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Hardness of Learning Algorithms
Learning algorithms are ubiquitous:
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Assumption on the underlying dist.:

Uniform Dist. mm) |Log-concave Dist. ™) General Dist.?

(The logarithm of
density is concave)
NG

N

Can we learn halfspace and intersection of halfspaces in

polynomial time, when the class of underlying distribution
goes beyond the log-concave distributions?

The answer is affirmative!

S-Concave Distributions

S-Concave Distributions:

A function f(x) is s-concave, if f(x)° is a concave
function. A distribution D is s-concave, if its density
IS S-concave.
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Examples of s-concave distributions:

¢ Cauchy distribution
¢+ Pareto distribution
% t-distribution ...

(All are heavy-tailed here)

Structural Results

Weakly Closed under Marginal:

The marginal of isotropic s-concave distribution over
S

m arguments Is isotropic - concave.

1+ms

¢ Special case: The marginal of log-concave
remains log-concave

Hyperplane Disagreement:

For any unit vectors u, v € R",
Pr,.p|sign(u - x) # sign(v - x)| <, 6(u,v).
|Bandw|idth t

Pr,.p[sign(u - x) # sign(v - x)]

Probability of Band:

For any unit vectors w € R",
PrxND[lu . X| < t] OCS,n L.

Disagreement outside Margin:

For any unit vectors u, v € R",
Pr,.p[sign(u - x) # sign(v-x), |v-x| 25, 0(w,v)] 35, 0(u, v).

Tail Probability:

it ] (1+ns)/s
1+ns

We have Pr,._,[llx]l > vat] < [1-

¢ Heavy-tailed distribution
¢ Special case: When s — 0, PrXND[‘IxI‘ > \/ﬁt] <
exp(—ct). (light-tailed dist.)

Intuition and Proof Outline

Isoperimetry (s-concave):

If two sets K; and K, are well-
separated, then the area B between
them has large measure relative to
the measure of the two sets.
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» 1-Dh(t) = a(1 + )17

Baseline Function

n-D s-concave » 1-D y-concave

Extension of
Prekopa-Leindler

< Pr._p[lu- x| < t] <

Applications in Active Learning

hW* ‘./ hl

Request labels in the band, Halve the bandwidth around

do hinge loss minimization N4, request labels in the band,

to constant error do hinge loss minimization to
constant error

Sample unlabeled
data and have an
initial guess

Repeat log(1/¢) times

Analysis and Proofs: ~
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err(w) =Pr[{ ]+ Pr[{ |
Pr(t ] = Pr[Q] x errpana(w)

By probability of band

Theorem 1 (Margin-Based Active Learning):

Label Complexity: poly.(n, log(1/6), log(1/c))
Guarantee: OPT + ¢

Applications in Baum’s Algorithm

Baum’s Algorithm under s-concave distributions:

Baum’s algorithm succeeds under s-concave dist. if the
samples are large (depend on s).

*»* Key observation:
up(E) = pp(—E)




