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Completing Low-Rank Matrices With Corrupted
Samples From Few Coefficients in General Basis

Hongyang Zhang, Zhouchen Lin, Senior Member, IEEE, and Chao Zhang, Member, IEEE

Abstract— Subspace recovery from the corrupted and missing
data is crucial for various applications in signal processing
and information theory. To complete missing values and detect
column corruptions, the existing robust matrix completion (MC)
methods mostly concentrate on recovering a low-rank matrix
from a few corrupted coefficients with respect to standard basis,
which, however, does not apply to more general basis, e.g.,
Fourier basis. In this paper, we prove that the range space
of an m × n matrix with rank r can be exactly recovered
from a few coefficients with respect to general basis, though r
and the number of corrupted samples are both as high as
O(min{m, n}/ log3(m + n)). Our model covers the previous ones
as special cases, and robust MC can recover the intrinsic matrix
with a higher rank. Moreover, we suggest a universal choice of
the regularization parameter, which is λ = 1/

√
log n. By our

�2,1 filtering algorithm, which has theoretical guarantees, we
can further reduce the computational cost of our model. As an
application, we also find that the solutions to extended robust
low-rank representation and to our extended robust MC are
mutually expressible, so both our theory and algorithm can be
applied to the subspace clustering problem with missing values
under certain conditions. The experiments verify our theories.

Index Terms— Robust matrix completion, general basis,
subspace recovery, outlier detection, �2,1 filtering algorithm.

I. INTRODUCTION

WE ARE now in an era of big and high-dimensional
data. Unfortunately, due to the storage difficulty and

the computational obstacle, we can measure only a few entries
from the data matrix. So restoring all of the information that
the data carry through the partial measurements is of great
interest in data analysis. This challenging problem is also
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known as the Matrix Completion (MC) problem, which is
highly related to the so-called recommendation system, where
one tries to predict unrevealed users’ preference according
to the incomplete rating feedback. Admittedly, this inverse
problem is ill-posed as there should be infinite number of
feasible solutions. Fortunately, most of the data are structured,
e.g., face [1], texture [2], and motion [3]–[5]. They typically
lie around low-dimensional subspaces. Because the rank of
data matrix corresponds to the dimensionality of subspace,
recent work [6]–[9] in convex optimization demonstrates a
remarkable fact: it is possible to exactly complete an m × n
matrix of rank r , if the number of randomly selected matrix
elements is no less than O((m + n)r log2(m + n)).

Yet it is well known that the traditional MC model suffers
from the robustness issue. It is even sensitive to minor cor-
ruptions, which commonly occur due to sensor failures and
uncontrolled environments. In the recommendation system,
for instance, malicious manipulation of even a single rater
might drive the output of MC algorithm far from the ground
truth. To resolve the issue, several efforts have been devoted to
robustifying the MC model, among which robust MC [10] is
the one with solid theoretical analysis. Chen et al. [10] proved
that robust MC is able to exactly recover the ground truth
subspace and detect the column corruptions (i.e., some entire
columns are corrupted by noises), if the dimensionality of
subspace is not too high and the corrupted columns are sparse
compared with the input size. Most importantly, the observed
expansion coefficients should be sufficient w.r.t. the standard
matrix basis {ei eT

j }i j (please refer to Table I for explanation
of notations).

However, recent advances in theoretical physics measure
quantum-state entries by tomography w.r.t. the Pauli basis,
which is rather different from the standard matrix one [8].
So it is not very straightforward to apply the existing theory
on robust MC to such a special case. This paper tries to
resolve the problem. More generally, we demonstrate the exact
recoverability of an extended robust MC model in the presence
of only a few coefficients w.r.t. a set of general basis, although
some columns of the intrinsic matrix might be arbitrarily
corrupted. By applying our �2,1 filtering algorithm which
has theoretical guarantees, we are able to speed up solving
the model numerically. There are various applications of our
results.

A. Practical Applications

In numerical analysis, instead of the standard polynomial
basis {xk}n

k=0, the Legendre polynomials are widely used to
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TABLE I

SUMMARY OF MAIN NOTATIONS USED IN THE PAPER

represent smooth functions due to their orthogonality. Such
expansions, however, are typically sensitive to perturbation:
a small perturbation of the function might arbitrarily drive
the fitting result far from its original. Moreover, to reduce the
storage and the computational costs, sometimes we can record
only a few expansion coefficients. To complete the missing
values and get the outliers removed, this paper justifies the
possibility of doing so.

In digital signal processing, one usually samples the signals,
e.g., voices and feature vectors, at random in the Fourier
basis. However, due to sensor failure, a group of signals that
we capture may be rather unreliable. To recover the intrinsic
information that the signals carry and remove the outliers
simultaneously, our theoretical analysis guarantees the success
of robust MC w.r.t. the Fourier basis.

In quantum information theory, to obtain a maximum like-
lihood estimation of a quantum state of 8 ions, one typically
requires hundred of thousands of measurements w.r.t. the Pauli
basis, which are unaffordable because of high experimental
costs. To overcome the difficulty, Gross [8] compressed the
number of observations w.r.t. any basis by an MC model.
However, their model is fragile to severe corruptions, which
commonly occurs because of measurement errors. To robustify
the model, this paper justifies the exact recoverability of
robust MC w.r.t. general basis, even if the datasets are wildly
corrupted.

In subspace clustering, one tries to segment the data points
according to the subspaces they lie in, which can be widely
applied to motion segmentation [3]–[5], [11], [12], face clas-
sification [1], [13]–[15], system identification [16]–[18], and

image segmentation [19], [20]. Recently, it is of great interest
to cluster the subspaces while the observations w.r.t. some
coordinates are missing. To resolve the issue, as an application
in this paper, our theorem relates robust MC to a certain
subspace clustering model – the so-called extended robust
Low-Rank Representation (LRR). Thus one could hope to
correctly recover the structure of multiple subspaces, if robust
MC is able to complete the unavailable values and remove
the outlier samples at an overwhelming probability. This is
guaranteed by our paper.

B. Related Work

Suppose that L0 is an m × n data matrix of rank r whose
columns are sample points, and entries are partially observed
among the set Kobs . The MC problem aims at exactly recover-
ing L0, or the range space of L0, from the measured elements.
Probably the most well-known MC model was proposed by
Candès and Recht [6]. To choose the lowest-rank matrix so as
to fit the observed entries, the original model is formulated as

min
L

rank(L), s.t. 〈L, ei e
T
j 〉 = 〈L0, ei e

T
j 〉, (i, j) ∈ Kobs.

(1)

This model, however, is untractable because problem (1) is
NP-hard. Inspired by recent work in compressive sensing,
Candès et al. replaced the rank in the objective function with
the nuclear norm, which is the sum of singular values and is
the convex envelope of rank on the unit ball of matrix operator
norm. Namely,

min
L

‖L‖∗, s.t. 〈L, ei e
T
j 〉 = 〈L0, ei e

T
j 〉, (i, j) ∈ Kobs . (2)
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It is worth noting that model (2) is only w.r.t. the standard
matrix basis {ei eT

j }i j . To extend the model to any basis {ωi j }i j ,
Gross [8] proposed a more general MC model:

min
L

‖L‖∗, s.t. 〈L, ωi j 〉 = 〈L0, ωi j 〉, (i, j) ∈ Kobs. (3)

Models (2) and (3) both have solid theoretical guarantees:
recent work [6]–[9] showed that the models are able to exactly
recover the ground truth L0 by an overwhelming probability,
if Kobs is uniformly distributed among all sets of cardinality
O((m + n)r log2(m + n)). Unfortunately, these traditional
MC models suffer from the robustness issue: they are even
sensitive to minor corruptions, which commonly occurs due
to sensor failures, uncontrolled environments, etc.

A parallel study to the MC problem is the so-called matrix
recovery, namely, recovering underlying data matrix L0,
or the range space of L0, from the corrupted data matrix
M = L0+S0, where S0 is the noise. Probably the most widely
used one is Principal Component Analysis (PCA). However,
PCA is fragile to outliers. Even a single but severe corruption
may wildly degrade the performance of PCA. To resolve
the issue, much work has been devoted to robustifying
PCA [21]–[29], among which a simple yet successful model to
remove column corruptions is robust PCA via Outlier Pursuit:

min
L ,S

rank(L) + λ‖S‖2,1, s.t. M = L + S, (4)

and its convex relaxation

min
L ,S

‖L‖∗ + λ‖S‖2,1, s.t. M = L + S. (5)

Outlier Pursuit has theoretical guarantees: Xu et al. [30] and
our previous work [31] proved that when the dimensionality
of ground truth subspace is not too high and the column-
wise corruptions are sparse compared with the sample size,
Outlier Pursuit is able to recover the range space of L0
and detect the non-zero columns of S0 at an overwhelming
probability. Nowadays, Outlier Pursuit has been widely applied
to subspace clustering [32], image alignment [33], texture
representation [34], etc. Unfortunately, the model cannot han-
dle the case of missing values, which significantly limits its
working range in practice.

It is worth noting that the pros and cons of above-mentioned
MC and Outlier Pursuit are mutually complementary.
To remedy both of their limitations, recent work [10] sug-
gested combining the two models together, resulting in robust
MC – a model that could complete the missing values and
detect the column corruptions simultaneously. Specifically, it is
formulated as

min
L ,S

rank(L) + λ‖S‖2,1,

s.t. 〈M, ei e
∗
j 〉 = 〈L + S, ei e

∗
j 〉, (i, j) ∈ Kobs . (6)

Correspondingly, the relaxed form is

min
L ,S

‖L‖∗ + λ‖S‖2,1,

s.t. 〈M, ei e
∗
j 〉 = 〈L + S, ei e

∗
j 〉, (i, j) ∈ Kobs . (7)

Chen et al. [10] demonstrated the recoverability of model (7),
namely, if the range space of L0 is low-dimensional,

the observed entries are sufficient, and the column corruptions
are sparse compared with the input size, one can hope to
exactly recover the range space of L0 and detect the corrupted
samples by robust MC at an overwhelming probability. It is
well reported that robust MC has been widely applied to
recommendation system and medical research [10]. However,
the specific basis {ei eT

j }i j in problem (7) limits its extensible
applications to more challenging tasks, such as those discussed
in Section I-A.

C. Our Contributions

In this paper, we extend robust MC to more general cases,
namely, the expansion coefficients are observed w.r.t. a set
of general basis. We are particularly interested in the exact
recoverability of this extended model. Our contributions are
as follows:

• We demonstrate that the extended robust MC model
succeeds at an overwhelming probability. This result
broadens the working range of traditional robust MC
in three aspects: 1. the choice of basis in our model
is not limited to the standard one anymore; 2. with
slightly stronger yet reasonable incoherence (ambiguity)
conditions, our result allows rank(L0) to be as high
as O(n/ log3 n) even when the number of corruptions
and observations are both constant fraction of the total
input size. In comparison with the existing result which
requires that rank(L0) = O(1), our analysis significantly
extends the succeeding range of robust MC model; 3. we
suggest that the regularization parameter be chosen as
λ = 1/

√
log n, which is universal.

• We propose a so-called �2,1 filtering algorithm to reduce
the computational complexity of our model. Furthermore,
we establish theoretical guarantees for our algorithm,
which are elegantly relevant to the incoherence of the
low-rank component.

• As an application, we relate the extended robust MC
model to a certain subspace clustering model – extended
robust LRR. So both our theory and our algorithm on
the extended robust MC can be applied to the subspace
clustering problem if the extended robust MC can exactly
recover the data structure.

1) Novelty of Our Analysis Technique: In the analysis of
the exact recoverability of the model, we novelly divide the
proof of Theorem 1 into two parts: The exact recoverability of
column support and the exact recoverability of column space.
We are able to attack the two problems separately thanks
to the idea of expanding the objective function at the well-
designed points, i.e., (˜L,˜S) for the recovery of column support
and (̂L,̂S) for the recovery of column space, respectively
(see Sections IV-B.1 and IV-C.1 for details). This technique
enables us to decouple the randomization of I0 and �obs ,
and so construct the dual variables easily by standard tools
like the least squares and golfing scheme. We notice that
our framework is general. It not only can be applied to the
proof for easier model like Outlier Pursuit [31] (though we
will sacrifice a small polylog factor for the probability of
outliers), but can also hopefully simplify the proof for model
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Algorithm 1 �2,1 Filtering Algorithm for Exact Recovery of
Subspace and Support

Input: Observed data matrix R(M) and estimated rank r
(see Section V-B).
1. Randomly sample columns from R(M) ∈ R

m×n by
Ber(d/n) to form R(Ml ) ∈ R

m×k ;
2. // Line 3 recovers the subspace from a seed matrix.
3. Solve small-scaled m × k problem (26) by ADMM and
obtain Ll , Range(L0), and column support of Sl ;
4. For i from 1 to n − k
5. Conduct QR factorization on the matrix Y ′

i (Ll) as
Y ′

i (Ll) = Qi Ri ;
6. // Line 7 implements �2,1 filtering to the remaining
columns.
7. Recover Z ′

i (S(i)
r ) ∈ R

hi by solving (29), which is
Z ′

i (S(i)
r ) = Y ′

i (M(i)
r ) − Qi (Q∗

i Y ′
i (M(i)

r ));
8. If Y ′

i (S(i)
r ) 	= 0

9. Output “M(i)
r is an outlier”;

10. End If
11. End For
Output: Low-dimensional subspace Range(L0) and column
support of matrix S0.

with more complicated formulation. That is roughly the high-
level intuition why we can handle the general basis in this
paper.

In the analysis for our �2,1 filtering algorithm, we take
advantage of the low-rank property, namely, we recover a
small-sized seed matrix first and then use the linear representa-
tion to obtain the whole desired matrix. Our analysis employs
tools in recent matrix concentration literature [35] to bound the
size of the seed matrix, which elegantly relates to the incoher-
ence of the underlying matrix. This is definitely consistent with
the fact that, for matrix with high incoherence, we typically
need to sample more columns in order to fully observe the
maximal linearly independent group (see Algorithm 1 for the
procedure).

The remainder of this paper is organized as follows.
Section II describes the problem setup. Section III shows our
theoretical results, i.e., the exact recoverability of our model.
In Section IV, we present the detailed proofs of our main
results. Section V proposes a novel �2,1 filtering algorithm
for the extended robust MC model, and establishes theoretical
guarantees for the algorithm. We show an application of our
analysis to subspace clustering problem, and demonstrate the
validity of our theory by experiments in Section VI. Finally,
Section VII concludes the paper.

II. PROBLEM SETUP

Suppose that L0 is an m × n data matrix of rank r , whose
columns are sample points. S0 ∈ R

m×n is a noise matrix,
whose column support is sparse compared with the input
size n. Let M = L0 + S0. Its expansion coefficients w.r.t. a set
of general basis {ωi j }i j , (i, j) ∈ Kobs , are partially observed.
This paper considers the exact recovery problem as defined
below.

Definition 1 (Exact Recovery Problem): The exact recov-
ery problem investigates whether the range space of L0 and
the column support of S0 can be exactly recovered from ran-
domly selected coefficients of M w.r.t. general basis, provided
that some columns of M are arbitrarily corrupted.

A similar problem was proposed in [36] and [37], which
recovered the whole matrix L0 and S0 themselves if S0 has
element-wise support. However, it is worth noting that one can
only hope to recover the range space of L0 and the column
support of S0 in Definition 1, because a corrupted column
can be addition of any one vector in the range space of L0
and another appropriate vector [10], [30], [31]. Moreover, as
existing work mostly concentrates on recovering a low-rank
matrix from a sampling of matrix elements, our exact recovery
problem covers this situation as a special case.

A. Model Formulations

As our exact recovery problem defines, we study an
extended robust MC model w.r.t. a set of general basis. To
choose the solution L with the lowest rank, the original model
is formulated as

min
L ,S

rank(L) + λ‖S‖2,1,

s.t. 〈M, ωi j 〉 = 〈L + S, ωi j 〉, (i, j) ∈ Kobs, (8)

where Kobs is the observation index and {ωi j }m,n
i, j=1 is a set of

ortho-normal bases such that

Span{ωi j , i = 1, . . . , m} = Span{ei e
∗
j , i = 1, . . . , m}, ∀ j.

(9)

Unfortunately, problem (8) is NP-hard because the rank func-
tion is discrete. So we replace the rank in the objective function
with the nuclear norm, resulting in the relaxed formulation:

min
L ,S

‖L‖∗ + λ‖S‖2,1,

s.t. 〈M, ωi j 〉 = 〈L + S, ωi j 〉, (i, j) ∈ Kobs . (10)

For brevity, we also rewrite it as

min
L ,S

‖L‖∗ + λ‖S‖2,1, s.t. R(L + S) = R(M), (11)

where R(·) = ∑

i j∈Kobs
〈·, ωi j 〉ωi j is an operator which

projects a matrix onto the space �obs = Span{ωi j , i,
j ∈ Kobs}, i.e., R = P�obs .

In this paper, we show that problem (10), or equivalently
problem (11), exactly recovers the range space of L0 and the
column support of S0, if the rank of L0 is no higher than
O(n/ log3 n), and the number of corruptions and observations
are (nearly) constant fractions of the total input size. In other
words, the original problem (8) can be well approximated by
the relaxed problem (10).

B. Assumptions

At first sight, it seems not always possible to successfully
separate M as the low-rank term plus the column-sparse one,
because there seems to not be sufficient information to avoid
the identifiability issues. The identifiability issues are reflected
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in two aspects: the true low-rank term might be sparse and
the true sparse component might be low-rank, thus we cannot
hopefully identify the ground truth correctly. So we require
several assumptions in order to avoid such unidentifiable cases.

1) Incoherence Conditions on the Low-Rank Term: As an
extreme example, suppose that the low-rank term has only one
non-zero entry, e.g., e1e∗

1. This matrix has a one in the top
left corner and zeros elsewhere, thus being both low-rank and
sparse. So it is impossible to identify this matrix as the low-
rank term correctly. Moreover, we cannot expect to recover
the range space of this matrix from a sampling of its entries,
unless we pretty much observe all of the elements.

To resolve the issue, Gross [8] introduced μ-incoherence
condition to the low-rank term L ∈ R

m×n in problem (3)
w.r.t. the general basis {ωi j }i j :

max
i j

‖PVωi j ‖2
F ≤ μr

n
, (avoid column sparsity) (12a)

max
i j

‖PUωi j ‖2
F ≤ μr

m
, (avoid row sparsity) (12b)

max
i j

〈U V ∗, ωi j 〉2 ≤ μr

mn
, (12c)

where U�V ∗ ∈ R
m×n is the skinny SVD of L. Intuitively, as

discussed in [8] and [37], conditions (12a), (12b), and (12c)
assert that the singular vectors reasonably spread out for
small μ. Because problem (3), which is a noiseless version of
problem (10), requires conditions (12a), (12b), and (12c) in its
theoretical guarantees [8], we will set the same incoherence
conditions to analyze our model (10) as well. We argue that
beyond (12a), conditions (12b) and (12c) are indispensible for
the exact recovery of the target matrix in our setting. As an
example, let few entries in the first row of a matrix be non-
zeros while all other elements are zeros. This matrix satisfies
condition (12a) but does not satisfy (12b) and (12c). In this
scenario the probability of recovering its column space is not
very high, as we cannot guarantee to take a sample from those
uncorrupted non-zero entries, when there are a large amount
of noises.

So we assume that the low-rank part ˜L satisfies conditions
(12a), (12b), and (12c), and the low-rank component ̂L satis-
fies condition (12a), as work [31] did (please refer to Table I
for explanation of notations). Though it is more natural to
assume the incoherence on L0, the following example shows
that the incoherence of L0 does not suffice to guarantee the
success of model (10) when the rank is relatively high:

Example 1: Compute L0 = XY T as a product of n × r
i.i.d. N (0, 1) matrices. The column support of S0 is sampled
by Bernoulli distribution with parameter a. Let the first entry
of each non-zero column of S0 be n and all other entries be
zeros. Also set the observation matrix as P�obs (L0+S0), where
�obs is the set of observed index selected by i.i.d. Ber(p0).
We adopt n = 10, 000, r = 0.1n, p0 = 1, and a = 10/n, so
there are around constant number of corrupted samples in this
example. Note that, here, L0 is incoherent fulfilling conditions
(12a), (12b), and (12c), while ˜L and ̂L are not. However,
the output of algorithm falsely identifies all of the corrupted
samples as the clean data. So the incoherence of L0 cannot
guarantee the exact recoverability of our model.

Fig. 1. Illustration of the ambiguity condition. From the left to the right, the
μ′ increases and the data tend to lie in a low-dimensional subspace.

Imposing incoherence conditions on ˜L = L0 + PI0 HL

and ̂L = L0 + PU0 HL is not so surprising: there might
be multiple solutions for the optimization model, and the
low-rankness/sparseness decompositions of M are non-unique
(depending on which solution we are considering). Since ˜L+˜S
and ̂L + ̂S are two eligible decompositions of M related to a
fixed optimal solution pair, it is natural to consider imposing
incoherence on them. Specifically, we first assume incoherence
conditions (12a), (12b), and (12c) on ˜L = L0 + PI0 HL .
Note that these conditions guarantee that matrix ˜L cannot
be sparse, so we can resolve the identifiability issue for the
decomposition M = ˜L+˜S and hopefully recover the index I0.
After that, the ambiguity between the low rankness and the
row sparseness is not an issue any more, i.e., even for row-
sparse underlying matrix we can still expect to recover its
column space. Here is an example to illustrate this: suppose
the low rank matrix is e11∗ which has ones in the first rows
and zeros elsewhere, and we have known some of the columns
are corrupted by noise. Remove the outlier columns. Even we
cannot fully observe the remaining entries, we can still expect
to recover the column space Range(e1) since the information
for the range space is sufficient to us. Therefore, we only need
to impose condition (12a) on ̂L = L0 +PU0 HL , which asserts
that ̂L cannot be column-sparse.

2) Ambiguity Conditions on Column-Sparse Term: Analo-
gously, the column-sparse term ̂S has the identification issue as
well. Suppose that ̂S is a rank-1 matrix such that a constant
fraction of the columns are zeros. This matrix is both low-
rank and column-sparse, which cannot be correctly identified.
To avoid this case, one needs the isotropic assumption [38],
or the following ambiguity condition, on the column-sparse
term ̂S, which is introduced by [31]:

‖B(̂S)‖ ≤ μ′, (13)

where μ′ can be any numerical constant. Here the isotropic
assumption asserts that the covariance of the noise matrix is
the identity. In fact, many noise models satisfy this assumption,
e.g., i.i.d. Gaussian noise. So the normalized noise vector
would uniformly distribute on the surface of a unit sphere
centered at the origin, thus they cannot be in a low-dimensional
subspace — in other words, not low-rank. Similarly, the
ambiguity condition was proposed for the same purpose [31].
Geometrically, the spectral norm stands for the length of the
first principal direction (we use operator B to remove the
scaling factor). So condition (13) asserts that the energy for
each principal direction does not differ too much, namely, the
data distribute around a ball (see Figure 1), and (13) holds once
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the directions of non-zero columns of ̂S scatter sufficiently
randomly. Note that the isotropic assumption implies our
ambiguity condition: if the columns of ̂S are isotropic,
‖B(̂S)‖ would be a constant even though the number of
column support of ̂S is comparable to n. Thus our ambiguity
condition (13) is feasible. No matter what number of non-zero
columns of ̂S is, the assumption guarantees matrix ̂S not to
be low-rank.

3) Probability Model: Our main results assume that the
column support of S0 and the entry support of measured
set Kobs obey i.i.d. Bernoulli distribution with parameter a
and parameter p0, respectively. Such assumptions are mild
because we have no further information on the positions
of outlier and measurement. More specifically, we assume
that [S0]: j = [δ0] j [Z0]: j throughout our proof, where
[δ0] j ∼ Ber(p) determines the outlier positions and [Z0]: j

determines the outlier values. If an event holds with a prob-
ability at least 1 − �(n−10), we say that the event happens
with an overwhelming probability.

4) Other Assumptions: Obviously, to guarantee the exact
recovery of Range(L0), the noiseless samples PI⊥

0
L0 should

span the same space as that of Range(L0), i.e., Range(L0) =
Range(PI⊥

0
L0). Otherwise, only a subspace of Range(L0) can

be recovered, because the noises may be arbitrarily severe.
So without loss of generality, we assume L0 = PI⊥

0
L0, as

work [10], [30] did. Moreover, the noises should be identifi-
able, namely, they cannot lie in the ground truth Range(L0).

C. Summary of Main Notations

In this paper, matrice are denoted by capital symbols. For
matrix M , we represent M: j or M( j ) as the j th column of M .
We denote by Mij the entry at the i th row, j th column of
the matrix. For matrix operators, M∗ and M† represent the
conjugate transpose and the Moore-Penrose pseudo-inverse
of M , respectively, and |M| stands for the matrix whose
(i, j)-th entry is |Mij |.

Several norms appear in this paper, both for vector and for
matrix. The only vector norm we use is ‖ · ‖2, which stands
for the Euclidean norm or the vector �2 norm. For matrix
norm, we denote by ‖ · ‖∗ the nuclear norm, which stands
for the sum of singular values. The matrix norm analogous
to the vector �2 norm is the Frobenious norm, represented
by ‖ · ‖F . The pseudo-norms, ‖ · ‖0 and ‖ · ‖2,0, denote the
number of non-zero entries and non-zero columns of a matrix,
respectively; They are not real norms because the absolute
homogeneity does not hold. The convex surrogates of ‖ · ‖0
and ‖ · ‖2,0 are matrix �1 and �2,1 norms, with definitions

‖M‖1 = ∑

i j |Mij | and ‖M‖2,1 =
√

∑

j ‖M: j ‖2, respectively.
The dual norms of matrix �1 and �2,1 norms are �∞ and �2,∞
norms, represented by ‖M‖∞ = maxi j |Mij | and ‖M‖2,∞ =
max j ‖M: j ‖2. We also denote the operator norm of operator P
as ‖P‖ = sup‖M‖F =1 ‖PM‖F .

Our analysis involves linear spaces as well. For example,
I and Supp(L) (similarly define I0 for L0, we will not restate
that for the following notations) denotes the column support
of matrix L. Without confusion, it forms a linear subspace.
We use � to represent the element support of a matrix,

as well as the corresponding linear subspace. The column
space of a matrix is written as script U , while the row space
is written as script V or Row(L). For any space X , X⊥ stands
for the orthogonal complement of space X .

We also discuss some special matrices and spaces in our
analysis. For example, (L0, S0) denotes the ground truth.
We represent (L∗, S∗) = (L0 + HL, S0 − HS) as the optimal
solutions of our model, where HL and HS guarantee the
feasibility of the solution. We are especially interested in
expanding the objective function at some particular points:
For the exact recovery of the column support, we focus on
(˜L,˜S) = (L0 + PI0 HL, S0 − PI0 HS); for the the exact
recovery of the column support, we focus on (̂L,̂S) = (L0 +
PI0PU0 HL, S0 − P�obsPI0PU0 HL). Another matrix we are
interested in is B(S), which consists of normalized non-zero
columns of S and belongs to the subdifferential of �2,1 norm.
Similarly, the space T = {U X∗ + Y V ∗,∀X, Y ∈ R

n×r } is
highly related to the subgradient of the nuclear norm. Namely,
the subgradient of nuclear norm can be written in closed form
as a term in T plus a term in T ⊥. The projection operator to
space T ⊥ is denoted by PT ⊥ , which equals PU⊥PV⊥ .

Table I summarizes the main notations used in this
paper.

III. EXACT RECOVERABILITY OF THE MODEL

Our main results in this paper show that, surprisingly,
model (11) is able to exactly recover the range space of L0
and identify the column support of S0 with a closed-form
regularization parameter, even when only a small number of
expansion coefficients are measured w.r.t. general basis and
a constant fraction of columns are arbitrarily corrupted. Our
theorem is as follows:

Theorem 1 (Exact Recoverability Under Bernoulli Sam-
pling): Any solution (L∗, S∗) to the extended robust MC (11)
with λ = 1/

√
log n exactly recovers the column space of

L0 and the column support of S0 with a probability at least
1 − cn−10, if the column support I0 of S0 subjects to i.i.d.
Ber(a), the support Kobs subjects to i.i.d. Ber(p0), and

rank(L0) ≤ ρr
n(2)

μ(log n(1))3 , a ≤ ρa
n(2)

μn(log n(1))3 , p0 ≥ ρp,

(14)

where c, ρr < 1, ρa < 1, and ρp < 1 are all constants
independent of each other, and μ is the incoherence parameter
in (12a), (12b), and (12c).

Remark 1: According to [37], a recovery result under the
Bernoulli model with parameter p automatically implies a
corresponding result for the uniform model with parameter
�(np) at an overwhelming probability. So conditions (14) are
equivalent to

rank(L0) ≤ ρr n(2)

μ(log n(1))3 , s ≤ ρ′
sn(2)

μ(log n(1))3 , k ≥ ρ′
pn(1)n(2),

(15)

where the column support I0 of S0 is uniformly distributed
among all sets of cardinality s, the support Kobs is uniformly
distributed among all sets of cardinality k, and ρr , ρ′

s , and ρ′
p

are numerical constants.
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A. Comparison to Previous Results

In the traditional low-rank MC problem, one seeks to
complete a low-rank matrix from only a few measurements
without corruptions. Recently, it has been shown that a con-
stant fraction of the entries are allowed to be missing, even
if the rank of intrinsic matrix is as high as O(n/ log2 n).
So compared with the result, our bound in Theorem 1 is
tight up to a polylog factor. Note that the polylog gap comes
from the consideration of arbitrary corruptions in our analysis.
When a = 0, our theorem partially recovers the results of [8].

In the traditional low-rank matrix recovery problem, one
tries to recover a low-rank matrix, or the range space of matrix,
from fully observed corrupted data. To this end, our previous
work [31] demonstrated that a constant fraction of the columns
can be corrupted, even if the rank of intrinsic matrix is as
high as O(n/ log n). Compared with the result, our bound in
Theorem 1 is tight up to a polylog factor as well, where the
polylog gap comes from the consideration of missing values
in our analysis. When p0 = 1, our theorem partially recovers
the results of [31].

Probably the only low-rank model that can simultaneously
complete the missing values, recover the ground truth sub-
space, and detect the corrupted samples is robust MC [10].
As a corollary, Chen et al. [10] showed that a constant
fraction of columns and entries can be corrupted and missing,
respectively, if the rank of L0 is of order O(1). Compared with
this, though with stronger incoherence (ambiguity) conditions,
our work extends the working range of robust MC model to
the rank of order O(n/ log3 n). Moreover, our results consider
a set of more general basis, i.e., when ωi j = ei eT

j , our theorem
partially recovers the results of [10].

Wright et al. [39] produced a certificate of optimality for
(L0, S0) for the Compressive Principal Component Pursuit,
given that (L0, S0) is the optimal solution for Principal Com-
ponent Pursuit. There are significant differences between their
work and ours: 1. Their analysis assumed that certain entries
are corrupted by noise, while our paper assumes that some
whole columns are noisy. In some sense, theoretical analysis
on column noise is more difficult than that on Principal
Component Pursuit [31]. The most distinct difference is that
we cannot expect our model to exactly recover L0 and S0.
Rather, only the column space of L0 and the column support
of S0 can be exactly recovered [10], [30]. 2. Wright et al.’s
analysis is based on the assumption that (L0, S0) can be
recovered by Principal Component Pursuit, while our analysis
is independent of this requirement.

IV. COMPLETE PROOFS OF THEOREM 1

Theorem 1 shows the exact recoverability of our extended
robust MC model w.r.t. general basis. This section is devoted
to proving this result.

A. Proof Sketch

We argue that it is not very straightforward to apply the
existing proofs on Robust PCA/Matrix Completion to the
case of general basis, since these proofs essentially require
the observed entries and the outliers to be represented under

the same basis [37]. To resolve the issue, generally speaking,
we novelly divide the proof of Theorem 1 into two parts:
The exact recoverability of column support and the exact
recoverability of column space. We are able to attack the
two problems separately thanks to the idea of expanding the
objective function at the well-designed points, i.e., (˜L,˜S) for
the recovery of column support and (̂L,̂S) for the recovery
of column space, respectively (see Sections IV-B1 and IV-C1
for details). This technique enables us to decouple the random-
ization of I0 and �obs , and so construct the dual variables
easily by standard tools like the least squares and golfing
scheme. We notice that our framework is general. It not only
can be applied to the proof for easier model like Outlier
Pursuit [31] (though we will sacrifice a small polylog factor for
the probability a of outliers), but can also hopefully simplify
the proof for model with more complicated formulation, e.g.,
decomposing the data matrix M into more than two structural
components [39]. That is roughly the high-level intuition why
we can handle the general basis and improve over the previous
work in this paper.

Specifically, for the exact recoverability of column support,
we expand the objective function at (˜L,˜S) to establish our first
class of dual conditions. Though it is standard to construct
dual variables by golfing scheme, many lemmas need to be
generalized in the standard setting because of the existence
of both I0 and �obs . All the preliminary work is done in
Appendix A. When p0 = 1 or a = 0, we claim that our
lemmas return to the ones in [10] and [37], thus being more
general. The idea behind the proofs is to fix I0 first and use
the randomized argument for �obs to have a one-step result,
and then allow I0 to be randomized to get our desired lemmas.

For the exact recoverability of column support, similarly,
we expand the objective function at (̂L,̂S) to establish our
second class of dual conditions. We construct the dual vari-
ables by the least squares, and prove the correctness of our
construction by using generalized lemmas as well. To this
end, we also utilize the ambiguity condition, which guarantees
that the outlier matrix cannot be low-rank. This enables us to
improve the upper bound for the rankness of the ground truth
matrix from O(1) to our O(n/ log3 n).

In summary, our proof proceeds in two parallel lines. The
steps are as follows.

• We prove the exact recoverability of column support:
– Section IV-B1 proves the correctness of dual condi-

tion, as shown in Lemma 1. In particular, in the proof
we focus on the subgradient of objective function
at (˜L,˜S).

– Section IV-B2 shows the construction of dual vari-
ables (17), and Section IV-B3 proves its correction
in Lemma 2.

• We then prove the exact recoverability of column space:
– Section IV-C1 proves the correctness of dual condi-

tion, as shown in Lemma 3. In particular, in the proof
we focus on the subgradient of objective function
at (̂L,̂S).

– Section IV-C2 shows the construction of dual vari-
ables (21), and Section IV-C3 proves its correction
in Lemma 5.
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B. Exact Recovery of Column Support

1) Dual Conditions: We first establish dual conditions for
the exact recovery of the column support. The following
lemma shows that once we can construct dual variables sat-
isfying certain conditions (a.k.a. dual conditions), the column
support of the outliers can be exactly recovered with a high
probability by solving our robust MC model (11). Basically,
the proof is to find conditions which implies that 0 belongs
to the subdifferential of the objective function at the desired
low-rank and column-sparse solution.

Lemma 1: Let (L∗, S∗) = (L0 + HL, S′
0 − HS) be any

solution to the extended robust MC (11), ˜L = L0 + PI0 HL,
and ˜S = S0 − PI0 HS. Assume that ‖P�⊥

obs
P

˜T ‖ ≤ 1/2, and

˜U ˜V ∗ + ˜W = λ(˜F + P�⊥
obs

˜D),

where P
˜T ˜W = 0, ‖˜W‖ ≤ 1/2, P�⊥

obs
˜F = 0, ‖˜F‖2,∞ ≤ 1/2,

and ‖P�⊥
obs

˜D‖F ≤ 1/4. Then S∗ exactly recovers the column

support of S0, i.e., HL ∈ I0.
Proof: We first recall that the subgradients of nuclear

norm and �2,1 norm are as follows:

∂
˜L‖˜L‖∗ = {˜U ˜V ∗ + ˜Q : ˜Q ∈ ˜T ⊥, ‖˜Q‖ ≤ 1},

∂
˜S‖˜S‖2,1 = {B(˜S) + ˜E : ˜E ∈ ˜I⊥, ‖˜E‖2,∞ ≤ 1}.

According to Lemma 7 and the feasibility of (L∗, S∗),
P�obs HL = P�obs HS = HS . Let ˜S = S′

0 − HS +
P�obsPI⊥

0
HL = S′

0 −P�obsPI0 HL ∈ I0. Thus the pair (˜L,˜S)

is feasible to problem (11). Then we have

‖L0 + HL‖∗ + λ‖S′
0 − HS‖2,1

≥ ‖˜L‖∗ + λ‖˜S‖2,1 + 〈˜U ˜V ∗ + ˜Q,PI⊥
0

HL〉
− λ〈B(˜S) + ˜E,P�obsPI⊥

0
HL〉.

Now adopt ˜Q such that 〈˜Q,PI⊥
0

HL〉 = ‖P
˜T ⊥PI⊥

0
HL‖∗

and 〈˜E ,P�obsPI⊥
0

HL〉 = ‖P�obsPI⊥
0

HL‖2,1,1 and note that

〈B(˜S),P�obsPI⊥
0

HL〉 = 0. So we have

‖L0 + HL‖∗ + λ‖S′
0 − HS‖2,1

≥ ‖˜L‖∗ + λ‖˜S‖2,1 + ‖P
˜T ⊥PI⊥

0
HL‖∗ + λ‖P�obsPI⊥

0
HL‖2,1

+ 〈˜U ˜V ∗,PI⊥
0

HL〉.

Notice that

|〈˜U ˜V ∗,PI⊥
0

HL〉|
= |〈˜W − λ˜F − λP�⊥

obs
˜D,PI⊥

0
HL〉|

≤ 1

2
‖P

˜T ⊥PI⊥
0

HL‖∗ + λ

2
‖P�obsPI⊥

0
HL‖2,1

+ λ

4
‖P�⊥

obs
PI⊥

0
HL‖F .

1By the duality between the nuclear norm and the operator norm, there
exists a Q such that 〈Q,P

˜T ⊥PI⊥
0

H 〉 = ‖P
˜T ⊥PI⊥

0
H‖∗ and ‖Q‖ ≤ 1.

Thus we take ˜Q = P
˜T ⊥ Q ∈ ˜T ⊥. It holds similarly for ˜E .

So we have

‖L0 + HL‖∗ + λ‖S′
0 − HS‖2,1

≥ ‖˜L‖∗+λ‖˜S‖2,1+ 1

2
‖P

˜T ⊥PI⊥
0

HL‖∗ + λ

2
‖P�obsPI⊥

0
HL‖2,1

− λ

4
‖P�⊥

obs
PI⊥

0
HL‖F .

Also, note that

‖P�⊥
obs
PI⊥

0
HL‖F

≤ ‖P�⊥
obs
P

˜T ⊥PI⊥
0

HL‖F + ‖P�⊥
obs
P

˜T PI⊥
0

HL‖F

≤ ‖P
˜T ⊥PI⊥

0
HL‖F + 1

2
‖PI⊥

0
HL‖F

≤ ‖P
˜T ⊥PI⊥

0
HL‖F + 1

2
‖P�obsPI⊥

0
HL‖F

+ 1

2
‖P�⊥

obs
PI⊥

0
HL‖F .

That is

‖P�⊥
obs
PI⊥

0
HL‖F ≤ 2‖P

˜T ⊥PI⊥
0

HL‖F + ‖P�obsPI⊥
0

HL‖F .

Therefore, we have

‖L0 + HL‖∗ + λ‖S′
0 − HS‖2,1

≥ ‖˜L‖∗ + λ‖˜S‖2,1 + 1 − λ

2
‖P

˜T ⊥PI⊥
0

HL‖∗

+ λ

4
‖P�obsPI⊥

0
HL‖2,1.

Since the pair (L0 + HL, S′
0 − HS) is optimal to problem (11),

we have

P
˜T ⊥PI⊥

0
HL = 0 and P�obsPI⊥

0
HL = 0,

i.e., PI⊥
0

HL ∈ ˜T ∩ �⊥
obs = {0}. So HL ∈ I0. �

By Lemma 1, to prove the exact recovery of column support,
it suffices to show a dual certificate ˜W such that

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(a) ˜W ∈ ˜T ⊥,

(b) ‖˜W‖ ≤ 1/2,

(c) ‖P�⊥
obs

(˜U ˜V ∗ + ˜W )‖F ≤ λ/4,

(d) ‖P�obs (˜U ˜V ∗ + ˜W )‖2,∞ ≤ λ/2.

(16)

2) Certification by Golfing Scheme: The remainder of the
proofs is to construct ˜W which satisfies dual conditions (16).
Before introducing our construction, we assume that Kobs ∼
Ber(p0) (For brevity, we also write it as �obs ∼ Ber(p0)), or
equivalently �⊥

obs ∼ Ber(1− p0). Note that �obs has the same
distribution as that of �1 ∪ �2 ∪ ... ∪ � j0 , where each � j is
drawn from Ber(q), j0 = �log n(1)�, and q fulfills 1 − p0 =
(1 − q) j0 (Note that q = �(1/ log n(1)) implies p0 = �(1)).
We construct ˜W based on such a distribution.

To construct ˜W , we use the golfing scheme introduced by
[8] and [37]. Let Z j−1 = P

˜T (˜U ˜V ∗ − Y j−1). We construct ˜W
by an inductive procedure:

Y j = Y j−1 + q−1P� j Z j−1 = q−1
j

∑

k=1

P�k Zk−1,

˜W = P
˜T ⊥Y j0 . (17)

Also, we have the inductive equation:

Z j = Z j−1 − q−1P
˜T P� j Z j−1. (18)
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3) Proofs of Dual Conditions: We now prove that the dual
variables satisfy our dual conditions. The proof basically uses
the recursiveness of the dual variables that we construct.

Lemma 2: Assume that �obs ∼ Ber(p0) and j0 = �log n�.
Then under the other assumptions of Theorem 1, W L given
by (17) obeys the dual conditions (16).

Proof: By Lemma 11, Lemma 12 and the inductive
equation (18), when q ≥ c′μr log n(1)/ε

2n(2) for some c′, the
following inequalities hold with an overwhelming probability:

‖Z j ‖F < ε j ‖Z0‖F = ε j‖˜U ˜V ∗‖F ,

max
ab

|〈Z j , ωab〉| < ε j max
ab

|〈Z0, ωab〉| = ε j max
ab

|〈˜U ˜V ∗, ωab〉|.

Now we check the three conditions in (16).
(a) The construction (17) implies the condition (a) holds.
(b) It holds that

‖˜W‖ = ‖P
˜T ⊥Y j0‖

≤
j0

∑

k=1

‖q−1P
˜T ⊥P�k Zk−1‖

=
j0

∑

k=1

‖P
˜T ⊥(q−1P�k Zk−1 − Zk−1)‖

≤
j0

∑

k=1

‖q−1P�k Zk−1 − Zk−1‖

≤ C0

√

n(1) log n(1)

q

j0
∑

k=1

max
ab

|〈Zk−1, ωab〉|

≤ C0
1

1 − ε

√

n(1) log n(1)

q

√

μr

mn

= C0
1

1 − ε

√

ρr

q(log n(1))2

≤ 1

4
,

where the third inequality holds due to Lemma 13 and the last
inequality holds once q ≥ �(1/ log n(1)).

(c) Notice that Y j0 ∈ �obs , i.e., P�⊥
obs

Y j0 = 0. Then the
following inequalities follow

‖P�⊥
obs

(˜U ˜V ∗ + ˜W )‖F

= ‖P�⊥
obs

(˜U ˜V ∗ + P
˜T ⊥Y j0)‖F

= ‖P�⊥
obs

(˜U ˜V ∗ + Y j0 − P
˜T Y j0)‖F

= ‖P�⊥
obs

(˜U ˜V ∗ − P
˜T Y j0)‖F

= ‖P�⊥
obs

Z j0‖F

≤ ε j0
√

r ( j0 = �log n(1)� ≥ log n(1))

≤
√

r

n(1)
(ε < e−1)

≤
√

ρrμ√
n(1)(log n(1))3/2

≤ λ

4
. (19)

(d) We first note that ˜U ˜V ∗ + ˜W = Z j0 + Y j0 . It follows
from (19) that

‖P�obs Z j0‖2,∞ ≤ ‖P�obs Z j0‖F ≤ ε j0
√

r ≤ λ

8
.

Moreover, we have

‖P�obs Y j0‖2,∞ = ‖Y j0‖2,∞

≤
j0

∑

k=1

q−1‖P�k Zk−1‖2,∞

≤ q−1√m
j0

∑

k=1

max
ab

|〈Zk−1, ωab〉|

≤ 1

q

√

μr

n

j0
∑

k=1

εk−1

≤ 1

q

√

μr

n(2)

j0
∑

k=1

εk−1

≤ c log n(1)
1

(log n(1))3/2

≤ λ

8
,

where the fifth inequality holds once q ≥ �(1/ log n(1)). Thus
‖P�obs (˜U ˜V ∗ + ˜W )‖2,∞ ≤ λ/4. �

C. Exact Recovery of Column Space

1) Dual Conditions: We then establish dual conditions
for the exact recovery of the column space. The following
lemma shows that if we can construct dual variables satisfying
certain conditions, the column space of the underlying matrix
can be exactly recovered with a high probability by solving
model (11).

Lemma 3 (Dual Conditions for Exact Column Space): Let
(L∗, S∗) = (L0+HL, S′

0−HS) be any solution to the extended
robust MC (11), ̂L = L0+PU0 HL, and ̂S = S′

0−P�obsPU0 HL.

Suppose that ̂V ∩ �⊥ = {0} and

̂W = λ(B(̂S) + ̂F),

where ̂W ∈ ̂V⊥ ∩ �obs, ‖̂W‖ ≤ 1/2, P�⊥ ̂F = 0, and
‖̂F‖2,∞ ≤ 1/2. Then L∗ exactly recovers the column support
of L0, i.e., HL ∈ U0.

Proof: We first recall that the subgradients of nuclear
norm and �2,1 norm are as follows:

∂
̂L‖̂L‖∗ = {̂U ̂V ∗ + ̂Q : ̂Q ∈ ̂T ⊥, ‖̂Q‖ ≤ 1},

∂
̂S‖̂S‖2,1 = {B(̂S) + ̂E : ̂E ∈ ̂I⊥, ‖̂E‖2,∞ ≤ 1}.

By the definition of subgradient, the inequality follows

‖L0 + HL‖∗ + λ‖S′
0 − HS‖2,1

≥ ‖̂L‖∗ + λ‖̂S‖2,1 + 〈̂U ̂V ∗ + ̂Q,PU⊥
0

HL〉
− λ〈B(̂S) + ̂E,P�obsPU⊥

0
HL〉

≥ ‖̂L‖∗ + λ‖̂S‖2,1 + 〈̂U ̂V ∗,PU⊥
0

HL〉 + 〈̂Q,PU⊥
0

HL〉
− λ〈B(̂S),PU⊥

0
HL〉 − λ〈̂E ,P�obsPU⊥

0
HL〉.
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Now adopt ̂Q such that 〈̂Q,PU⊥
0

HL〉 = ‖P
̂V⊥PU⊥

0
HL‖∗ and

〈̂E,P�obsPU⊥
0

HL〉 = −‖P�PU⊥
0

HL‖2,1.2 We have

‖L0 + HL‖∗ + λ‖S′
0 − HS‖2,1

≥ ‖̂L‖∗ + λ‖̂S‖2,1 + ‖P
̂V⊥PU⊥

0
HL‖∗ + λ‖P�PU⊥

0
HL‖2,1

− λ〈B(̂S),PU⊥
0

HL〉.
Notice that

|〈−λB(̂S),PU⊥
0

HL〉| = |〈λ̂F − ̂W ,PU⊥
0

HL〉|
≤ |〈̂W ,PU⊥

0
HL〉| + λ|〈̂F ,PU⊥

0
HL〉|

≤ 1

2
‖P

̂V⊥PU⊥
0

HL‖∗ + λ

2
‖P�PU⊥

0
HL‖2,1.

Hence

‖̂L‖∗ + λ‖̂S‖2,1

≥ ‖L0 + HL‖∗ + λ‖S′
0 − HS‖2,1

≥ ‖̂L‖∗ + λ‖̂S‖2,1 + 1

2
‖P

̂V⊥PU⊥
0

HL‖∗+ λ

2
‖P�PU⊥

0
HL‖2,1.

So PU⊥
0

HL ∈ ̂V ∩ �⊥ = {0}, i.e., HL ∈ U0. �
The following lemma shows that one of the conditions in

Lemma 3 holds true.
Lemma 4: Under the assumption of Theorem 1,

̂V ∩ �⊥ = {0}.
Proof: We first prove p(1 − p0)‖P̂VP�⊥ M‖F ≤

2‖P
̂V⊥P�⊥ M‖F for any matrix M . Let M ′ = P�⊥ M .

Because P�P̂V M ′+P�P̂V⊥ M ′ = 0, we have ‖P�P̂V M ′‖F =
‖P�P̂V⊥ M ′‖F ≤ ‖P

̂V⊥ M ′‖F . Note that

(p(1 − p0))
−1‖P�P̂V M ′‖F

= (p(1 − p0))
−1〈P�P̂V M ′,P�P̂V M ′〉

= 〈P
̂V M ′, (p(1 − p0))

−1P
̂VP�P̂V M ′〉

= 〈P
̂V M ′, ((p(1 − p0))

−1P
̂VP�P̂V − P

̂V )P
̂V M ′〉

+ 〈P
̂V M ′,P

̂V M ′〉
≥ ‖P

̂V M ′‖F − 1

2
‖P

̂V M ′‖F

= 1

2
‖P

̂V M ′‖F ,

where the first inequality holds due to Corollary 2. So we have

‖P
̂V⊥ M ′‖F ≥ ‖P�P̂V M ′‖F ≥ p(1 − p0)

2
‖P

̂V M ′‖F ,

i.e., p(1 − p0)‖P̂VP�⊥ M‖F ≤ 2‖P
̂V⊥P�⊥ M‖F .

Now let M ∈ ̂V ∩ �⊥. Then P
̂V⊥P�⊥ M = 0 while

P
̂VP�⊥ M = M . So p(1 − p0)‖M‖F ≤ 0, i.e., M = 0.

Therefore, ̂V ∩ �⊥ = {0}. �
By Lemma 3, to prove the exact recovery of column space,

it suffices to show a dual certificate ˜W such that
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

̂W ∈ ̂V⊥ ∩ �obs,

‖̂W‖ ≤ 1/2,

P ̂W = λB(̂S),  = I0 ∩ �obs,

‖P� ̂W‖2,∞ ≤ λ/2, � = I⊥
0 ∩ �obs.

(20)

2By the duality between the nuclear norm and the operator norm, there
exists a Q such that 〈Q,P

̂V⊥PU⊥
0

H 〉 = ‖P
̂V⊥PU⊥

0
H‖∗ and ‖Q‖ ≤ 1.

Thus we take ̂Q = PU⊥
0
P

̂V⊥ Q ∈ ̂T ⊥. It holds similarly for ̂E .

2) Certification by Least Squares: The remainder of proofs
is to construct ̂W which satisfies the dual conditions (20).
Note that ̂I = I0 ∼ Ber(p). To construct W , we consider the
method of least squares, which is

̂W = λP
̂V⊥∩�obs

∑

k≥0

(PP̂V+�⊥
obs
P)kB(̂S), (21)

where the Neumann series is well defined due to
‖PP̂V+�⊥

obs
P‖ < 1. Indeed, note that  ⊆ �obs . So we

have the identity:

PP̂V+�⊥
obs
P

= P(P
̂V + P�⊥

obs
− P

̂VP�⊥
obs

− P�⊥
obs
P

̂V + . . .)P

= PP̂V (P
̂V + P

̂VP�⊥
obs
P

̂V + . . .)P
̂VP

= PP̂V (P
̂V − P

̂VP�⊥
obs
P

̂V )−1P
̂VP

= PP̂V (P
̂VP�obsP̂V )−1P

̂VP.

By Lemma 11 and the triangle inequality, we have that
1−(1− p0)

−1‖P
̂VP�obsP̂V‖ < 1/2, i.e., ‖(P

̂VP�obsP̂V )−1‖ <
2/(1 − p0). Therefore,

‖PP̂V+�⊥
obs

‖2 = ‖PP̂V+�⊥
obs
P‖

≤ 2(1 − p0)
−1‖P

̂VP‖2

≤ 2(1 − p0)
−1σ 2 < 1, (22)

where the second inequality holds due to Corollary 3. Note
that P� ̂W = λB(̂S) and ̂W ∈ ̂V⊥ ∩ �obs . So to prove the
dual conditions (20), it suffices to show that

{

(a) ‖̂W‖ ≤ 1/2,

(b) ‖P� ̂W‖2,∞ ≤ λ/2.
(23)

3) Proofs of Dual Conditions: We now prove that the dual
variables that we construct above satisfy our dual conditions.

Lemma 5: Under the assumptions of Theorem 1, ̂W given
by (21) obeys dual conditions (23).

Proof: Let H = ∑

k≥1(PP̂V+�⊥
obs
P)k . Then

̂W = λP
̂V⊥∩�obs

∑

k≥0

(PP̂V+�⊥
obs
P)kB(̂S)

= λP
̂V⊥∩�obs

B(̂S) + λP
̂V⊥∩�obs

H(B(̂S)), (24)

Now we check the two conditions in (23).
(a) By the assumption, we have ‖B(̂S)‖ ≤ μ′. Thus the first

term in (24) obeys

λ
∥

∥

∥P
̂V⊥∩�obs

B(̂S)
∥

∥

∥ ≤ λ
∥

∥B(̂S)
∥

∥ ≤ 1

4
. (25)

For the second term, we have

λ‖P
̂V⊥∩�obs

H(B(̂S))‖ ≤ λ‖H‖ ∥∥B(̂S)
∥

∥ .

Then according to (22) which states that ‖P
̂V+�⊥

obs
P‖2 ≤

2σ 2/(1 − p0) � σ 2
0 with high probability,

‖H‖ ≤
∑

k≥1

σ 2k
0 = σ 2

0

1 − σ 2
0

≤ 1.

So

λ‖P
̂V⊥∩�obs

H(B(̂S))‖ ≤ 1

4
.
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That is

‖̂W‖ ≤ 1

2
.

(b) Let G stand for G = ∑

k≥0(PP̂V+�⊥
obs
P)k . Then

̂W = λP
̂V⊥∩�obs

G(B(̂S)). Notice that G(B(̂S)) ∈ I0. Thus

P� ̂W = λPI⊥
0
P

̂V⊥∩�obs
G(B(̂S))

= λPI⊥
0
G(B(̂S)) − λPI⊥

0
P

̂V+�⊥
obs
G(B(̂S))

= −λPI⊥
0
P

̂V+�⊥
obs
G(B(̂S)).

Now denote Q � P
̂V+�⊥

obs
G(B(̂S)). Note that

‖Q: j ‖2 =
∑

i

Q2
i j =

∑

i

〈

P
̂V+�⊥

obs
G(B(̂S)), ωi j

〉2

=
∑

i

〈

B(̂S),GPP̂V+�⊥
obs

(ωi j )
〉2

=
∑

i

∑

j0

〈

[B(̂S)]: j0,GPP̂V+�⊥
obs

(ωi j )e j0

〉2

=
∑

j0

∑

i

(

(G j ei )
∗[B(̂S)]: j0

)2

×
(

(G j ei )
∗GPP̂V+�⊥

obs
(ωi j )e j0

)2

≤
∑

j0

(

(G j eim )∗GPP̂V+�⊥
obs

(ωim j )e j0

)2

=
∥

∥

∥(G j eim )∗GPP̂V+�⊥
obs

(ωim j )
∥

∥

∥

2

2

≤ ‖G‖
∥

∥

∥PP̂V+�⊥
obs

∥

∥

∥ ≤ 1

4
, ∀ j,

where im = arg maxi |e∗
i GP�P̂V+�⊥

obs
(ei e∗

j )e j0|, G j is a

unitary matrix, and the second inequality holds because
of fact (22). Thus ‖P� ̂W‖2,∞ = λ‖PI⊥

0
Q‖2,∞ ≤

λ‖Q‖2,∞ ≤ λ/2. The proofs are completed. �

V. ALGORITHM

It is well known that robust MC can be efficiently solved
by Alternating Direction Method of Multipliers (ADMM) [40],
which is probably the most widely used method for solving
nuclear norm minimization problems. In this section, we
develop a faster algorithm, termed �2,1 filtering algorithm, to
solve the same problem.

A. �2,1 Filtering Algorithm

Briefly speaking, our �2,1 filtering algorithm consists of two
steps: recovering the ground truth subspace from a randomly
selected sub-column matrix, and then processing the remaining
columns via �2,1 norm based linear regression, which turns out
to be a least square problem.

1) Recovering Subspace From a Seed Matrix: To speed
up the algorithm, our strategy is to focus on a small-scaled
subproblem from which we can recover the same subspace
as solving the whole original problem [41]. To this end,
we partition the whole matrix into two blocks. Suppose
that r = rank(L) � min{m, n}. We randomly sample

k columns from M by i.i.d. Ber(d/n) (our Theorem 3 suggests
choosing d as �(r log3 n)), forming a submatrix Ml (for
brevity, we assume that Ml is the leftmost submatrix of M).
Then we can partition M , L, and S accordingly:

M = [Ml , Mr ], S = [Sl , Sr ], L = [Ll, Lr ].
To recover the desired subspace Range(L0) from Ml , we solve
a small-scaled problem:

min
Ll ,Sl

‖Ll‖∗ + 1√
log k

‖Sl‖2,1,

s.t. R′(Ml ) = R′(Ll + Sl) ∈ R
m×k, (26)

where R′(·) is a linear mapping restricting R(·) on the column
index of Ml . As we will show in Section V-C, when the
Bernoulli parameter d is no less than a lower bound, prob-
lem (26) exactly recovers the correct subspace Range(L0) and
the column support of [S0]l with an overwhelming probability.

2) �2,1 Filtering Step: Since Range(Ll) = Range(L0) at
an overwhelming probability, each column of Lr can be
represented as the linear combinations of Ll . Namely, there
exists a representation matrix Q ∈ R

k×(n−k) such that

Lr = Ll Q.

Note that the part Sr should have very sparse columns, so we
use the following �2,1 norm based linear regression problem
to explore the column supports of Sr :

min
Q,Sr

‖Sr‖2,1, s.t. R′(Mr ) = R′(Ll Q + Sr ). (27)

If we solve problem (27) directly by using ADMM [42], the
complexity of our algorithm will be nearly the same as that
of solving the whole original problem. Fortunately, we can
solve (27) column-wise due to the separability of �2,1 norms.
Let M(i)

r , q(i), and S(i)
r represent the i th column of Mr , Q,

and Sr , respectively (i = 1, ..., n − sr ). Then problem (27)
could be decomposed into n − k subproblems:

min
q(i),S(i)

r

‖S(i)
r ‖2,

s.t. R′
i (Mr )

(i) = R′
i (Llq + Sr )

(i) ∈ R
m ,

i = 1, . . . , n − k. (28)

Equivalently,

min
q(i),Z ′

i (S(i)
r )

‖Z ′
i (S(i)

r )‖2,

s.t. Z ′
i (M(i)

r ) = Y ′
i (Ll)q

(i) + Z ′
i (S(i)

r ) ∈ R
hi ,

i = 1, . . . , n − k, (29)

where Z ′
i is an operator functioning on a vector which

wipes out the unobserved elements, Y ′
i is a matrix opera-

tor which wipes out the corresponding rows of a matrix,
and hi is the number of observed elements in the i th col-
umn. As least square problems, (28) admits closed-form
solutions q(i) = Y ′

i (Ll)
†Z ′

i (M(i)
r ), Z ′

i (S(i)
r ) = Z ′

i (M(i)
r ) −

Y ′
i (Ll)Y ′

i (Ll)
†Z ′

i (M(i)
r ), i = 1, ..., n − k. If Z ′

i (S(i)
r ) 	= 0, we

infer that the column M(i)
r is corrupted by noises.

We summarize our �2,1 filtering algorithm in Algorithm 1.
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B. Target Rank Estimation

As we mentioned above, our algorithm requires the rank
estimation r as an input. For some specific applications, e.g.,
background modeling [37] and photometric stereo [43], the
rank of the underlying matrix is known to us due to their
physical properties. However, it is not always clear how to
estimate the rank for some other cases. Here we provide a
heuristic strategy for rank estimation.

Our strategy is based on the multiple trials of solving
subproblem (26). Namely, starting from a small r estimation,
we solve subproblem (26) by subsampling. If the optimal
solution L∗

l is such that k/rank(L∗
l ) ≥ �(log3 n), we accept

the r and output; Otherwise, we increase r by a fixed step
(and so increase k) and repeat the procedure until k/n ≥ 0.5.
We require k/n < 0.5 because the speed advantage of our �2,1
algorithm vanishes if the low-rank assumption does not hold.

C. Theoretical Guarantees

In this section, we establish theoretical guarantees for our
�2,1 filtering algorithm. Namely, Algorithm 1 is able to exactly
recover the range space of L0 and the column support of S0
with a high probability. To this end, we show that the two
steps in Section V-A succeed at overwhelming probabilities,
respectively:

• To guarantee the exact recovery of Range(L0) from the
seed matrix, we prove that the sampled columns in
Line 1 exactly span the desired subspace Range(L0)
when the columns are restricted to the set I⊥

0 , i.e.,
Range(PI⊥

0
Ml )=Range(L0) (see Theorem 2); Otherwise,

only a subspace of Range(L0) can be recovered by Line 3.
Applying Theorem 1, we justify that Line 3 recovers
the ground truth subspace from the seed matrix with an
overwhelming probability (see Theorem 3).

• For �2,1 filtering step, we demonstrate that, though oper-
ator Y ′

i randomly wipes out several rows of Ll , the
columns of Y ′

i (Ll) exactly span Range(Y ′
i (L0)) with an

overwhelming probability. So by checking whether the
i th column belongs to Range(Y ′

i (L0)), the least squares
problem (29) suffices to examine whether a specific
column M(i)

r is an outlier (see Theorem 4).
1) Analysis for Recovering Subspace From a Seed Matrix:

To guarantee the recovery of Range(L0) by Line 3, the
sampled columns in Line 1 should be informative. In other
words, Range(L0) = Range(PI⊥

0
Ml ). To select the smallest

number of columns in Line 1, we estimate the lower bound for
the Bernoulli parameter d/n. Intuitively, this problem is highly
connected to the property of PI⊥

0
M . For instance, suppose that

in the worst case PI⊥
0

M is a matrix whose elements in the
first column are ones while all other elements equal zeros.
By this time, Line 1 will select the first column (the only
complete basis) at a high probability if and only if d = n.
But for PI⊥

0
M whose elements are all equal to ones, a much

smaller d suffices to guarantee the success of sampling. Thus,
to identify the two cases, we involve the incoherence in our
analysis.

We now estimate the smallest Bernoulli parameter d
in Line 1 which ensures that Range(L0) ⊆ Range(Ml ),

or equivalently Range(L0) = Range(PI⊥
0

Ml ), at an over-
whelming probability. The following theorem illustrates the
result:

Theorem 2 (Sampling a Set of Complete Basis by Line 1):
Suppose that each column of the incoherent L0 is sampled
i.i.d. by Bernoulli distribution with parameter d/n. Let [L0]l

be the selected columns from L0, i.e., [L0]l = ∑

j δ j [L0]: j e∗
j ,

where δ j ∼ Ber(d/n). Then with probability at least 1 − δ,
we have Range([L0]l) = Range(L0), provided that

d ≥ 2μr log
r

δ
,

where μ is the incoherence parameter on the row space of
matrix L0.

Proof: The proof of Theorem 2 can be found in the
Appendices. �

Remark 2: Note that a large incoherence parameter on the
row space implies that slightly perturbing L0 tremendously
changes its column space. So we will need more samples in
order to capture enough information about the column space
of L0.

To guarantee the exact recovery of desired subspace from
the seed matrix, the rank r of intrinsic matrix should be low
enough compared with the input size (see Theorem 1). Note
that Line 1, however, selects the columns by i.i.d. Ber(d/n),
so that the number k of sampled columns is a random variable.
Roughly, k should be around d due to the fact E(k) = d . The
following lemma implies that the magnitude of k typically has
the same order as that of parameter d with an overwhelming
probability.

Lemma 6: Let n be the number of Bernoulli trials and
suppose that � ∼ Ber(d/n). Then with an overwhelming
probability, |�| = �(d), provided that d ≥ c log n for a
numerical constant c.

Proof: Take a perturbation ε such that d/n = m/n + ε.
By scalar Chernoff bound which states that

P(|�| ≤ m) ≤ e−ε2n2/2d ,

if taking m = d/2, ε = d/2n and d ≥ c1 log n for an
appropriate constant c1, we have

P(|�| ≤ d/2) ≤ e−d/4 ≤ n−10. (30)

In the other direction, by scalar Chernoff bound again which
states that

P(|�| ≥ m) ≤ e−ε2n2/3d ,

if taking m = 2d , ε = −d/n and d ≥ c2 log n for an
appropriate constant c2, we obtain

P(|�| ≥ 2d) ≤ e−d/3 ≤ n−10. (31)

Finally, according to (30) and (31), we conclude that d/2 <
|�| < 2d with an overwhelming probability, provided that
d ≥ c log n for some constant c. �

By Theorems 1 and 2 and Lemma 6, the following theorem
justifies the success of Line 3 in Algorithm 1.

Theorem 3 (Exact Recovery of Ground Truth Subspace
From Seed Matrix): Suppose that all the conditions in
Theorem 1 are fulfilled for the pair ([L0]l , [S0]l). Then Line 3
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of Algorithm 1 exactly recovers the column space of the
incoherent L0 and the column support of [S0]l with an
overwhelming probability 1 − cn−10, provided that

d ≥ C0μr log3 n,

where c and C0 are numerical constants, and μ is the
incoherence parameter on the row space of matrix L0.

2) Analysis for �2,1 Filtering: To justify the outlier identi-
fiability of model (29), it suffices to show that Range(Y ′

i (Ll))
is complete, i.e., Range(Y ′

i (Ll)) = Range(Y ′
i (L0)). Actually,

this can be proved by the following theorem:
Theorem 4 (Outlier Identifiability of �2,1 Filtering): Sup-

pose that each row of Ll is sampled i.i.d. by Bernoulli distri-
bution with parameter p0. Let Y ′

i (Ll) be the selected rows from
matrix Ll , i.e., Y ′

i (Ll) = ∑

j δ j Ll j :e j , where δ j ∼ Ber(p0).
Then with probability at least 1−δ, we have rank(Y ′

i (Ll)) = r ,
or equivalently Range(Y ′

i (Ll )) = Range(Y ′
i (L0)), provided

that

p0 ≥ 2μ
r

m
log

r

δ
,

where μ is the incoherence parameter on the column space of
matrix L0.

Proof: The proof is similar to that of Theorem 2, where
we use a property that μ(Ll) = μ(L0) since Range(Ll) =
Range(L0), by Theorem 2. �

It is worth noting that, when the matrix is fully observed,
model (29) exactly identifies the outliers even without
Theorem 4.

D. Complexity Analysis

In this section, we consider the time complexity of our
randomized �2,1 filtering algorithm. We analyze our algo-
rithm in the case where d = �(r log3 n). In Algorithm
1, Line 1 requires O(n) time. For Line 3 which recovers
m × cr(log n)3 seed matrix, this step requires O(r2m log6 n)
time. Line 5 requires at most 6r2m log3 n time due to the
QR factorization [44], and Line 7 needs (2r + 1)m time due
to matrix-matrix multiplication. Thus the overall complexity
of our �2,1 filtering algorithm is at most O(r2m log6 n) +
(2r + 1)mn + 6r2mn log3 n ≈ 6r2mn log3 n. As ADMM
algorithm requires O(mn min{m, n}) time to run for our model
due to SVD or matrix-matrix multiplication in every iteration,
and require many iterations in order to converge, our algorithm
is significantly faster than the state-of-the-art methods.

VI. APPLICATIONS AND EXPERIMENTS

As we discuss in Section I, our model and algorithm have
various applications. To show that, this section first relates our
model to the subspace clustering task with missing values, and
then demonstrates the validity of our theory and applications
by synthetic and real experiments.

A. Applications to Robust Subspace
Clustering With Missing Values

Subspace clustering aims at clustering data according to
the subspaces they lie in. It is well known that many datasets,

e.g., face [1] and motion [3]–[5], can be well separated
by their different subspaces. So subspace clustering has
been successfully applied to face recognition [1], motion
segmentation [45], etc.

Probably one of the most effective subspace clustering
models is robust LRR [46], [47]. Suppose that the data matrix
M contains columns that are from a union of independent
subspaces with outliers. The idea of robust LRR is to self-
express the data, namely, using the clean data themselves as
the dictionary, and then find the representation matrix with the
lowest rank. Mathematically, it is formulated as

min
Z ,L ,S

‖Z‖∗ + λ‖S‖2,1, s.t. L = L Z , M = L + S. (32)

After obtaining the optimal solution Z∗, we can apply spectral
clustering algorithms, such as Normalized Cut, to cluster each
data point according to the subspaces they lie in.

Although robust LRR (32) has been widely applied to
many computer vision tasks [46], [47], it cannot handle
missing values, i.e., only a few entries of M are observed.
Such a situation commonly occurs because of sensor failures,
uncontrolled environments, etc. To resolve the issue, in this
paper we extend robust LRR by slightly modifying the second
constraint:

min
Z ,L ,S

‖Z‖∗ + λ‖S‖2,1,

s.t. L = L Z , 〈M, ωi j 〉 = 〈L + S, ωi j 〉, (i, j) ∈ Kobs.

(33)

A similar model has been proposed by Shi et al. [48], which is

min
Z ,D,S

‖Z‖∗ + λ‖S‖2,1,

s.t. D = DZ + S, 〈M, ei e
∗
j 〉 = 〈D, ei e

∗
j 〉, (i, j) ∈ Kobs .

(34)

However, there are two main differences between their model
and ours: 1. Our model does not require ωi j to be stan-
dard basis, thus being more general; 2. Unlike (34), we use
clean data as the dictionary to represent themselves. Such a
modification robustifies the model significantly, as discussed
in [41] and [47].

The extended robust LRR (33) is NP-hard due to its non-
convexity, which incurs great difficulty in efficient solution.
As an application of this paper, we show that the solutions to
(33) and to (8) are mutually expressible in closed forms:

Claim 1: The pair (L∗(L∗)†, L∗, S∗) is optimal to the
extended robust LRR problem (33), if (L∗, S∗) is a solution
to the extended robust MC problem (8). Conversely, suppose
that (Z∗, L∗, S∗) is a solution to the extended robust LRR
problem (33), then (L∗, S∗) will be optimal to the extended
robust MC problem (8).

Proof: The proof can be found in the Appendices. �
Using relaxed form (10) to well approximate original prob-

lem (8) according to Theorem 1, and then applying Claim 1
to obtain a solution to the extended robust LRR problem
model (33), we are able to robustly cluster subspaces even
though a constant fraction of values are unobserved. This is
true once the conditions in Theorem 1 can be satisfied:
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TABLE II

EXACT RECOVERY ON PROBLEMS WITH DIFFERENT SIZES. HERE

rank(L0) = 0.05n, a = 0.1, p0 = 0.8, AND λ = 1/
√

log n

• The low-rankness condition holds if the sum of the
subspaces is low-dimensional (less than O(n/ log3 n));

• The incoherence condition holds if the number of the
subspaces is not too large (less than an absolute con-
stant) [49].

The computational cost can be further cut by applying our �2,1
filtering approach, i.e., Algorithm 1.

Remark 3: Intuitively, Claim 1 is equivalent to a two-step
procedure: First completing the data matrix and identifying
the outlier by extended robust MC, and then clustering the
data by LRR.

B. Simulations and Experiments

In this section, we conduct a series of experiments to
demonstrate the validity of our theorems, and show possible
applications of our model and algorithm.

1) Validity of Regularization Parameter: We first verify the
validity of our regularization parameter λ = 1/

√
log n by

simulations. The toy data are designed as follows. We compute
L0 = XY T as a product of two n × r i.i.d. N (0, 1) matrices.
The non-zero columns of S0 are sampled by Bernoulli dis-
tribution with parameter a, whose entries obey i.i.d. N (0, 1).
Finally, we construct our observation matrix as P�obs (L0+S0),
where �obs is the observed index selected by i.i.d. Ber(p0).
We solve model (11) to obtain an optimal solution (L∗, S∗),
and then compare it with (L0, S0). The distance between the
range spaces of L∗ and L0 is defined by ‖PU∗−PU0‖F and the
distance between the column supports of S∗ and S0 is given
by the Hamming distance. The experiment is run by 10 times
and we report the average outputs. Table II illustrates that our
choice of the regularization parameter enables model (11) to
exactly recover the range space of L0 and the column support
of S0 at a high probability.

Theorem 1 shows that the exact recoverability of model (11)
is independent of the magnitudes of noises. To verify this,
Table III records the differences between the ground truth
(L0, S0) and the output (L∗, S∗) of model (11) under varying
noise magnitudes N (0, 1/n), N (0, 1), and N (0, n). It seems
that our model always succeeds, no matter what magnitudes
the noises are.

2) Exact Recovery From Varying Fractions of Corruptions
and Observations: We then test the exact recoverability of our
model under varying fractions of corruptions and observations.
The data are generated as the above-mentioned experiments,
where the data size n = 200. We repeat the experiments
by decreasing the number of observations. Each simulation
is run by 10 times, and Figure 2 plots the fraction of cor-
rect recoveries: white region represents the exact recovery

TABLE III

EXACT RECOVERY ON PROBLEMS WITH DIFFERENT NOISE
MAGNITUDES. HERE n = 200, rank(L0) = 0.05n,

a = 0.1, p0 = 0.8, AND λ = 1/
√

log n

Fig. 2. Exact recovery of the extended robust MC on random problems
of varying sizes. The white region represents the exact recovery in
10 experiments, and black region denotes the failures in all of the experiments.

in 10 experiments, and black region denotes the failures in
all of the experiments. It seems that model (11) succeeds even
when the rank of intrinsic matrix is comparable to O(n), which
is consistent with our forecasted order O(n/ log3 n). But with
the decreasing number of observations, the working range of
model (11) shrinks.

3) Speed Advantage of �2,1 Filtering Algorithm: To test the
speed advantage of our �2,1 filtering algorithm, we compare
the running time of ADMM and our filtering Algorithm 1
on the synthetic data. The data are generated as the above-
mentioned simulations, where we change one variable among
the set (n, r, p0, a) each time and fix others. Table IV lists the
CPU times, the distance between Range(L∗) and Range(L0),
and the Hamming distance between I∗ and I0 by the two
algorithms. It is easy to see that our �2,1 filtering approach is
significantly faster than ADMM under a comparable precision.

4) Applications to Subspace Clustering With Missing Coef-
ficients: To apply our model to the subspace clustering tasks
with a fraction of missing values, we conduct experiments on
the real Hopkins 155 database.3 The Hopkins 155 database
consists of 155 sequences, each of which contains multiple
key points drawn from two or three motion objects. Because
the motion trajectory of each rigid body lies in a single

3http://www.vision.jhu.edu/data/hopkins155
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TABLE IV

COMPARISON OF THE SPEED BETWEEN ADMM AND OUR �2,1 FILTERING ALGORITHM UNDER VARYING PARAMETER SETTINGS

TABLE V

CLUSTERING ACCURACIES OF OUR ALGORITHM ON THE FIRST 5 SEQUENCES IN HOPKINS 155 DATABASE, WHERE THERE ARE 5% MISSING ENTRIES

subspace, so we are able to cluster the points according to the
subspaces they lie in. To make the problem more challenging,
we randomly corrupt 5% columns and remove 5% observed
coefficients. Table V lists the clustering accuracies of our
algorithm on the first 5 sequences in comparison with other
approaches [50]. We can see that our approach always achieves
high clustering accuracy, even though we cannot observe all
of the data values. In addition, the experiments show that the
Robust MC based methods are better than MC based methods.
So our model is more robust.

VII. CONCLUSIONS

In this paper, we investigate the theory, the algorithm,
and the applications of our extended robust MC model.
In particular, we study the exact recoverability of our model
from few observed coefficients w.r.t. general basis, which
partially covers the existing results as special cases. With
slightly stronger incoherence (ambiguity) conditions, we are
able to push the upper bound on the allowed rank from O(1) to
O(n/ log3 n), even when there are around a constant fraction
of unobserved coefficients and column corruptions, where n is
the sample size. We further suggest a universal choice of
the regularization parameter, which is λ = 1/

√
log n. This

result waives the necessity of tuning regularization parameter,
so it significantly extends the working range of robust MC.
Moreover, we propose �2,1 filtering algorithm so as to speed
up solving our model numerically, and establish corresponding
theoretical guarantees. As an application, we also relate our
model to the subspace clustering tasks with missing values so
that our theory and algorithm can be immediately applied to
the subspace segmentation problem. Our experiments on the
synthetic and real data testify to our theories.

APPENDIX

A. Preliminary Lemmas

We present several preliminary lemmas here which
are critical for our proofs. For those readers who are

interested in the main body of the proofs, please refer to
Sections IV-B and IV-C directly.

Lemma 7: The optimal solution (L∗, S∗) to the extended
robust MC (11) satisfies S∗ ∈ �obs.

Proof: Suppose that S∗ 	∈ �obs . We have ‖L∗‖∗ +
‖P�obs S∗‖2,1 < ‖L∗‖∗ + ‖S∗‖2,1. Also, notice that the pair
(L∗,P�obs S∗) is feasible to problem (11). Thus we have a
contradiction to the optimality of (L∗, S∗). �

Lemma 8 (Elimination Lemma on Observed Elements):
Suppose that any solution (L∗, S∗) to the extended robust
MC (11) with observation set Kobs exactly recovers the
column space of L0 and the column support of S0, i.e.,
Range(L∗) = Range(L0) and { j : S∗: j 	∈ Range(L∗)} = I0.
Then any solution (L ′∗, S′∗) to (11) with observation set
K′

obs succeeds as well, where Kobs ⊆ K′
obs .

Proof: The conclusion holds because the constraints in
problem (11) with observation set K′

obs are stronger than the
constraints in problem (11) with observation set Kobs . �

Lemma 9 (Elimination Lemma on Column Support):
Suppose that any solution (L∗, S∗) to the extended
robust MC (11) with input R(M) = R(L∗) + R(S∗)
exactly recovers the column space of L0 and the
column support of S0, i.e., Range(L∗) = Range(L0)
and { j : S∗: j 	∈ Range(L∗)} = I0. Then any solution (L ′∗, S′∗)
to (11) with input R(M ′) = R(L∗) + RPI(S∗) succeeds as
well, where I ⊆ I∗ = I0.

Proof: Since (L ′∗, S′∗) is the solution of (11) with input
matrix P�obs M ′, we have

‖L ′∗‖∗ + λ‖S′∗‖2,1 ≤ ‖L∗‖∗ + λ‖PI S∗‖2,1.

Therefore

‖L ′∗‖∗ + λ‖S′∗ + PI⊥∩I0
S∗‖2,1

≤ ‖L ′∗‖∗ + λ‖S′∗‖2,1 + λ‖PI⊥∩I0
S∗‖2,1

≤ ‖L∗‖∗ + λ‖PI S∗‖2,1 + λ‖PI⊥∩I0
S∗‖2,1

= ‖L∗‖∗ + λ‖S∗‖2,1.
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Note that

R(L ′∗ + S′∗ + PI⊥∩I0
S∗) = R(M ′ + PI⊥∩I0

S∗) = R(M).

Thus (L ′∗, S′∗ +PI⊥∩I0
S∗) is optimal to problem with input

P�obs M and by assumption we have

Range(L ′∗) = Range(L∗) = Range(L0),

{ j : [S′∗ + PI⊥∩I0
S∗]: j 	∈ Range(L0)} = Supp(S0).

The second equation implies I ⊆ { j : S′∗: j 	∈ Range(L0)}.
Suppose that I 	= { j : S′∗: j 	∈ Range(L0)}. Then there
exists an index k such that S′∗:k 	∈ Range(L0) and k 	∈ I,
i.e., M ′:k = L∗:k ∈ Range(L0). Note that L ′∗: j ∈ Range(L0).
Thus S′∗:k ∈ Range(L0) and we have a contradiction. Thus
I = { j : S′∗: j 	∈ Range(L0)} = { j : S′∗: j 	∈ Range(L ′∗)} and the
algorithm succeeds. �

Lemma 10 (Matrix (Operator) Bernstein Inequality [35]):
Let Xi ∈ R

m×n , i = 1, ..., s, be independent, zero-mean,
matrix-valued random variables. Assume that V, L ∈ R are
such that max

{∥

∥

∑s
i=1 E

[

Xi X∗
i

]∥

∥ ,
∥

∥

∑s
i=1 E

[

X∗
i Xi

]∥

∥

} ≤ M
and ‖Xi‖ ≤ L. Then

P

[∥

∥

∥

∥

∥

s
∑

i=1

Xi

∥

∥

∥

∥

∥

> t

]

≤ (m + n) exp

(

− 3t2

8M

)

for t ≤ M/L, and

P

[∥

∥

∥

∥

∥

s
∑

i=1

Xi

∥

∥

∥

∥

∥

> t

]

≤ (m + n) exp

(

− 3t

8L

)

for t > M/L.
Lemma 9 shows that the success of algorithm is monotone

on |I0|. Thus by standard arguments in [7], [37], and [51] any
guarantee proved for the Bernoulli distribution equivalently
holds for the uniform distribution.

Lemma 11: For any K ∼ Ber(p), with high probability,
∥

∥

∥P
˜T − p−1P

˜T R
′P

˜T

∥

∥

∥ < ε and
∥

∥

∥P
̂V − p−1P

̂VR
′P

̂V

∥

∥

∥ < ε,

provided that p ≥ C0ε
−2(μr log n(1))/n(2) for some numerical

constant C0 > 0, where R′(·) = ∑

i j∈K〈·, ωi j 〉ωi j .
Proof: The proof is in Appendix D. �

Corollary 1 [37]: Assume that Kobs ∼ Ber(p0). Then with
an overwhelming probability, ‖P�⊥

obs
P

˜T ‖2 ≤ ε + 1 − p0,

provided that p0 ≥ C0ε
−2(μr log n)/n for some numerical

constant C0 > 0.
Lemma 12: Suppose that Z ∈ ˜T and K ∼ Ber(p). Let

R′(·) = ∑

i j∈K〈·, ωi j 〉ωi j . Then with high probability

max
ab

∣

∣

∣〈Z − p−1P
˜T R

′ Z , ωab〉
∣

∣

∣ < ε max
ab

|〈Z , ωab〉| ,

provided that p ≥ C0ε
−2(μr log n(1))/n(2) for some numerical

constant C0 > 0.
Proof: The proof is in Appendix E. �

Lemma 13: Suppose that Z is a fixed matrix and
K ∼ Ber(p). Let R′(·) = ∑

i j∈K〈·, ωi j 〉ωi j . Then with high
probability

‖Z − p−1R′ Z‖ < C ′
0

√

n(1) log n(1)

p
max

i j

∣

∣〈Z , ωi j 〉
∣

∣ ,

provided that p ≥ C ′
0(μ log n(1))/n(1) for some small

numerical constant C ′
0 > 0.

Proof: The proof is in Appendix F. �
Lemma 14: Let R′ be the projection operator onto space

� = Span{ωi j , i, j ∈ K} with any K, the space
I = Span{ωi j , j ∈ J }, and � = I ∩ �. Let J ∼ Ber(a).
Then with high probability

∥

∥

∥a−1P
̂VR

′PIR′P
̂V − P

̂VR
′P

̂V

∥

∥

∥

=
∥

∥

∥a−1P
̂VP�P̂V − P

̂VR
′P

̂V

∥

∥

∥ < ε,

provided that a ≥ C0ε
−2(μr log n(1))/n for some numerical

constant C0 > 0.
Proof: The proof is in Appendix G. �

Corollary 2: Assume that � = I ∩ �. Then for any
I ∼ Ber(a) and � ∼ Ber(p), with high probability

‖(pa)−1P
̂VP�P̂V − P

̂V‖ < (p−1 + 1)ε,

provided that a, p ≥ C0ε
−2(μr log n(1))/n for some numeri-

cal constant C0 > 0.
Proof: By Lemma 11 and Lemma 14, we have

‖P
̂VP�P̂V − pP

̂V‖ < pε,

and

‖a−1P
̂VP�P̂V − P

̂VP�P̂V‖ < ε.

So by triangle inequality, we have

‖a−1P
̂VP�P̂V − pP

̂V‖
≤ ‖P

̂VP�P̂V − pP
̂V‖ + ‖a−1P

̂VP�P̂V − P
̂VP�P̂V‖

< (p + 1)ε.

That is

‖(pa)−1P
̂VP�P̂V − P

̂V‖ < (p−1 + 1)ε.

�
Corollary 3: Let  = I0 ∩ �obs, where I0 ∼ Ber(p1).

Then with an overwhelming probability ‖PP̂V‖2 ≤
(1 − p1)ε + p1, provided that 1 − p1 ≥ C0ε

−2(μr log n(1))/n
for some numerical constant C0 > 0.

Proof: Let � = I⊥
0 ∩�obs . Note that I⊥

0 ∼ Ber(1−p1). By
Lemma 14, we have ‖(1− p1)

−1P
̂VP�P̂V−P

̂VP�obsP̂V‖ < ε,
or equivalently

‖(1 − p1)
−1P

̂VP�P̂V − P
̂VP�obsP̂V‖

= (1 − p1)
−1‖P

̂VP�P̂V − (1 − p1)P̂VP�obsP̂V‖
= (1 − p1)

−1‖P
̂VP�obsP̂V − P

̂VP(I⊥
0 ∩�obs )

P
̂V

− p1P̂VP�obsP̂V‖
= (1 − p1)

−1‖P
̂VP(I0∩�obs )P̂V − p1P̂VP�obsP̂V‖

= (1 − p1)
−1‖P

̂VPP̂V − p1P̂VP�obsP̂V‖
< ε.

Therefore, by the triangle inequality

‖PP̂V‖2 = ‖P
̂VPP̂V‖

≤ ‖P
̂VPP̂V − p1P̂VP�obsP̂V‖ + p1‖P̂VP�obsP̂V‖

≤ (1 − p1)ε + p1.

�
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B. Proofs of Theorem 2

To prove Theorem 2, the following matrix Chernoff Bound
is invoked in our proof:

Theorem 5 (Matrix Chernoff Bound [52]): Consider a
finite sequence {Xk} ∈ R

d×d of independent, random,
Hermitian matrices. Assume that

0 ≤ λmin (Xk) ≤ λmax (Xk) ≤ L .

Define Y = ∑

k Xk, and μr as the r th largest eigenvalue of
the expectation EY , i.e., μr = λr (EY ). Then

P {λr (Y ) > (1 − ε)μr } ≥ 1 − r

[

e−ε

(1 − ε)1−ε

]

μr
L

≥ 1 − re− μr ε2

2L ,

for ε ∈ [0, 1).
Lemma 15: Let X = U�V T be the skinny SVD of

matrix X. For any set of coordinates � and any matrix
X ∈ R

m×n, we have rank(X�:) = rank(U�:) and rank(X :�) =
rank(V�:).

Proof: On one hand,

X�: = I�: X = I�:U�V T = U�:�V T .

So rank(X�:) ≤ rank(U�:). On the other hand, we have

X�:V �−1 = U�:.

Thus rank(U�:) ≤ rank(X�:). So rank(X�:) = rank(U�:).
The second part of the argument can be proved similarly.

Indeed, X :� = U�V T I:� = U�[V T ]:� and �−1U T X :� =
[V T ]:�. So rank(X :�) = rank([V T ]:�) = rank(V�:), as
desired. �

Now we are ready to prove Theorem 2.
Proof: We investigate the smallest sampling parameter d

such that the sampled columns from L0 = PI⊥
0

M exactly span
Range(L0) with an overwhelming probability.

Denote by L0 = U�V T the skinny SVD of L0. Let
X = ∑

i δi [V T ]:i e∗
i be the random sampling of columns from

matrix V T , where δi ∼ Ber(d/n). Define a positive semi-
definite matrix

Y = X X∗ =
n

∑

i=1

δi [V T ]:i [V T ]∗:i .

Obviously, σr (X)2 = λr (Y ). To invoke the matrix Chernoff
bound, we need to estimate L and μr in Theorem 5.
Specifically, since

EY =
n

∑

i=1

Eδi [V T ]:i [V T ]∗:i

= d

n

n
∑

i=1

[V T ]:i [V T ]∗:i

= d

n
[V T ][V T ]∗,

we have μr = λr (EY ) = d/n. Furthermore, we also have

λmax(δi [V T ]:i [V T ]∗:i ) = ‖δi [V T ]:i‖2
2

≤ max
i

‖Vi:‖2
2,∞ = μr

n
� L .

By matrix Chernoff bound,

P {σr (X) > 0} ≥ 1 − re− μr
2L

= 1 − re−d/(2μr)

≥ 1 − δ,

we obtain

d ≥ 2μr log
(r

δ

)

.

Note that σr (X) > 0 implies that rank([V T ]:l) =
rank([L0]:l) = r , where the equality holds due to Lemma 15.
Also, Range([L0]:l) ⊆ Range(L0). Thus Range([L0]:l) =
Range(L0). �

C. Proofs of Claim 1

To prove Theorem 1, the following proposition is crucial
throughout our proof.

Proposition 1: The solution to the optimization problem:

min
Z

‖Z‖∗, s.t. L = L Z , (35)

is unique and given by Z∗ = VL V T
L , where UL�L V T

L is the
skinny SVD of L.

Proof: We only prove the former part of the theorem.
The proofs for the latter part of the theorem are similar.
Suppose that (L∗, S∗) is a solution to problem (8), while
(L∗(L∗)†, L∗, S∗) is not optimal to problem (33). So there
exists an optimal solution to (33), termed (Z∗, L∗, S∗), which
is strictly better than (L∗(L∗)†, L∗, S∗). Namely,

‖Z∗‖∗ + λ‖S∗‖2,1 < ‖L∗(L∗)†‖∗ + λ‖S∗‖2,1,

L∗ = L∗ Z∗, R(M) = R(L∗ + S∗).

Fixing L and S as L∗ and S∗ in (33), respectively, and by
Proposition 1, we have

‖Z∗‖∗ + λ‖S∗‖2,1 = ‖VL∗ V T
L∗‖∗ + λ‖S∗‖2,1

= rank(L∗) + λ‖S∗‖2,1.

Furthermore, by the property of Moore-Penrose pseudo-
inverse,

‖L∗(L∗)†‖∗ + λ‖S∗‖2,1 = rank(L∗) + λ‖S∗‖2,1.

Thus

rank(L∗) + λ‖S∗‖2,1 < rank(L∗) + λ‖S∗‖2,1,

L∗ = L∗Z∗, R(M) = R(L∗ + S∗),

which is contradictory to the optimality of (L∗, S∗) to prob-
lem (8). So (L∗(L∗)†, L∗, S∗) is optimal to problem (33). �

D. Proofs of Lemma 11

Now we are prepared to prove Lemma 11.
Proof: For any matrix X , we have

PX X =
∑

i j

〈PX X, ωi j 〉ωi j ,
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where X is ̂V or ˜T . Thus R′PX X = ∑

i j κi j 〈PX X, ωi j 〉ωi j ,
where κi j s are i.i.d. Bernoulli variables with parameter p.
Then

PXR′PX X =
∑

i j

κi j 〈PX X, ωi j 〉PX (ωi j )

=
∑

i j

κi j 〈X,PX (ωi j )〉PX (ωi j ).

Namely, PXR′PX = ∑

i j κi jPX (ωi j ) ⊗ PX (ωi j ). Similarly,
PX = ∑

i j PX (ωi j ) ⊗ PX (ωi j ). So we obtain

∥

∥

∥p−1PXR′PX − PX
∥

∥

∥

=
∥

∥

∥

∥

∥

∥

∑

i j

(p−1κi j − 1)PX (ωi j ) ⊗ PX (ωi j )

∥

∥

∥

∥

∥

∥

�

∥

∥

∥

∥

∥

∥

∑

i j

Xi j

∥

∥

∥

∥

∥

∥

,

where Xij = (p−1κi j − 1)PX (ωi j ) ⊗PX (ωi j ) is a zero-mean
random variable.

To use Lemma 10, we need to work out M and L therein.
Note that

‖Xij ‖ = ‖(p−1κi j − 1)PX (ωi j ) ⊗ PX (ωi j )‖
≤ |p−1κi j − 1‖|PX (ωi j ) ⊗ PX (ωi j )‖
≤ max{p−1 − 1, 1}‖PX (ωi j )‖2

F

≤ cμr

n(2) p

� L .

Furthermore,
∥

∥

∥

∥

∥

∥

∑

i j

E

[

Xij X∗
i j

]

∥

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

∥

∑

i j

E

[

X∗
i j Xi j

]

∥

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

∥

∑

i j

E

(

κi j − p

p

)2
[

PX (ωi j ) ⊗ PX (ωi j )
]

× [

PX (ωi j ) ⊗ PX (ωi j )
]

∥

∥

∥

∥

= (p−1 − 1)

∥

∥

∥

∥

∥

∥

∑

i j

∥

∥PX (ωi j )
∥

∥

2
F PX (ωi j ) ⊗ PX (ωi j )

∥

∥

∥

∥

∥

∥

≤ cμr

n(2) p

∥

∥

∥

∥

∥

∥

∑

i j

PX (ωi j ) ⊗ PX (ωi j )

∥

∥

∥

∥

∥

∥

= cμr

n(2) p
‖PX ‖

= cμr

n(2) p
� M.

Since M/c = 1 > ε, by Lemma 10, we have

P{‖p−1PXR′PX − PX ‖ < ε} ≤ 2mn exp

(

− 3ε2

8M

)

= 2mn exp

(

−3ε2n(2) p

8cμr

)

� 2mn exp

(

−Cε2n(2) p

μr

)

≤ 2mn exp
(−CC0 log n(1)

)

= 2n−CC0+2,

where the second inequality holds once we have
p ≥ C0ε

−2(μr log n(1))/n(2). So the proof is completed. �

E. Proofs of Lemma 12

We proceed to prove Lemma 12.
Proof: From the definition of operator R′, we know that

R′(Z) =
∑

i j∈K
〈Z , ωi j 〉ωi j =

∑

i j

δi j 〈Z , ωi j 〉ωi j ,

where δi j s are i.i.d. Bernoulli variables with parameter p.
Notice that Z ∈ ˜T , so we have

Z − p−1P
˜T R

′Z =
∑

i j

(1 − p−1δi j )〈Z , ωi j 〉P˜T ωi j ,

and

〈Z − p−1P
˜T R

′Z , ωab〉
=

∑

i j

(1 − p−1δi j )〈Z , ωi j 〉〈P˜T ωi j , ωab〉.

We now want to invoke the scalar Bernstein inequality. Let
Xij = (1 − p−1δi j )〈Z , ωi j 〉〈P˜T ωi j , ωab〉 with zero mean.

|Xij | = |(1 − p−1δi j )〈Z , ωi j 〉〈P˜T ωi j , ωab〉|
≤ |(1 − p−1δi j )| max

i j

∣

∣〈Z , ωi j 〉
∣

∣

∥

∥P
˜T ωi j

∥

∥

F

∥

∥P
˜T ωab

∥

∥

F

≤ 2μr

n(2) p
max

ab
|〈Z , ωab〉|

� L .

Furthermore,
∑

i j

EX2
i j =

∑

i j

E(1 − p−1δi j )
2〈Z , ωi j 〉2〈P

˜T ωi j , ωab〉2

= (p−1 − 1)
∑

i j

〈Z , ωi j 〉2〈P
˜T ωi j , ωab〉2

= (p−1 − 1) max
i j

〈Z , ωi j 〉2
∑

i j

〈ωi j ,P˜T ωab〉2

= (p−1 − 1) max
i j

〈Z , ωi j 〉2
∥

∥P
˜T ωab

∥

∥

2
F

≤ 2μr

n(2) p
max

ab
〈Z , ωab〉2

� M.
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Since M/L = maxab |〈Z , ωab〉| > ε maxab |〈Z , ωab〉|, by
scalar Bernstein inequality, we obtain

P

{

max
ab

∣

∣

∣〈Z − p−1P
˜T R

′Z , ωab〉
∣

∣

∣ < ε max
ab

|〈Z , ωab〉|
}

≤ 2 exp

{−3ε2 maxab〈Z , ωab〉2

8M

}

= 2 exp

{−3ε2n(2) p

16μr

}

≤ n−10
(1) ,

provided that p ≥ C0ε
−2μr log n(1)/n(2) for some numerical

constant C0. �

F. Proofs of Lemma 13

We are prepared to prove Lemma 13.
Proof: From the definition of operator R′, we know that

R′(Z) =
∑

i j∈K
〈Z , ωi j 〉ωi j =

∑

i j

δi j 〈Z , ωi j 〉ωi j ,

where δi j s are i.i.d. Bernoulli variables with parameter p. So

Z − p−1R′ Z =
∑

i j

(1 − p−1δi j )〈Z , ωi j 〉ωi j .

Let Xij = (1−p−1δi j )〈Z , ωi j 〉ωi j . To use the matrix Bernstein
inequality, we need to bound Xij and its variance. To this end,
note that

‖Xij ‖ = |1 − p−1δi j | |〈Z , ωi j 〉| ‖ωi j ‖
≤ p−1‖ωi j ‖F max

i j
|〈Z , ωi j 〉|

= p−1 max
i j

|〈Z , ωi j 〉|
� L .

Furthermore,
∥

∥

∥

∥

∥

∥

∑

i j

EXij X∗
i j

∥

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

∥

∑

i j

E(1 − p−1δi j )
2〈Z , ωi j 〉2ωi j ω

∗
i j

∥

∥

∥

∥

∥

∥

≤ p−1 max
i j

〈Z , ωi j 〉2

∥

∥

∥

∥

∥

∥

∑

i j

ωi j ω
∗
i j

∥

∥

∥

∥

∥

∥

= p−1 max
i j

〈Z , ωi j 〉2 ‖nIm‖
= n

p
max

i j
〈Z , ωi j 〉2.

Similarly,
∥

∥

∥

∥

∥

∥

∑

i j

EX∗
i j Xi j

∥

∥

∥

∥

∥

∥

≤ m

p
max

i j
〈Z , ωi j 〉2.

We now let M = n(1) maxi j 〈Z , ωi j 〉2/p and set t
as C ′

0

√

p−1n(1) log n(1) maxi j |〈Z , ωi j 〉|. Since M/L =
n(1) maxi j |〈Z , ωi j 〉| > t , by the matrix Bernstein inequality,

we obtain

P

{

‖Z − p−1R′ Z‖ < C ′
0

√

n(1) log n(1)

p
max

i j

∣

∣〈Z , ωi j 〉
∣

∣

}

= P

{

‖Z − p−1R′Z‖ < t
}

= (m + n) exp

{−3t2

8M

}

≤ n−10
(1) .

�

G. Proofs of Lemma 14

We proceed to prove Lemma 14. Proof: For any fixed
matrix Z , it can be seen that

R′P
̂V Z =

∑

i j∈�obs

〈P
̂V Z , ωi j 〉ωi j =

∑

i j

κi j 〈Z ,P
̂Vωi j 〉ωi j .

Note that the operators R′ and PI are commutative according
to (9), thus we have

P
̂VR

′PIR′P
̂V Z =

∑

j

δ j

∑

i

κi j 〈Z ,P
̂Vωi j 〉P̂Vωi j .

Similarly, P
̂VR′P

̂V Z = ∑

j

∑

i κi j 〈Z ,P
̂Vωi j 〉P̂Vωi j , and so

(a−1P
̂VR

′PIR′P
̂V − P

̂VR
′P

̂V )Z

=
∑

j

(a−1δ j − 1)
∑

i

κi j 〈Z ,P
̂Vωi j 〉P̂Vωi j .

Namely,

a−1P
̂VR

′PIR′P
̂V − P

̂VR
′P

̂V
=

∑

j

(a−1δ j − 1)
∑

i

κi jP̂Vωi j ⊗ P
̂Vωi j .

We now plan to use concentration inequality. Let X j �
(a−1δ j −1)

∑

i κi jP̂Vωi j ⊗P
̂Vωi j . Notice that X j is zero-mean

and self-adjoint. Denote the set g = {‖C1‖F ≤ 1, C2 = ±C1}.
Then we have

‖X j‖ = sup
g

〈C1, X j (C2)〉

= sup
g

∣

∣

∣a−1(δ j − a)
∣

∣

∣

∣

∣

∣

∣

∣

∑

i

κi j 〈C1,P̂V (ωi j )〉〈C2,P̂V (ωi j )〉
∣

∣

∣

∣

∣

� |a−1(δ j − a)| sup
g

| f (δ j )|.

According to (9),

‖P
̂VC1‖2

2,∞ = max
j

∑

i

〈C1, ωi j ̂V ̂V ∗〉2

= max
j

∑

i

〈G∗
j e

∗
i C1, e∗

j
̂V ̂V ∗〉2

≤ max
j

∑

i

‖e∗
i C1‖2

2‖e∗
j
̂V ̂V ∗‖2

2

= max
j

‖C1‖2
F‖e∗

j
̂V ̂V ∗‖2

2

≤ μr

n
,
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where G j is a unitary matrix. So we have

| f (δ j )| ≤
∑

i

|〈C1,P̂V (ωi j )〉| |〈C2,P̂V (ωi j )〉|

=
∑

i

〈C1,P̂V (ωi j )〉2

≤
∑

i

〈P
̂VC1, ωi j 〉2

≤ ‖P
̂VC1‖2

2,∞ ≤ μr

n
,

where the first identity holds since C2 = ±C1. Thus
‖X j ‖ ≤ μra−1n−1 � L. We now bound

∑

j

∥

∥

∥Eδ j X2
j

∥

∥

∥.
Observe that

‖Eδ j X2
j ‖ ≤ Eδ j ‖X2

j‖ = Eδ j ‖X j ‖2

= Eδ j a
−2(δ j − a)2 sup

g
f (δ j )

2,

where the last identity holds because C1, C2 and δ j are
separable. Furthermore,

sup
g

f (δ j )
2 = sup

g

(

∑

i

κi j 〈C1,P̂V (ωi j )〉〈C2,P̂V (ωi j )〉
)2

≤ sup
g

(

∑

i

|〈C1,P̂V (ωi j )〉〈C2,P̂V (ωi j )〉|
)2

=
(

∑

i

〈C1,P̂V (ωi j )〉2

)2

≤
(

∑

i

〈P
̂VC1, ωi j 〉2

)(

∑

i

〈P
̂VC1, ωi j 〉2

)

≤ ‖P
̂VC1‖2

2,∞
∑

i

〈P
̂VC1, ωi j 〉2

≤ μr

n

∑

i

〈P
̂VC1, ωi j 〉2.

Therefore,
∑

j

∥

∥

∥Eδ j X2
j

∥

∥

∥ ≤ Eδ j a
−2(δ j − a)2 μr

n

∑

i j

〈P
̂VC1, ωi j 〉2

= μr(1 − a)

na
‖P

̂VC1‖2
F

≤ μr

na
� M.

Since M/L = 1 > ε, by the matrix Bernstein inequality,

P

{∥

∥

∥a−1P
̂VR

′PIR′P
̂V − P

̂VR
′P

̂V

∥

∥

∥ < ε
}

= P

⎧

⎨

⎩

∥

∥

∥

∥

∥

∥

∑

j

X j

∥

∥

∥

∥

∥

∥

< ε

⎫

⎬

⎭

≤ (m + n) exp

{−3ε2

8M

}

= (m + n) exp

{−3ε2na

8μr

}

≤ n−10
(1) ,

provided that a ≥ C0ε
−2(μr log n(1))/n for some numerical

constant C0 > 0. �
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