qwen-VL [3] 67.9 56.8 34.8 52.8 53.1 52.6
CogVLM [75] 66.0 59.6 43.8 55.8 56.3 55.5
Lenna [78] 68.8 63.5 51.6 60.6 60.5 60.7
ONE PEACE [74] 79.3 69.0 43.8 63.1 634 62.9
SPHINX-MoE [39] 76.3 57.7 21.8 52.5 52.7 52.4
SPHINX [39] 71.5 61.0 27.0 554 55.8 55.2
SPHINX-1k [39] 80.7 68.6 41.1 63.0 63.0 62.9
SPHINX-MoE-1k [39] 85.8 77.3 53.7 714 71.5 714
SPHINX-v2-1k [39] 84.1 77.1 56.2 71.7 71.6 71.7
PixelLM 7BT [98] 38.5 24.7 11.8 24.5 24.6 24.4
PixelLM 13BT [98] 63.6 46.6 25.8 44.6 45.0 44 4
LISA-explanatory’ [30] | 47.6 376 270 367 | 367 | 367
LISAT [30] 52.4 42.1 31.3 41.1 41.1 41.1
PSALMT [96] 61.7 534 40.2 51.1 514 51.0
GlaMMT [62] 66.1 56.9 44.2 55.0 54.9 55.0

Annotation and Image Number for Each Subject. In our HC-RefLoCo benchmark, each annotation
is a referring expression composed of multiple sentences for a given instance. Each sentence is
assigned a specific subject label. As illustrated in Figure 5a, we analyze the number of annotations
containing at least one sentence with the corresponding subject label for each subject.

Instance Center. Figure 5b presents a scatter plot illustrating the distribution of instance centers
across two datasets: our HC-RefLoCo benchmark and the combined datasets of HC-RefCOCO, HC-
RefCOCO+, and HC-RefCOCOg. Our benchmark demonstrates a more uniform spatial distribution.

4 Evaluation

Benchmark Usage. Modern REC models are often trained on extensive and diverse datasets.
For example, the SPHINX [39] model leverages a mix of 16 unimodal and multimodal datasets,
encompassing millions of training samples. Our HC-RefLoCo benchmark is designed to assess the
capabilities of these advanced models without imposing any limitations on the sources of training
data. The benchmark is divided into two subsets: a validation set, comprising 30% of the data with
4,000 images, 7,190 instances, and 13,360 annotations; and a test set, comprising 70% of the data
with 9,452 images, 16,939 instances, and 31,378 annotations. While we provide these two splits, we
encourage the combined use of both validation and test sets for model evaluation, particularly in the
current era of large-scale multimodal models, where the use of unrestricted training data is common.
Evaluation Protocols. In the conventional evaluation protocol, an instance is deemed successfully
located if the IoU between the predicted bounding box and the ground truth surpasses 0.5. Accuracy
is then employed as the evaluation metric, known as Accy 5. To provide a more comprehensive
assessment of model performance, we propose three evaluation protocols:

* In addition to Accg 5, we also measure Accg 75, Accq.g, and the mean accuracy (mAcc), which is
the average of Accg 5 through Accy g5 at intervals of 0.05.
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Table 3: Per-subject evaluation across 24 models on our HC-RefLoCo. We report mAcc for each set.

Model \ Appearance HOI Celebrity OCR Action Location
GPT-4V [54-56] 5.0 5.1 12.0 5.1 3.6 4.6
GroundingGPT [36] 27.3 27.5 61.4 25.8 21.3 23.0
Ferret 7B [88] 27.9 27.9 57.0 27.0 24.2 25.1
Ferret 13B [88] 33.9 34.4 58.5 33.5 28.8 30.9
MiniGPT4-v2 [4] 27.4 27.5 66.2 24.6 22.6 227
KOSMOS-2 [59] 31.5 32.9 65.8 31.5 27.9 28.2
Shikra [5] 32.7 32.5 55.9 29.7 30.6 31.7
OFA [73] 352 35.3 36.8 352 32.3 322
OFA Large[73] 58.4 58.3 56.0 56.9 55.1 55.2
Qwen-VL [3] 52.7 53.1 56.1 50.9 47.8 49.3
CogVLM [75] 54.8 53.6 66.9 50.3 55.9 55.2
Lenna [78] 61.8 62.3 50.6 61.6 56.5 57.2
ONE PEACE [74] 62.1 63.5 75.4 62.1 55.8 56.6
SPHINX-MOoE [39] 51.6 52.9 64.4 52.1 45.5 47.9
SPHINX [39] 54.2 55.1 70.4 53.1 49.4 50.8
SPHINX-1k [39] 62.7 63.3 66.0 61.7 59.0 59.6
SPHINX-MoE-1k [39] 71.8 72.4 67.7 72.0 67.9 68.9
SPHINX-v2-1k [39] 72.4 73.0 64.1 72.3 68.7 69.6
PixelLM 7BT [98] 23.3 22.6 39.6 234 22.4 20.9
PixelLM 13BT [98] 43.8 44.9 54.8 44.0 38.9 40.3
LISA-explanatory® [30] 34.1 32.5 69.6 30.8 33.1 31.2
LISAT [30] 38.8 38.0 70.2 36.7 37.1 35.0
PSALM' [96] 51.7 51.6 473 52.2 48.3 49.5
GlaMMT [62] 54.0 534 68.7 51.7 513 51.3

* Figure 5a presents the number of annotations for each subject. We further conduct a per-subject
evaluation using mAcc as the evaluation metric.

* To assess robustness to variations in instance sizes, we report mAcc,, mAcc,,, and mAcc,
representing the mAcc for small, medium, and large instances. The size of an instance is
determined by taking the square root of its area. Instances are categorized as small if their size is
less than 128, medium if their size ranges from 128 to 256, and large if their size exceeds 256.

S Experiments

Main Results. We assess a total of 24 advanced models, which are divided into two categories
based on their output types: 1) models producing bounding box outputs, including GPT-4V [54-56],
GroundingGPT [36], Ferret [88], MiniGPT4-v2 [101, 4], KOSMOS-2 [59], Shikra [5], OFA [73],
Qwen-VL [3], CogVLM [75], Lenna [78], ONE-PEACE [74], and SPHINX [15, 39], and 2) models
generating mask outputs, including PixelLM [98], LISA [30], PSALM [96], and GlaMM [62].
The specific prompt used for GPT-4V evaluation is described in Section A.4. For models that
produce mask outputs, we convert these masks into tight bounding boxes to facilitate evaluation. The
performance results are presented in Table 2.

Per-Subject Evaluation. As outlined in Section 3, our benchmark is divided into six subsets, each
corresponding to one of the following subjects: appearance, human-object interaction (HOI), location,
action, celebrity, and optical character recognition (OCR). This segmentation enables a focused
evaluation of the model’s performance on specific topics. Table 3 presents the mAcc for each subset.
The SPHINX-v2-1k [39] model demonstrates the highest overall performance across most subsets,
while ONE-PEACE [74] excels particularly in celebrity recognition.

Scale-Aware Evaluation. In Figure 6, we assess model performance across three groups categorized
by instance size: large, medium, and small. The size of each instance is determined by the square root
of its area. Specifically, small instances have a size less than 128, medium instances range from 128
to 256, and large instances exceed 256. Generally, most models exhibit a decline in performance as
instance size decreases. CogVLM [75] shows the greatest robustness across different instance scales.
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Figure 6: Scale-aware evaluation. Models are sorted in ascending order based on their performance
on large instances. We use mAcc as the evaluation metric.
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Figure 7: Per-subject evaluation under two scenarios: 1) using the original annotations (denoted as

“All”); 2) retaining only sentences that correspond to the specific subject while discarding the rest for
each annotation.

Effects of Using Detailed and Contextual Annotations. In our HC-RefLoCo benchmark, each
annotation comprises multiple sentences, with each sentence labeled to a specific subject. We
conduct per-subject evaluations under two scenarios: 1) using the original annotations; and 2)
retaining only sentences that correspond to the specific subject while discarding the rest for each
annotation. In Figure 7, we assess five models—KOSMOS-2 [59], Ferret 7B [88], MiniGPT4 v2 [4],
SPHINX [39], and Shikra [5]—each employing different language encoders: KOSMOS 1.3B [20],
Vicuna 7B [8], LLaMa2 Chat 7B [72], LLaMa 2 13B [72], and LLaMa 7B [71], respectively. For
most subjects, SPHINX and Shikra achieve higher performance when all sentences are used to
describe the target instance, possibly due to their strong language encoders, LLaMa 2 13B [72]
and LLaMa 7B [71]. Conversely, we observe that MiniGPT4 v2 [4] shows a significant decline in
performance with annotations containing more contextual descriptions, highlighting its limitations in
associating lengthy text descriptions with visual elements.

Additionally, we generate three extra sets by randomly selecting 1, 3, and 5 sentences from each
annotation. In Figure 8 of Section C, we evaluate the same models on these three sets, alongside
the original HC-RefLoCo benchmark. The results reveal that different models perform optimally on
different sets, highlighting a trade-off—while longer descriptions offer more context, the models may
fail to effectively associate the extended context with the target instance.

6 Conclusion

This paper introduces a novel benchmark called HC-RefLoCo, designed specifically for human-
centric referring expression comprehension. HC-RefLoCo presents unique challenges and evaluation
criteria for large multimodal models. Key features include: 1) a substantial benchmark with 13,452
images, 24,129 instances, and 44,738 annotations; 2) detailed annotations ranging from 15 to 241
words, with an average of 93.2 words, and an extensive vocabulary of 18,681 words; 3) sentence-level
subject labels; 4) a wide range of instance scales; and 5) multiple evaluation protocols, including
the utilization of various IoU criteria, subject-specific evaluations, and scale-aware evaluations. The
benchmark and evaluation code will be publicly available to support the advancement of REC models,
particularly in the LMM era.
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A Prompts

A.1 Prompt for Instance Description Generation

You are an advanced referring expression generator tasked with crafting a detailed and precise
description of a person in an image. To achieve this, please adhere to the following guidelines:

. Highlight unique characteristics that make the person distinctive.

. Provide a comprehensive description of the person’s overall appearance.

. Mention any interactions the person has with objects or other people.

. Include any visible text on the individual, such as text on clothing.

. Detail any specific activities the person is engaged in.

. Describe the person’s location within the scene.

~N N Lt AW =

. When multiple individuals have similar appearances, use their relative positions for identifi-
cation, such as “the first person on the left” or “the individual in the middle of the second

t1)

row .

Input image: <Cropped Image>.

A.2 Prompt for Contextual Description Generation

You are an advanced referring expression generator tasked with crafting a detailed and precise
description of a person highlighted by a red circle in an image. An initial description is provided as a
reference. The description is <Instance-Level Description>. To achieve this, please adhere to the
following guidelines:

. Highlight unique characteristics that make the person distinctive.

. Provide a comprehensive description of the person’s overall appearance.

. Mention any interactions the person has with objects or other people.

. Include any visible text on the individual, such as text on clothing.

. Detail any specific activities the person is engaged in.

. Describe the person’s location within the scene.

~N N L AW =

. When multiple individuals have similar appearances, use their relative positions for identifi-
cation, such as “the first person on the left” or “the individual in the middle of the second

t1)

row .

Input image: [Raw Image].

A.3 Prompt for Annotation Expansion

The following paragraph should be rewritten while retaining the essential information. Different
expressions should be used, and the paragraph may be reorganized if necessary. The paragraph should
not be altered merely by converting the passive voice to active voice or vice versa.
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A4 Prompt for GPT-4V Evaluation

Given an image and a referring expression describing an instance visible in the image, the task is
to identify the specific instance and output a bounding box in the format (z, y, h, w), where (x,y)
represents the top-left corner and (h, w) denotes the height and width. Ensure the response includes
only the coordinates as described, without any additional text, characters, or spaces.

Input image: [Raw Image]

Description: [Referring Expression of a Target Instance]

B Labeling Criteria for Sentence-Level Annotations

As outlined in Section 3.1, each referring expression annotation in our HC-RefLLoCo benchmark
consists of multiple sentences. Each sentence is manually categorized into one of the following
subjects: appearance, human-object interaction (HOI), location, action, celebrity, and optical character
recognition (OCR). The specific labeling criteria for each subject are as follows:

* Appearance. Descriptions that focus on the physical attributes or visual characteristics of
humans.

* HOI. Descriptions that detail the interactions between a person and objects.
* Location. Descriptions that specify the setting or place where the person is situated.
* Action. Descriptions that highlight the activities or movements of the person.

» Celebrity. Descriptions that identify the person as a famous individual or a well-known
personality.

* OCR. Descriptions that mention text associated with the person, which can be read or
recognized.

C More Analysis
Using Randomly Selected Sentences as Referring Expressions. We create three additional sets by

randomly selecting 1, 3 and 5 sentences from each annotation. In Figure 8 we report the performance
of five models on these three sets.

—e— Ferret-7B

, 50 MiniGPT4 v2
é —+— SPHINX 2-13B
40 Shikra
—+— KOSMOS-2

Set 1 Set 3 Set 5 Set All

Figure 8: Alongside the original benchmark, we create three additional sets by randomly selecting 1,
3 and 5 sentences from each annotation. These sets are referred to as "Set-1," "Set-3," and "Set-5,"
respectively. We report mAcc on the four sets across five models.

Statistics of Validation and Test Sets. In Section 4, our benchmark is partitioned into a validation
set and a test set. Figure 9 illustrates the number of annotations and images for each subject in both
the validation set and the test set.
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Figure 9: The number of annotations and images for each subject in the validation set and the test set.

Word Frequency. Figure 10 illustrates the 20 most frequently used nouns in annotations across
four different benchmarks. In our benchmark, the top 20 nouns are “person”, “shirt”, “hair”,

7, “child”, “jacket”, “posture”, “group”, “event”, stance”, “woman”, “question”,
clothlng” “presence” “text”, “trousers”, “environment”, “part” and “sleeves”. In Figure 11, we
present the 20 most frequently used verbs for each benchmark. In our benchmark, the top 20 verbs are
“wearing”, “appears”, “seems”, “sleeved”, “holding”, “suggesting”, “indicating”, “suggests”, “clad”,
“paired”, “featuring”, “located”, “stands”, “complemented”, “indicated”, “participating”, “depicted”,

“evidenced”, “donned” and “includes”.
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Figure 10: The 20 most frequently used nouns in annotations across four different benchmarks.
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Figure 11: The 20 most frequently used verbs in annotations across four different benchmarks.

D Model Cards

Table 4 presents the detailed architecture of each model evaluated in this work.

E Limitations and Broad Impacts

HC-RefLoCo addresses the limitations of current human-centric REC benchmarks by providing
a comprehensive dataset with 13,452 images, 24,129 instances, and 44,738 detailed annotations,
averaging 93.2 words each, covering topics such as appearance, human-object interaction, location,
action, celebrity, and OCR. However, the benchmark is constrained to only six subjects and the
scenes from 13,452 images. Increasing the number of test samples could enhance the credibility and
complexity of the evaluation. Additionally, despite meticulous manual reviews, some unintentional
annotation errors may still be present. This benchmark is intended solely for positive and constructive
purposes in research.

F Links and Licenses

Benchmark Link: The HC-RefLLoCo benchmark is available for download from the Huggingface
platform at https://huggingface.co/datasets/Jinjing713/HC-RefLoCo.

Croissant Metadata: The croissant format metadata for HC-RefL.oCo can be accessed at https:
//huggingface.co/api/datasets/Jinjing713/HC-RefLoCo/croissant.
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Table 4: Architecture of each model. {: a hybrid vision encoder encompassing CLIP-ViT-L/14 [61],
CLIP-ConvNeX [61], DINOV2-VIiT [57] and Q-Former [92].

Model

Text Encoder

Vision Encoder

GPT-4V [54-56]
GroundingGPT [36]
Ferret [88]
MiniGPT4-v2 [4]
KOSMOS-2 [59]
Shikra [5]

OFA [73]
OFA-Large [73]
Qwen-VL [3]
Lenna [78]

ONE PEACE [74]
SPHINX-MOoE [39]
SPHINX [39]
SPHINX-1k [39]
SPHINX-MoE-1k [39]
SPHINX-v2-1k [39]
PixelLM [98]

LEGO-7B [36]
Vicuna-7B/13B [8]
LLaMa 2 Chat-7B [72]
KOSMOS-1.3B [20]
LLaMA-7B [71]
BART gys.-140M [31]
BARTqrge-400M [31]
Qwen-7B [3]
LLaVA-7B [41]

CLIP-ViT-L/14 [61]
CLIP-ViT-L/14 [61]
EVA [13]
CLIP-ViT-L/14 [61]
CLIP-ViT-L/14 [61]
ResNet50 [18]
ResNet152 [18]
ViT-bigG [64]
Swin-L [46]

Shared Causal Transformer Decoder-4B [74]

Mixtral-8x7B [21]
LLaMA 2-13B [72]
LLaMA 2-13B [72]
Mixtral-8x7B [21]
LLaMA 2-13B [72]
LLaVA-7B/13B [41]

Hybrid®
Hybrid®
Hybrid!
Hybrid!
Hybrid®
CLIP-ViT-L/14 [61]

LISA [30] LLaVA 2-13B [41] SAM-ViT-H [27]
PSALM [96] Phi 1.5-1.3B [35] Mask2former-Siwn-B [7]
GlaMM [62] Vicuna-7B [8] SAM-ViT-H [27]

Code: The dataloader and evaluation code can be accessed at https://github.com/
ZhaoJingjing713/HC-RefLoCo.

DOI: The DOI of HC-RefLoCo is: 10.57967/hf/2392.

License: The HC-RefLoCo dataset is distributed under the Creative Commons Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) license. It is important to note that the images
included in the HC-RefLoCo dataset originate from the following sources, each governed by their
respective licenses:

1. COCO 2017: Licensed under the Creative Commons Attribution 4.0 International (CC BY
4.0) license.

2. Objects365: Licensed under the Creative Commons Attribution 4.0 International (CC BY
4.0) license.

3. Openlmage v7: Licensed under both the Creative Commons Attribution 4.0 International
(CC BY 4.0) license and the Creative Commons Attribution 4.0 International (CC BY 2.0)
license.

4. LAION 5B: Licensed under the Creative Commons Attribution 4.0 International (CC BY
4.0) license.

G Datasheet

Detailed information about the HC-RefLoCo datasheet can be found in the supplementary material.

H Maintenance and Long Term Preservation
The authors of HC-RefLLoCo are committed to maintaining and preserving this dataset. Future updates

and expansions will be made as the dataset is utilized in further research. Maintenance efforts will
include monitoring and addressing issues identified by the broader community post-release. User
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feedback will be actively monitored via the project’s GitHub issue tracker. The data is hosted on a
reliable platform, ensuring stable and persistent storage, with potential migration to archival storage
for long-term preservation based on usage needs.

Findable: All data is stored on Huggingface, with both current and future data accessible via a global
and persistent DOI: 10.57967/hf/2392.

Accessible: The data and accompanying descriptive metadata are available for download from the
public links provided on the project’s Huggingface homepage.

Interoperable: HC-RefLoCo data is offered in standard formats compatible with common libraries.

Reusable: The benchmark is released under the Creative Commons Attribution-NonCommercial 4.0
International License (CC BY-NC 4.0).

I Author Statement

The creators of the HC-RefLLoCo benchmark declare full responsibility for any rights violations,
including but not limited to copyright infringement. They assert that all data in the HC-RefLoCo
dataset complies with the licensing terms of the source datasets. The HC-RefLoCo benchmark is
distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC
4.0) license. The authors have taken care to ensure that the dataset meets legal and ethical standards.
Any issues resulting from the use of this dataset are the responsibility of the authors.
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