
PoT: Securely Proving Legitimacy of Training Data and Logic for AI Regulation

Haochen Sun 1 Hongyang Zhang 1

Abstract
The widespread use of generative models has
raised concerns about the legitimacy of training
data and algorithms in the training phase. In re-
sponse to the copyright and privacy legislation,
we propose Proof of Training (PoT), a provably
secure protocol that allows model developers to
prove to the public that they have used legitimate
data and algorithms in the training phase, while
also preserving the model’s privacy such as its
weights and training dataset. Unlike the previ-
ous works on verifiable (un)learning, PoT empha-
sizes the legitimacy of training data and provides
a proof of (non-)membership to testify whether a
specific data point is included/excluded from the
training set. By combining cryptographic prim-
itives like zk-SNARK, PoT enables the model
owner to prove that the training dataset is free
from poisoning attacks and that the model and
data were called following the logic of training al-
gorithm (e.g., no backdoor is implanted), without
leaking sensitive information to the verifiers. PoT
is applicable in the federated learning settings by
new multi-party computation (MPC) protocols
that accommodate its additional security require-
ments such as robustness to Byzantine attacks.

1. AI Regulation and Privacy Legislation
The rapid development of AI and the emergence of founda-
tion models have received unprecedented attention in the
past months. These advancements have also raised concerns
about the legitimacy of the developed models, especially the
legal status of the underlying training data. In May 2023,
OpenAI called for governance of super-intelligence [1].
In March 2023, Italy became the first Western country
to ban ChatGPT amid a probe into a potential breach of
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Figure 1. The pipline of PoT: the model trainer (e.g., OpenAI) first
submits the proofs of data membership and training logic and
receives an endorsement from a trusted verifier (e.g., government
or data protection watchdog). Then, the streaming data copyright
owners (e.g., writer representatives) can query the model trainer
on whether their copyrighted data were used in the training, by
O(1) verification time per queried data point w.r.t. the size of the
training set. The protocol is provably private between all parties.

the European Union’s General Data Protection Regulation
(GDPR) [2]. In January 2023, Stable Diffusion, a star image
generative model, was accused of infringing the copyrights
of millions of images in its training data by a group of artist
representatives [3]. As governments keep requiring new reg-
ulation rules for more and more advanced AI, it is urgent to
develop a protocol that can verify the legitimacy of training
data and computational logic for machine learning. On the
other hand, due to intellectual property and business secrets,
model owners typically do not want to release their pro-
prietary training data or model weights for the legitimacy
investigation. For example, OpenAI CEO Sam Altman
warned the company may have to pull its services from
Europe if it is unable to comply with the regulations [4].

In response to AI regulation and privacy legislation, we in-
troduce Proof of Training (PoT)—a provably secure solution
that enables a government to lead an investigation into the
legitimacy of trained models and training data. With PoT,
the government can verify that the model has been trained
correctly on a committed training set throughout the en-
tire training pipeline, and data copyright owners can query



Submission and Formatting Instructions for ICML 2023

whether their proprietary data has been included in the train-
ing set to address concerns over copyright (see Figure 1 for
the pipline). We briefly present our technical results below.

2. Settings
As illustrated in Figure 1, in the context of PoT, a model is
trained on a private training set D by a trainer, such as Ope-
nAI. The trainer tries to keep both the model’s parameters w
and the training set D private. Under the federated learning
(FL) setting, the central server (who maintains the model
parameters w) and N nodes (labelled by n ∈ [N ], each
holding private dataset D(n), such that D =

⋃
n∈[N ] D(n))

collaboratively act as the trainer. The nodes and the central
server also verify the computations of each other to ensure
the correctness of the FL process, while each node n tries
to keep the confidentiality of D(n) to its own.

In order to ensure the quality and legitimacy of the model,
a trusted verifier, such as a government agency, attests to
the quality of the training set and that the model was trained
on D correctly following the prescribed training logic. The
trusted verifier offers an endorsement on the commitment
of the pair (w,D). Once the endorsement is made, any
data copyright owner, such as artist representatives, may
request the trainer to prove or disprove whether certain data
points owned by him/her are in D.

2.1. Threat model

We conduct a thorough analysis of the potential threats to
data and model security, as well as privacy threats that may
arise during the PoT protocol. Our analysis assumes that all
parties involved (trainer, trusted verifier, data copyright own-
ers, and any attackers) are all running classical probabilistic
polynomial-time algorithms.

To ensure the security of the protocol, we assume that all
used cryptographic primitives, such as the zk-SNARKs, the
commitment schemes, and the hash functions, achieve λ-bit
security. We further assume that the size of the datasets |D|
and the number of parameters dim(w) are both polynomial
in λ. In addition, we require that the security parameter
be lower-bounded by the number of nodes in the federated
learning settings, i.e., λ ≥ N , to guarantee the security of
the protocol. Our threats include:

Threats to legitimacy. The trainer may use illegitimately
collected data to train the model. In particular, some or all
of the data points in the training set may originate from
proprietary sources, therefore violating the data copyright
of their owners.

Threats to the data quality and training logic. In addition
to the legitimacy of the source, the training dataset may also
be of low quality (e.g., drawn from irrelevant sources, or poi-
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Figure 2. Overview of Proof of Training protocol, which is useful
in both the single-machine and federated-learning settings.

soned). A malicious trainer may also violate the prescribed
training logic to compromise the trained model.

Threats to privacy. The trusted verifier may try to infer
about the training data and model parameters. Additionally,
upon receiving the queries about the data points, the data
copyright owners and the trainer may try to infer about the
private data owned by each other.

3. Technical Overview
At a first glance, the model trainer’s goals of 1) proving
legitimacy of training data and computational logic and
2) without leaking information about model weights and
training dataset are incompatible. We show that both goals
are achievable by zero-knowledge proofs [33]. Figure 2
shows an overview of our protocol. Due to 3-page limits,
we briefly introduce our technical contributions as follows.

Proof of data (non-)membership. With the government
acting as a trusted verifier, PoT allows data copyright own-
ers to verify the exclusion of a copyright data point from the
training set in O(1) time with respect to the size of the train-
ing set D, without learning any further information about
the training set (see Figure 1). This is achieved using the
Merkle tree, a specialized cryptographic tool for set-related
problems. Moreover, it shifts the overhead of verifying the
dataset and training logic to the government, allowing for
cost-effective copyright verifications for data copyright own-
ers without requiring them to check the proofs of data and
training logic by themselves.

Proof of data quality. To address low-quality datasets
and data poisoning attacks, we propose a zero-knowledge-
verifiable wrapper of statistical testing and sanitization meth-
ods. Specifically, we leverage homomorphic commitments
used in zk-SNARKs, and combined them with MPC proto-
cols based on Shamir’s secret sharing scheme. This allows
for the secure and private computation of the joint statis-
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Table 1. Proof size (i.e., the number of hash values) and verification time (in milliseconds) of proof of (non-)membership on CIFAR-10.
The second column shows the number of queried data to be verified. The training dataset size is 50,000.

hash # data
Positivity ratio

0 0.1 0.5 0.9 1
size (#) time (ms) size (#) time (ms) size (#) time (ms) size (#) time (ms) size (#) time (ms)

md5
10 148 0.84 260 4.6 697 12 1,136 19 1,244 22

100 1,059 5.9 2,168 37 6,632 110 11,042 200 12,163 220
1,000 7,148 48 18,248 350 62,565 1,300 107,094 2,200 118,180 2,300

sha1
10 136 0.79 284 5.9 854 17 1,419 29 1,564 32

100 1,033 5.7 2,481 54 8,196 170 13,905 320 15,333 370
1,000 6,995 45 21,312 530 78,583 2,900 135,775 4,600 150,122 6,000

sha256
10 147 0.99 388 13 1,342 41 2,288 71 2,530 79

100 1,036 6.3 3,436 100 12,987 460 22,575 780 24,962 870
1,000 7,163 53 31,055 1,100 126,617 7,100 222,259 15,000 246,158 17,000

† PoT achieves 100% membership inference accuracy in all above experiments with a provided proof of (non-)membership, in contrast to
a maximum accuracy of 63.7% by state-of-the-art membership inference attack (MIA) [5].

Table 2. Comparison with related works. N/A: not applicable; : no
guarantee; : (weakly) probabilistic guarantee; 5: λ-bit guarantee
(fails with negl (λ) prob., strictly stronger than ).

Works DM DP TL FL Priv
Verifiable ML (inferece) [6; 7; 8; 9; 10] N/A N/A N/A N/A 5
Verifiable ML (training) [11; 12] N/A N/A 5 N/A 5
Proof of Learning [13] N/A N/A
Secure FL [14; 15; 16; 17; 18; 19; 20] N/A 5 5
Data Sanitization [21; 22; 23; 24] N/A N/A N/A N/A
MIA [25; 26; 27; 28; 5; 29; 30; 31; 32] N/A N/A N/A N/A
Proof of Training (ours) 5 5 5 5

tics without revealing sensitive information, and enables the
trusted verifier to check the correctness of the computations.

Proof of training logic. We design a novel approach for
verifying the entire deep learning pipeline, from data prepa-
ration to parameter updates. We accomplish this through
the application of cryptography primitives, including zk-
SNARKs, which enable zero-knowledge verification of com-
putations. The PoT protocol ensures the correctness of the
pipeline without compromising sensitive information. The
method is applicable to any machine learning tasks when the
random seeds are released (which should be non-private),
such as generative models.

Extension to federated learning settings. We extend the
PoT protocol to the federated learning setting, which has
additional security and privacy requirements such as being
robust to Byzantine attacks and privacy-preserving among
nodes and the central server. Specifically, we develop a
new MPC scheme that connects zk-SNARKs to the secure
aggregation (SecAgg) scheme with pairwise cancellable
noises, using the same idea as the Fiat-Shamir heuristic.

Related works. Table 2 compares PoT with other related
works in multiple aspects: 1) DM: data membership in
the training set; 2) DP: robustness against data poisoning
attacks; 3) TL: training logic; 4) FL: federated learning;
5) Priv: preserving the privacy of the model and training
set. Each of related works only addresses a subset of the

problems resolved by the PoT protocol. Notably, the PoT
protocol is the first work that tackles the training data legiti-
macy problem, enabling the data copyright owners to check
the membership of their proprietary data in the training set
with provable success guarantees.

4. Experiments
To evaluate the proof of data (non-)membership, we im-
plemented PoT on the training set of CIFAR-10 on VGG
networks using three different hash functions. We con-
ducted experiments with varying positivity ratios (the ratio
of positive data points, i.e., members of the training set, in
the query set) in Table 1. For the queries, we randomly
drew positive data points from the training set and negative
data points from the testing set of CIFAR-10. Our proof of
(non-)membership achieves 100% accuracy: we found no
data point for which the trainer can lie about the member-
ship in the training dataset. Meanwhile, due to the one-way
property of the hash functions, data copyright owners learn
nothing about the training set beyond their query.

5. Conclusion
This paper introduces PoT, a solution to the challenge of
ensuring the legitimacy of training data, a significant obsta-
cle to the current advancements of AI foundation models.
PoT provides cryptographic guarantees for the entire deep
learning pipeline, including data legitimacy, quality, model
training, and evaluation. By leveraging the robust security
and privacy guarantees of cryptographic primitives such
as zk-SNARKS, MPCs, and Merkle trees, PoT presents a
dependable solution to the sensitive legitimacy issues of
foundation models. Furthermore, with continued advance-
ments in cryptographic primitives towards practical imple-
mentation, such as faster zk-SNARKs with CUDA support,
we anticipate that PoT will extend to larger and more com-
plex deep learning tasks, safeguarding the legitimacy of AI
development in the future.
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