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Robust PCA via Outlier Pursuit:

min
L,S
||L||∗ + λ||S||2,1, s.t. M = L+ S. (1)

µ-incoherence condition on matrix L = UΣV T :

max
i
||V T ei||2 ≤

√
µr

n
, (avoid column sparsity) (2a)

max
i
||UT ei||2 ≤

√
µr

m
, (avoid row sparsity) (2b)

||UV T ||∞ ≤
√

µr

mn
. (2c)

Ambiguity condition on matrix S:

||B(S)|| ≤
√

log n/4. (3)

Main Results:
Theorem 1 (Exact Recovery of Outlier Pursuit). Suppose
m = Θ(n), Range(L0) = Range(PI⊥0 L0), and [S0]:j 6∈
Range(L0) for ∀j ∈ I0. Then any solution (L0+H,S0−H)
to Outlier Pursuit (1) with λ = 1/

√
log n exactly recovers

the column space of L0 and the column support of S0 with
a probability at least 1 − cn−10, if the column support I0
of S0 is uniformly distributed among all sets of cardinality s
and

rank(L0) ≤ ρr
n(2)

µ log n
and s ≤ ρsn, (4)

where c, ρr, and ρs are constants, L0 + PI0PU0H satisfies
µ-incoherence condition (2a), and S0 − PI0PU0H satisfies
ambiguity condition (3).

Architecture of Proofs
This section is devoted to proving Theorem 1. Without loss
of generality, we assume m = n. The following theorem
shows that Outlier Pursuit succeeds for easy recovery prob-
lem.
Theorem 2 (Elimination Theorem). Suppose any solution
(L∗, S∗) to Outlier Pursuit (1) with input M = L∗ + S∗

exactly recovers the column space of L0 and the column
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Table 1: Summary of main notations used in the supplemen-
tary material.

Notations Meanings
m, n Size of the data matrix M .

n(1), n(2) n(1) = max{m,n}, n(2) = min{m,n}.
Θ(n) Grows in the same order of n.
O(n) Grows equal to or less than the order of n.
ei Vector whose ith entry is 1 and others are 0s.
M:j The jth column of matrix M .
Mij The entry at the ith row and jth column of M .
|| · ||2 `2 norm for vector, ||v||2 =

√∑
i v

2
i .

|| · ||∗ Nuclear norm, the sum of singular values.
|| · ||0 `0 norm, number of nonzero entries.
|| · ||2,0 `2,0 norm, number of nonzero columns.
|| · ||1 `1 norm, ||M ||1 =

∑
i,j |Mij |.

|| · ||2,1 `2,1 norm, ||M ||2,1 =
√∑

j ||M:j ||22.
|| · ||2,∞ `2,∞ norm, ||M ||2,∞ = maxj ||M:j ||2.
|| · ||F Frobenious norm, ||M ||F =

√∑
i,jM

2
ij .

|| · ||∞ Infinity norm, ||M ||∞ = maxij |Mij |.
||P|| (Matrix) operator norm.
L∗, S∗ Optimal solutions to Outlier Pursuit.
L0, S0 Ground Truth.
Û , V̂ Left and right singular vectors of L̂.
U0, Û , U∗ Column space of L0, L̂, L∗.
V0, V̂ , V∗ Row space of L0, L̂, L∗.
T̂ Space T̂ = {ÛXT + Y V̂ T ,∀X,Y ∈ Rn×r}.
X⊥ Orthogonal complement of the space X .
PÛ , PV̂ PÛM = Û ÛTM , PV̂M = MV̂ V̂ T .
PT̂ ⊥ PT̂ ⊥M = PÛ⊥PV̂⊥M .
I0, Î, I∗ Index of outliers of S0, Ŝ, S∗.
|I0| Outliers number of S0.
X ∈ I The column support of X is a subset of I.
B(Ŝ) Operator normalizing non-zero columns of Ŝ,

B(Ŝ)={H:PÎ⊥(H)=0;H:j=
Ŝ:j

||Ŝ:j ||2
, j ∈ Î}.

∼ Ber(p) Obeys Bernoulli distribution with parameter p.
N (a, b2) Gaussian distribution (mean a and variance b2).



support of S0, i.e., Range(L∗) = Range(L0) and {j :
S∗:j 6∈ Range(L∗)} = I0. Then any solution (L′∗, S′∗) to
(1) with input M ′ = L∗ + PIS∗ succeeds as well, where
I ⊆ I∗ = I0.

Proof. Let (L′∗, S′∗) be the solution of (1) with input matrix
M ′ and (L∗, S∗) be the solution of (1) with input matrix M .
Then we have

||L′∗||∗ + λ||S′∗||2,1 ≤ ||L∗||∗ + λ||PIS∗||2,1.
Therefore

||L′∗||∗ + λ||S′∗ + PI⊥∩I0S
∗||2,1

≤ ||L′∗||∗ + λ||S′∗||2,1 + λ||PI⊥∩I0S
∗||2,1

≤ ||L∗||∗ + λ||PIS∗||2,1 + λ||PI⊥∩I0S
∗||2,1

= ||L∗||∗ + λ||S∗||2,1.
Note that

L′∗ + S′∗ + PI⊥∩I0S
∗ = M ′ + PI⊥∩I0S

∗ = M.

Thus (L′∗, S′∗ +PI⊥∩I0S∗) is optimal to problem with in-
put M and by assumption we have

Range(L′∗) = Range(L∗) = Range(L0),

{j : [S′∗ + PI⊥∩I0S
∗]:j 6∈ Range(L0)} = Supp(S0).

The second equation implies I ⊆ {j : S′∗:j 6∈ Range(L0)}.
Suppose I 6= {j : S′∗:j 6∈ Range(L0)}. Then there exists
an index k such that S′∗:k 6∈ Range(L0) and k 6∈ I, i.e.,
M ′:k = L∗:k ∈ Range(L0). Note that L′∗:j ∈ Range(L0).
Thus S′∗:k ∈ Range(L0) and we have a contradiction. Thus
I = {j : S′∗:j 6∈ Range(L0)} = {j : S′∗:j 6∈ Range(L′∗)} and
the algorithm succeeds.

Theorem 2 shows that the success of the algorithm is
monotone on |I0|. Thus by standard arguments in (Candès
et al. 2011), (Candès, Romberg, and Tao 2006), and (Candès
and Tao 2010), any guarantee proved for the Bernoulli dis-
tribution equivalently holds for the uniform distribution. For
completeness, we give the details in the appendix. In the fol-
lowing, we will assume I0 ∼ Ber(p).

There are two main steps in our following proofs: 1. find
dual conditions under which Outlier Pursuit succeeds; 2.
construct dual certificates which satisfy the dual conditions.

Dual Conditions
We first give dual conditions under which Outlier Pursuit
succeeds.
Lemma 1 (Dual Conditions for Exact Column Space).
Let (L∗, S∗) = (L0 + H,S0 − H) be any solution to
Outlier Pursuit (1), L̂ = L0 + PI0PU0H and Ŝ =
S0 − PI0PU0H , where Range(L0) = Range(PI⊥0 L0) and
[S0]:j 6∈ Range(L0) for ∀j ∈ I0. Assume that ||PÎPV̂ || < 1,
λ > 4

√
µr/n, and L̂ obeys incoherence (2a). Then L∗

has the same column space as that of L0 and S∗ has the
same column indices as those of S0 (thus I0 = {j : S∗:j 6∈
Range(L∗)}), provided that there exists a pair (W,F ) obey-
ing

W = λ(B(Ŝ) + F ), (5)
with PV̂W = 0, ||W || ≤ 1/2, PÎF = 0 and ||F ||2,∞ ≤
1/2.

Proof. We first recall that the subgradients of nuclear norm
and `2,1 norm are as follows:

∂L̂||L̂||∗ = {Û V̂ T + Q̂ : Q̂ ∈ T̂ ⊥, ||Q̂|| ≤ 1},

∂Ŝ ||Ŝ||2,1 = {B(Ŝ) + Ê : Ê ∈ Î⊥, ||Ê||2,∞ ≤ 1}.
Let H1 = PI0PU0H and H2 = PI⊥0 PU0H +PI⊥0 PU⊥0 H +

PI0PU⊥0 H , and note that Û = U0 and Î = I0. By the defi-
nition of the subgradient, the inequality follows

||L0 +H||∗ + λ||S0 −H||2,1
≥ ||L̂||∗ + λ||Ŝ||2,1 + 〈Û V̂ T + Q̂,H2〉 − λ〈B(Ŝ) + Ê,H2〉
= ||L̂||∗ + λ||Ŝ||2,1 + 〈Û V̂ T ,PI⊥0 H〉+ 〈Q̂,PU⊥0 H〉−

λ〈B(Ŝ),PU⊥0 H〉 − λ〈Ê,PI⊥0 H〉

≥ ||L̂||∗ + λ||Ŝ||2,1 −
√
µr

n
||PI⊥0 H||2,1 + 〈Q̂,PU⊥0 H〉−

λ〈B(Ŝ),PU⊥0 H〉 − λ〈Ê,PI⊥0 H〉.

Now adopt Q̂ such that 〈Q̂,PU⊥0 H〉 = ||PV̂⊥PU⊥0 H||∗ and

〈Ê,PI⊥0 H〉 = −||PI⊥0 H||2,1
1. We have

||L0 +H||∗ + λ||S0 −H||2,1

≥ ||L̂||∗ + λ||Ŝ||2,1 −
√
µr

n
||PI⊥0 H||2,1 + ||PV̂⊥PU⊥0 H||∗−

λ〈B(Ŝ),PU⊥0 H〉+ λ||PI⊥0 H||2,1

≥ ||L̂||∗ + λ||Ŝ||2,1 +

(
λ

4
−
√
µr

n

)
||PI⊥0 H||2,1+

||PV̂⊥PU⊥0 H||∗ − λ〈B(Ŝ),PU⊥0 H〉+
3λ

4
||PÎ⊥H||2,1

≥ ||L̂||∗ + λ||Ŝ||2,1 +

(
λ

4
−
√
µr

n

)
||PI⊥0 H||2,1+

||PV̂⊥PU⊥0 H||∗ − λ〈B(Ŝ),PU⊥0 H〉+
3λ

4
||PÎ⊥PU⊥0 H||2,1.

Notice that

|〈−λB(Ŝ),PU⊥0 H〉| = |〈λF −W,PU⊥0 H〉|
≤ |〈W,PU⊥0 H〉|+ λ|〈F,PU⊥0 H〉|

≤ 1

2
||PV̂⊥PU⊥0 H||∗ +

λ

2
||PÎ⊥PU⊥0 H||2,1.

Hence

||L0 +H||∗ + λ||S0 −H||2,1

≥ ||L̂||∗ + λ||Ŝ||2,1 +

(
λ

4
−
√
µr

n

)
||PI⊥0 H||2,1+

1

2
||PV̂⊥PU⊥0 H||∗ +

λ

4
||PÎ⊥PU⊥0 H||2,1.

1By the duality between the nuclear norm and the oper-
ator norm, there exists a Q such that 〈Q,PV̂⊥PU⊥0 H〉 =

||PV̂⊥PU⊥0 H||∗ and ||Q|| ≤ 1. Thus we take Q̂ = PU⊥0 PV̂⊥Q ∈
T̂ ⊥. It holds similarly for Ê.



Since (L∗, S∗) = (L0 + H,S0 − H) is optimal, above in-
equality shows ||PV̂⊥PU⊥0 H||∗ = ||PÎ⊥PU⊥0 H||2,1 = 0,

i.e., PU⊥0 H ∈ Î ∩ V̂ . Also notice that ||PÎPV̂ || < 1 im-

plies Î ∩ V̂ = {0}. We conclude PU⊥0 H = 0. Furthermore,
||PI⊥0 H||2,1 = 0 implies H ∈ I0. Thus H ∈ U0 ∩ I0, i.e.,
U∗ ⊆ U0 and I∗ ⊆ I0.

We now prove U∗ = U0. According to the assump-
tion Range(L0) = Range(PI⊥0 L0) and H ∈ U0 ∩ I0,
Range(L∗) = Range(L0+H) = Range(L0), i.e., U∗ = U0.
We then prove I∗ = I0. Assume that I∗ 6= I0, i.e., there
exists a j ∈ I0 such that S∗:j = 0. Note that [S0]:j 6∈
Range(L0). Thus M:j = [L0]:j + [S0]:j = L∗:j 6∈ U0, which
contradicts U∗ ⊆ U0. So I∗ = I0.

Remark 1. There are two important modifications in our
conditions compared with those of (Xu, Caramanis, and
Sanghavi 2012): 1. The space T̂ (see Table 1) is not in-
volved in our conclusion. Instead, we restrict W in the com-
plementary space of V̂ . The subsequent proofs benefit from
such a modification. 2. Our conditions slightly simplify the
constraint Û V̂ T + W = λ(B(Ŝ) + F ) in (Xu, Carama-
nis, and Sanghavi 2012), where Û is another dual certificate
which needs to be constructed. Moreover, our modification
enables us to build the dual certificate W by least squares
and greatly facilitates our proofs.

By Lemma 1, to prove the exact recovery of Outlier Pur-
suit, it is sufficient to find a suitable W such that

W ∈ V̂⊥,
||W || ≤ 1/2,

PÎW = λB(Ŝ),

||PÎ⊥W ||2,∞ ≤ λ/2.

(6)

As shown in the following proofs, our dual certificateW can
be constructed by least squares.

Certification by Least Squares
The remainder of the proofs is to construct W which sat-
isfies dual conditions (6). Note that Î = I0 ∼ Ber(p). To
constructW , we consider the method of least squares, which
is

W = λPV̂⊥
∑
k≥0

(PÎPV̂PÎ)kB(Ŝ). (7)

Note that we have assumed ||PÎPV̂ || < 1. Thus
||PÎPV̂PÎ || = ||PÎPV̂(PV̂PÎ)|| = ||PÎPV̂ ||2 < 1 and
equation (7) is well defined. We want to highlight the advan-
tage of our construction over that of (Candès et al. 2011). In
our construction, we use a smaller space V̂ ⊂ T̂ instead of
T̂ in (Candès et al. 2011). Such a utilization significantly fa-
cilitates our proofs. To see this, notice that Î ∩ T̂ 6= 0. Thus
||PÎPT̂ || = 1 and the Neumann series

∑
k≥0(PÎPT̂ PÎ)k

in the construction of (Candès et al. 2011) diverges. How-
ever, this issue does not exist for our construction. This ben-
efits from our modification in Lemma 1. Moveover, our fol-
lowing theorem gives a good bound on ||PÎPV̂ ||, whose

proof takes into account that the elements in the same col-
umn of Ŝ are not independent. The complete proof can be
found in Appendices.
Theorem 3. For any I ∼ Ber(a), with an overwhelming
probability

||PV̂ − a
−1PV̂PIPV̂ || < ε, (8)

provided that a ≥ C0ε
−2(µr log n)/n for some numerical

constant C0 > 0 and other assumptions in Theorem 1 hold.
By Theorem 3, our bounds in Theorem 1 guarantee that

a is always larger than a constant when ρr is selected small
enough.

We now bound ||PÎPV̂ ||. Note Î⊥ ∼ Ber(1−p). Then by
Theorem 3, we have ||PV̂ − (1 − p)−1PV̂PÎ⊥PV̂ || < ε, or
equivalently (1 − p)−1||PV̂PÎPV̂ − pPV̂ || < ε. Therefore,
by the triangle inequality

||PÎPV̂ ||2 = ||PV̂PÎPV̂ ||
≤ ||PV̂PÎPV̂ − pPV̂ ||+ ||pPV̂ ||
≤ (1− p)ε+ p.

(9)

Thus we establish the following bound on ||PÎPV̂ ||.

Corollary 1. Assume that Î ∼ Ber(p). Then with an over-
whelming probability ||PÎPV̂ ||2 ≤ (1 − p)ε + p, provided
that 1 − p ≥ C0ε

−2(µr log n)/n for some numerical con-
stant C0 > 0.

Note that PÎW = λB(Ŝ) and W ∈ V̂⊥. So to prove the
dual conditions (6), it is sufficient to show that

(a) ||W || ≤ 1/2,

(b) ||PÎ⊥W ||2,∞ ≤ λ/2.
(10)

Proofs of Dual Conditions
Since we have constructed the dual certificates W , the re-
mainder is to prove that the construction satisfies our dual
conditions (10), as shown in the following lemma.

Lemma 2. Assume that Î ∼ Ber(p). Then under the other
assumptions of Theorem 1, W given by (7) obeys the dual
conditions (10).

Proof. Let G =
∑
k≥0(PÎPV̂PÎ)k. Then

W = λPV̂⊥
∑
k≥0

(PÎPV̂PÎ)kB(Ŝ). (11)

Now we check the two conditions in (10).
(a) By the assumption, we have ||B(Ŝ)|| ≤

√
log n/4.

Thus
‖W‖ ≤ λ‖PV̂ ⊥‖‖G‖‖B(Ŝ)‖ ≤ 1/2. (12)

(b) We have that W = λPV̂⊥G(B(Ŝ)). Notice that
G(B(Ŝ)) ∈ Î. Thus

PÎ⊥W = λPÎ⊥PV̂⊥G(B(Ŝ))

= λPÎ⊥G(B(Ŝ))− λPÎ⊥PV̂G(B(Ŝ))

= −λPÎ⊥PV̂G(B(Ŝ))

= −λPÎ⊥PV̂PÎG(B(Ŝ)).



Denote by G =
∑
k≥0(I:Î V̂ V̂

T I:Î)k, where I:Î is a sub-
sampling of columns of identity matrix at coordinates Î.
Then for any ej0 , we have

‖(PV̂PÎGB(Ŝ))ej0‖2 = ‖B(Ŝ)GI:Î V̂ V̂
T ej0‖2

≤ ‖B(Ŝ))‖‖G‖‖PÎPV̂‖‖V̂
T ej0‖2

≤
√

log n

4

1

1− σ
σ

√
µr

n

≤ 1

2
,

where the second inequality holds because ‖PÎPV̂‖ ≤ σ,
which can be arbitrarily small constant by Corollary 1. Thus
||PÎ⊥W ||2,∞ ≤ λ||PV̂PÎGB(Ŝ)||2,∞ ≤ λ/2.

Now we have proved that W satisfies the dual conditions
(10). So our proofs are completed.

Tightness of Bounds
The following theorem shows that our bounds in inequalities
(4) are optimal.
Theorem 4. The orders of the upper bounds given by in-
equalities (4) are tight.

Proof. SinceO(n) is the highest order for the possible num-
ber of corruptions, the order of our bound for the corruption
cardinality s is tight.

We then demonstrate that our bound for rank(L0) is tight.
(McCoy and Tropp 2011) showed that the optimal solution
L∗ to model (1) satisfies

rank(L∗) ≤ nλ2 = n/ log n. (13)
If the order of rank(L0) is strictly higher than Θ(n/ log n),
then according to (13) it is impossible for L∗ to exactly re-
cover the column space of L0 due to their different ranks. So
rank(L0) should be no larger than Θ(n/ log n) and the order
of our bound is tight.

Algorithm
In this section, we give the algorithm for Robust PCA (R-
PCA) via Outlier Pursuit. To solve the model, we apply
the alternating direction method (ADM) (Lin, Liu, and Su
2011), which is probably the most widely used method for
solving nuclear norm minimization problems.

Given the Outlier Pursuit model
min
L,S
||L||∗ + λ||S||2,1, s.t. M = L+ S, (14)

whose augmented Lagrangian formulation corresponds to
L(L, S, Y, µ)

= ||L||∗ + λ||S||2,1 + 〈M − L− S, Y 〉+
µ

2
||M − L− S||2F .

(15)
ADM solves model (14) by updating one argument in (15)
and fixing others in each step. For any matrix X , denote Sε
andHε the soft-thresholding operators on X such that

[Sε(X)]ij =


Xij − ε, ifXij > ε;

Xij + ε, ifXij < −ε;
0, otherwise,

and

[Hε(X)]:j =

{
||X:j ||2−ε
||X:j ||2 X:j , if ||X:j ||2 > ε;

0, otherwise.

The detailed procedures of the ADM are listed in the follow-
ing algorithm:

Algorithm 1 The ADM for R-PCA via Outlier Pursuit
Input: Observation matrix M ∈ Rm×n, λ = 1/

√
log n.

Initialize: Y0 = 0; L0 = M ; S0 = 0; µ0 > 0; k = 0.
1: while not converged do
2: //Line 3-4 solve Lk+1 = arg minL L(L, Sk, Yk, µk).
3: (U, S, V ) = svd(M − Sk + µ−1k Yk);
4: Lk+1 = USµ−1

k
(S)V T .

5: //Line 6 solves Sk+1 =arg minS L(Lk+1, S, Yk, µk).
6: Sk+1 = Hλµ−1

k
[M − Lk+1 + µ−1k Yk].

7: Yk+1 = Yk + µk(M − Lk+1 − Sk+1).
8: Update µk to µk+1.
9: k ← k + 1.
10: end while
Output: (L∗, S∗).

Appendices
Equivalence of Probabilistic Models
We show that the exact recovery result proved for the
Bernoulli distribution holds for the uniform distribution as
well. Let ”success” be the event that the algorithm suc-
ceeds, i.e., Range(L0) = Range(L∗) and {j : S∗:j 6∈
Range(L∗)} = I0. Notice the fact that

PBer(p)(Success| |I| = k) = PUnif(k)(Success),

and Theorem 2 implies that for k ≥ t,

PUnif(k)(Success) ≤ PUnif(t)(Success).

Thus we have

PBer(p)(Success) =

n∑
k=0

PBer(p)(Success| |I| = k)PBer(p)(|I| = k)

≤
t−1∑
k=0

PBer(p)(|I| = k) +

n∑
k=t

PBer(p)(Success| |I| = k)PBer(p)(|I| = k)

≤
t−1∑
k=0

PBer(p)(|I| = k) +

n∑
k=t

PUnif(k)(Success)PBer(p)(|I| = k)

≤ PBer(p)(|I| < t) + PUnif(t)(Success).

Taking p = t/n+ε gives PBer(p)(|I| < t) ≤ exp(− ε
2n
2p ), we

complete the proof.

Proof of Theorem 3
We proceed to prove Theorem 3. The following lemma is
critical.



Lemma 3. Assume
∣∣∣∣∣∣∑ij yij ⊗ yij

∣∣∣∣∣∣ ≤ 1 for yij ∈ Rd and

δjs are i.i.d. Bernoulli variables with P(δj = 1) = a. Then

E

a−1
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

(δj − a)
∑
i

yij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣
 ≤ C̃√ log d

a
max
ij
||yij ||,

provided that C̃
√

log d/amaxij ||yij || < 1.

Proof. Let

Y =
∑
j

(δj − a)
∑
i

yij ⊗ yij ,

and let Y ′ =
∑
j(δ
′
j − a)

∑
i yij ⊗ yij be an independent

copy of Y . Since δj − δ′j is symmetric, Y −Y ′ has the same
distribution as

Yε − Y ′ε ,
∑
ij

εij(δj − δ′j)yij ⊗ yij ,

where εijs are i.i.d. Rademacher variables and

Yε =
∑
ij

εijδjyij ⊗ yij .

Notice that || · || is a convex function and Eδ′Y ′ = 0. Thus
by Jensen’s inequality, we have

Eδ||Y || = Eδ||Y − Eδ′Y ′||
= Eδ||Eδ′(Y − Y ′)||
≤ EδEδ′ ||Y − Y ′||
= E||Yε − Y ′ε ||
≤ E||Yε||+ E||Y ′ε ||
= 2E||Yε||

= 2E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

εijδjyij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣ .

According to Rudelson’s lemma in (Rudelson 1999), which
states that

Eε

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

εijδjyij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ C
√

log d max
ij
||yij ||

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

δjyij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣
1
2

,

we have

EδEε

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

εijδjyij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ C
√

log d max
ij
||yij || Eδ

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

δjyij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣
1
2

.

Hence

E||Y || ≤ 2C
√

log d max
ij
||yij || Eδ

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

δjyij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣
1
2

≤ 2C
√

log d max
ij
||yij ||

√√√√√E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

δjyij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣

= 2C
√

log d max
ij
||yij ||

√√√√√E

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j

δj
∑
i

yij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣

= 2C
√

log d max
ij
||yij ||

√√√√√E

∣∣∣∣∣∣
∣∣∣∣∣∣Y + a

∑
ij

yij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 2C
√

log d max
ij
||yij ||

√√√√√E||Y ||+ a

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

yij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣.

Thus we have

a−1E||Y ||

≤ 2C
√

log d√
a

max
ij
||yij ||

√√√√√a−1E||Y ||+

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

yij ⊗ yij

∣∣∣∣∣∣
∣∣∣∣∣∣

≤ 2C
√

log d√
a

max
ij
||yij ||

√
a−1E||Y ||+ 1.

When 2C
√

log dmaxij ||yij ||/
√
a < 1, then

a−1E||Y || ≤ 2
2C
√

log d√
a

max
ij
||yij ||

, C̃

√
log d

a
max
ij
||yij ||,

and the proof is completed.

The following concentration inequality is also important
to our proof of Theorem 3.
Theorem 5 (Talagrand 1996). Assume that |f | ≤ B and
Ef(Yi) = 0 for every f in F , where i = 1, ..., n and F is a
countable family of functions such that if f ∈ F then −f ∈
F . Let Y∗ = supf∈F

∑n
i=1 f(Yi). Then for any t ≥ 0,

P(|Y∗−EY∗| > t) ≤ 3 exp

(
− t

KB
log

(
1 +

Bt

σ2 +BEY∗

))
,

where σ2 = supf∈F
∑n
i=1 Ef2(Yi), and K is a constant.

Now we are ready to prove Theorem 3.

Proof. For any matrix X , we have

PV̂X =
∑
ij

〈PV̂X, eie
T
j 〉eieTj .



ThusPIPV̂X =
∑
ij δj〈PV̂X, eieTj 〉eieTj , where where δjs

are i.i.d. Bernoulli variables with parameter a. Then

PV̂PIPV̂X =
∑
ij

δj〈PV̂X, eie
T
j 〉PV̂(eie

T
j )

=
∑
ij

δj〈X,PV̂(eie
T
j )〉PV̂(eie

T
j ).

Namely, PV̂PIPV̂ =
∑
ij δjPV̂(eie

T
j ) ⊗ PV̂(eie

T
j ). Now

let

Z = a−1||PV̂PIPV̂ − aPV̂ ||

= a−1

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

(δj − a)PV̂(eie
T
j )⊗ PV̂(eie

T
j )

∣∣∣∣∣∣
∣∣∣∣∣∣ .

We first prove the upper bound of EZ. Adopt yij =
PV̂(eie

T
j ) in Lemma 3. Since

PV̂ =
∑
ij

PV̂(eie
T
j )⊗ PV̂(eie

T
j ),

we have ∣∣∣∣∣∣
∣∣∣∣∣∣
∑
ij

PV̂(eie
T
j )⊗ PV̂(eie

T
j )

∣∣∣∣∣∣
∣∣∣∣∣∣ = 1.

Thus by Lemma 3 and incoherence (2a),

EZ ≤ C̃
√

log n2

a

√
µr

n
, C

√
µr log n

na
.

We then prove the upper bound of Z at an overwhelming
probability. Let

Dj = a−1(δj − a)
∑
i

PV̂(eie
T
j )⊗ PV̂(eie

T
j ),

and
D =

∑
j

Dj = a−1(PV̂PIPV̂ − aPV̂).

Notice that the operator D is self-adjoint. Denote the set
g = {||X1||F ≤ 1, X2 = ±X1}. Then we have

Z = sup
g
〈X1,D(X2)〉

= sup
g

∑
j

〈X1,Dj(X2)〉

= sup
g

∑
j

a−1(δj − a)
∑
i

〈X1,PV̂(eie
T
j )〉〈X2,PV̂(eie

T
j )〉.

Now let

f(δj) = 〈X1,Dj(X2)〉

= a−1(δj − a)
∑
i

〈X1,PV̂(eie
T
j )〉〈X2,PV̂(eie

T
j )〉.

To use Talagrand’s concentration inequality on Z, we should
bound |f(δj)| and Ef2(δj). Since by assumption, L̂ = L0 +

PI0PU0H satisfies incoherence (2a) and

||PV̂X1||22,∞ = max
j

∑
i

〈X1, eie
T
j V̂ V̂

T 〉2

= max
j

∑
i

〈eTi X1, e
T
j V̂ V̂

T 〉2

≤ max
j

∑
i

||eTi X1||22||eTj V̂ V̂ T ||22

= max
j
||X1||2F ||eTj V̂ V̂ T ||22

≤ µr

n
,

we have
|f(δj)| ≤ a−1|δj − a|

∑
i

|〈X1,PV̂(eie
T
j )〉| |〈X2,PV̂(eie

T
j )〉|

= a−1|δj − a|
∑
i

〈X1,PV̂(eie
T
j )〉2

≤ a−1
∑
i

〈PV̂X1, eie
T
j 〉2

≤ a−1||PV̂X1||22,∞
≤ µr

na
,

where the first equality holds since X2 = ±X1. Further-
more,

Ef2(δj) = a−1(1− a)

(∑
i

〈X1,PV̂(eie
T
j )〉〈X2,PV̂(eie

T
j )〉

)2

≤ a−1(1− a)

(∑
i

|〈X1,PV̂(eie
T
j )〉〈X2,PV̂(eie

T
j )〉|

)2

= a−1(1− a)

(∑
i

〈X1,PV̂(eie
T
j )〉2

)2

≤ a−1
(∑

i

〈PV̂X1, eie
T
j 〉2
)(∑

i

〈PV̂X1, eie
T
j 〉2
)

≤ a−1||PV̂X1||22,∞
∑
i

〈PV̂X1, eie
T
j 〉2

≤ µr

na

∑
i

〈PV̂X1, eie
T
j 〉2,

and

σ2 = E
∑
j

f2(δj) ≤
µr

na

∑
ij

〈PV̂X1, eie
T
j 〉2

=
µr

na
||PV̂X1||2F

≤ µr

na
.

Since we have proved EZ ≤ 1 in the first part of the proof,
by Theorem 5,

P(|Z − EZ| > t) ≤ 3 exp

(
− t

KB
log

(
1 +

t

2

))
≤ 3 exp

(
− t log 2

KB
min

(
1,
t

2

))
,



where the second inequality holds since log(1 + u) ≥
log 2 min(1, u) for any u ≥ 0. Set

B =
µr

na
and t = α

√
µr log n

na
,

we have

P

(
|Z − EZ| > α

√
µr log n

na

)

≤ 3 exp

(
−γ0 min

(
2α

√
na log n

µr
, α2 log n

))
= 3 exp(−γ0α2 log n),

where γ0 = log 2/(2K) is a numerical constant. We now
adopt α =

√
β/γ0. Thus

P

(
|Z − EZ| ≤

√
β

γ0

√
µr log n

na

)
≥ 1− 3n−β .

Note that we have proved EZ ≤ C
√
µr log n/na. We have

P (Z ≤ ε) ≥ P

(
Z ≤

√
C0

√
µr log n

na

)

= P

(
Z ≤

(
C +

√
β

γ0

)√
µr log n

na

)

≥ P

(
|Z − EZ| ≤

√
β

γ0

√
µr log n

na

)
≥ 1− 3n−β ,

where C0 , (C +
√
β/γ0)2 and the first inequality holds

since a ≥ C0ε
−2(µr log n)/n by assumption. Thus the

proof is completed.
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