
Hardness	of	Learning	Algorithms

Sample	and	Computationally	Efficient	Learning	Algorithms	under	
S-Concave	Distributions

The	answer	is	affirmative!
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Analysis	and	Proofs:
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v Cauchy	distribution
v Pareto	distribution
v t-distribution ...

Examples	of	s-concave	distributions:

Spam Not	Spam

Learning algorithms are ubiquitous:
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- NP-hard	when	there	is	noise	
and	no	assumption	is	made	
on	the	underlying	distribution
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NP-hard	when	there	is	no	
assumption	on	the	

underlying	distribution

Uniform	Dist. Log-concave	Dist.
(The	logarithm	of	
density	is	concave)

General	Dist.?
Assumption	on	the	underlying	dist.:	

Can we learn halfspace and intersection of halfspaces in 
polynomial time, when the class of underlying distribution 
goes beyond the log-concave distributions?

S-Concave	Distributions

A	function	𝑓(𝑥) is	s-concave,	if	𝑓(𝑥)% is	a	concave	
function.	A	distribution	D	is	s-concave,	if	its	density	
is	s-concave.

S-Concave	Distributions:
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𝑠)-concave	⊂ 𝑠+-concave	

Structural	Results

The	marginal	of	isotropic	s-concave	distribution	over	
m arguments	is	isotropic	 %

)-.%
- concave.

Weakly	Closed under	Marginal:

vSpecial	case:	The	marginal	of	log-concave	
remains	log-concave

For	any	unit	vectors	𝑢, 𝑣 ∈ ℝ4,	
Pr7~9[sign(𝑢 ? 𝑥) ≠ sign(𝑣 ? 𝑥)] ∝%,4 𝜃(𝑢, 𝑣).

Hyperplane	Disagreement:

𝜃(𝑢, 𝑣)

Pr7~9[sign(𝑢 ? 𝑥) ≠ sign(𝑣 ? 𝑥)]

𝑢

𝑣

For	any	unit	vectors	𝑤 ∈ ℝ4,	
Pr7~9[|𝑢 ? 𝑥| ≤ 𝑡] ∝%,4 𝑡.

Probability	of	Band:

𝑢

Pr7~9[|𝑢 ? 𝑥| ≤ 𝑡]

Bandwidth	t

For	any	unit	vectors	𝑢, 𝑣 ∈ ℝ4,
Pr7~9[sign 𝑢 ? 𝑥 ≠ sign 𝑣 ? 𝑥 , |𝑣 ? 𝑥| ≳%,4 𝜃(𝑢, 𝑣)] ≾%,4 𝜃(𝑢, 𝑣).

Disagreement	outside	Margin:

𝜃(𝑢, 𝑣) 𝑢

𝑣

small

We	have Pr7~9 𝑥 > 𝑛� 𝑡 ≤ 1 − N%O
)-4%

()-4%)/%

Tail	Probability:

v Heavy-tailed	distribution
v Special	case:	When	𝑠 → 0,	Pr7~9 𝑥 > 𝑛� 𝑡 ≤
exp −𝑐𝑡 . (light-tailed	dist.)

Intuition	and	Proof	Outline	

!"	 !#	

$	

%	

Margin	

high	prob.	

If	two	sets	𝐾) and	𝐾+ are	well-
separated,	then	the	area	B between	
them	has	large	measure	relative	to	
the	measure	of	the	two	sets.	

Isoperimetry (s-concave):

	
	
	
	n-D	s-concave																									1-D	!-concave																									1-D	ℎ # = %(1 + )#)+/-	

Extension	of	
Prekopa-Leindler	
	
	

Baseline	Function	

Applications	in	Active	Learning

Sample	unlabeled	
data	and	have	an	

initial	guess
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Request	labels	in	the	band,	
do	hinge	loss	minimization	

to	constant	error

Halve	the	bandwidth	around	
ℎ),	request	labels	in	the	band,	
do	hinge	loss	minimization	to	

constant	error

ℎ+

Repeat	log	(1/𝜀) times

By	disagreement	outside	band

By	probability	of	band

small

Applications	in	Baum’s	Algorithm
Baum’s	Algorithm	under	s-concave	distributions:
Baum’s	algorithm	succeeds	under	s-concave	dist.	if	the	
samples	are	large	(depend	on	s).

vKey	observation:	
𝜇9 𝐸 ≈% 𝜇9 −𝐸

𝜃(𝑢, 𝑣)

𝐸

𝑢

𝑣

−𝐸

(All	are	heavy-tailed	here)
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Label	Complexity:	poly%(n,	log(1/𝛿),	log(1/𝜀))
Guarantee:	𝑂𝑃𝑇 + 𝜀

Theorem	1	(Margin-Based	Active	Learning):


