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Abstract

In many vision analytics-based applications such as image classification, we confront
explosive growth of high-dimensional data. Thus, many feature selection and extraction
methods have been proposed to reduce the computational cost and avoid over-fitting.
Recently, a novel selectable factor extraction (SFE) framework is proposed to simultane-
ously perform feature selection and extraction, and is theoretically and practically proved
to be effective in handling high-dimensional data. The algorithm is also quite efficient
and easy to implement. Although it is advantageous in several aspects, SFE is only de-
signed for either supervised or unsupervised learning, and is not suitable when there are
limited labeled samples and a large number of unlabeled samples, since the data distri-
bution knowledge is likely to be poorly exploited. To tackle this problem, we propose a
novel manifold regularized SFE (MRSFE) framework for semi-supervised image classi-
fication. In MRSFE, the local structures of the whole dataset are preserved, and the data
distribution is well exploited. By integrating the label information, low rank property
of the features and data distribution knowledge, the proposed MRSFE could select and
extract reliable discriminative features when the labeled samples are scarce. An efficient
and easy-to-implement algorithm is designed to find the solutions. Extensive experimen-
tal results on a real-world image dataset demonstrate the superiority of our method.

1 Introduction
In modern computer vision applications, we frequently confront high-dimensional data [14].
For example, in face recognition, the image pixels are usually directly utilized as the features.
In natural image classification [12, 13], the local features are often clustered into a long
histogram. The feature dimensions of these applications can be up to several thousands and
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even more, which often leads to the “curse of dimensionality” problem. To deal with the high
dimensional problem effectively, the feature selection methods select a subset of features
from the original ones to reduce the computational cost and the chance of over-fitting.

According to the number of labeled data in training set, existing feature selection al-
gorithms fall into three groups: supervised, unsupervised and semi-supervised. Supervised
feature selection (e.g., [15, 16]) always requires sufficient labeled training data. But labeled
training data are very expensive and time-consuming to obtain in real-world applications.
Unsupervised feature selection methods (e.g., [8, 19, 21]) only use the structure of graph to
select features, it is not so reliable since the label information is ignored ([20]). Another large
part of feature selection methods is semi-supervised feature selection, it uses both labeled
and a large amount of unlabeled data to select discriminative features. For example, [22]
proposed a semi-supervised feature selection method which uses labeled data to maximize
the margin between different classes and uses unlabeled data to discover the geometrical
structure of the data space. However, they use Laplacian criteria to help feature extraction
and it may not be the best because we care more about the predict accuracy not the Laplacian
score of the features. [2] proposed a convex formulation for semi-supervised multi-label fea-
ture selection based on the sparse penalty and a single convex framework. Due to the lack of
graph construction, the computational cost is relatively low. However, it only focuses on the
feature selection task, some important properties, such as the low rank property of original
data, may not be well explored.

Recently, a selectable factor extraction (SFE)[18] framework is proposed to perform fea-
ture selection and extraction simultaneously. In this framework, both the sparsity and low
rankness of the features are well explored. The framework is formulated for both supervised
and unsupervised learning, and the sharp oracle inequalities is proved for various convex or
nonconvex penalties. The authors have also demonstrated that SFE tends to obtain lower
test error compared with rank reduction or variable selection alone empirically. Besides, the
designed algorithms are quite efficient with easy implementation, and are scalable for big
data computing.

In spite of these advantages, SFE is not appropriate for the scenario when the labeled
samples are scarce but a large number of unlabeled samples are available. This is because
a reliable solution should respect the underlying data distribution, which might be very dif-
ferent from the distribution of the limited labeled samples [1]. Although we can apply SFE
on only the feature matrix of the large amount of unlabeled samples, the label information is
ignored and thus the selected and extracted features might not be discriminative enough for
classification. In addition, the designed unsupervised SEL-PCA (selectable principal com-
ponent analysis)[18] only utilize the global information of all samples, and disregard the
local structure, which is however, critical in image classification. This is because images
are usually represented in a highly nonlinear feature space, and it is nontrivial to reveal the
underlying data distribution of the images in the feature space.

Therefore, we propose the manifold-regularized selectable factor extraction (MRSFE)
for semi-supervised image classification. In particular, we use a low rank penalized regres-
sion model to explore the label information. A low rank matrix of the regression coefficients,
together with the `2,1 or `2,0 norm penalty is learned for joint feature selection and extraction.
In addition, all the labeled and unlabeled samples are utilized in MRSFE to construct the data
adjacency graph to approximate the underlying data manifold, which the data distribution is
assumed to be supported on. The graph Laplacian is then incorporated as a regularization
term to smooth the coefficients matrix. In this way, the local structures of the whole dataset
are preserved, and the data distribution is well exploited. By integrating all the label infor-
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mation, low rankness of the original features, as well as the data distribution knowledge,
MRSFE could select or extract reliable discriminative features when the labeled samples are
scarce. We design a fast and easy-to-implement algorithm to solve our optimization problem
with convex or nonconvex penalties. The computational cost is very low since it just in-
volved some small-scale SVD decompositions and thresholding operations. To evaluate the
performance of our algorithm, we apply it on a challenge web image dataset, NUS-WIDE-
OBJECT ([3]), and compare it with two competitive feature selection methods [2, 22]. The
experimental results demonstrate that our method outperforms other compared methods in
terms of both prediction accuracy and computational cost.

2 Manifold-Regularized Selectable Factor Extraction
To derive our model, we begin with the reduced rank regression (RRR) model[7]. Specifi-
cally, RRR fits sample labels by the linear combination of the design matrix. To achieve di-
mension reduction, RRR requires the representation matrix to be low-rank. The low rankness
of the representation matrix guarantees that the data after regression lie in a low-dimension
subspace. In particular, RRR formulates as

min
B
‖YL−XLB‖2

F , s.t. rank(B)≤ r, (1)

where B = [b1,b2, · · · ,bd ]
T ∈ Rd×c is the representation matrix, XL ∈ Rl×d is the design

matrix of the labeled samples, l is the number of the labeled samples and d is the number
of the features; YL ∈ Rl×c is the response matrix where c is the number of the classes, i.e.,
Yi j = 1 if and only if the ith sample belongs to the jth class. Furthermore, RRR has a
closed form solution B̂ = (XT X)−1XTYVrV T

r , where Vr consists of top r eigenvectors of
Y T X(XT X)−1XTY . It is well known that RRR is effective for multivariate models[7], and has
been widely applied in various applications, such as computer vision[6], machine learning[5]
and economy[4].

Although successful in practice, the plain RRR has however certain drawbacks — the
model (1) typically involves all input features of X , because the representation matrix B is
dense, and we can not remove the junk features and discern the important ones, which loses
interpretability in high-dimension applications. We expect to use few variables to interpret
the entire model in high-dimension applications. To this end, we implement feature selection
for RRR, i.e., selecting few features from high-dimension samples which keeps most of
information available. So we use the `2,1 regularization to impose the row sparsity on B.
Namely, we have

min
B
‖YL−XLB‖2

F +α‖B‖2,1, s.t. rank(B)≤ r. (2)

where ‖B‖2,1 = ∑
d
i=1

√
∑

c
j=1 B2

i j, which promotes row sparsity of B, that is to say, some rows
of B will be zero. Note that we select features from XL according to the non-zero rows of the
representation matrix B, i.e., if the i-th row of B is non-zero, we conclude that the ith feature
of XL(i-th column) is significant. We call (2) the selectable factor extraction (SFE) method.

In many applications where we have only a small number of labeled samples, the repre-
sentation matrix B learned from model (2) is often unreliable due to the limited information
the data provides. Fortunately, given that in most situations high dimensional data usually
lie near low-dimension manifold, we propose to use a large number of unlabeled samples
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to capture data structure (a.k.a. semi-supervised learning)[10, 11]. In response to this, we
borrow the manifold regularization (MR) to help learn the manifold structure. Specifically,
MR formulates as follows:

1
2

c

∑
p=1

n

∑
i, j=1

(ŷip− ŷ jp)
2Ai j =

1
2

n

∑
i, j=1

Ai j(ŷyyT
i ŷyyi + ŷyyT

j ŷyy j−2ŷyyT
i ŷyy j)

=tr(Ŷ T (D−A)Ŷ )

=tr(Ŷ T LŶ )

=tr(BT XT
LU LXLU B),

(3)

where n = l + u is the number of labeled and unlabeled samples, XLU is the data matrix
containing both the labeled and unlabeled samples together, Ŷ = [ŷyy1, ŷyy2, . . . , ŷyyn]

T ∈ Rn×c is
the prediction over all data, and ŷip is the prediction of p-th calss of i-th sample, A is the
affinity matrix whose elements indicate the similarity between samples xxxi and xxx j, and D is
a diagonal matrix such that Dii = ∑

n
j=1 Ai j. The matrix L = D−A is also termed Laplacian

matrix. MR makes the prediction look similar provided that the two samples are close in the
feature space. So the geometric structure of the data samples is preserved well. As for the
construction of the affinity matrix A, we use the k nearest neighbors for the elements:

Ai j =


1, if xxxi and xxx j are labeled data, and yi = y j;

exp
(
− ‖xxxi−xxx j‖2

2σ2

)
, if xxxi ∈Nk(xxx j) or xxx j ∈Nk(xxxi);

0, otherwise,

(4)

where xxxi ∈Nk(xxx j) indicates that xxxi belongs to the k nearest neighbors of xxx j.
Combining model (2) with (3), we have the following optimization problem:

min
B
‖YL−XLB‖2

F +α‖B‖2,1 +β tr(BT XT
LU LXLU B), s.t. rank(B)≤ r. (5)

To deal with the row sparsity and the rank constraint on B, we write B= SV T , where S∈Rd×r

and V ∈ Rc×r is an orthogonal matrix. It’s easy to see that rank(B) = rank(SV T ) ≤ r, thus
the rank constraint on B is replaced by matrix factorization. And from the orthogonality of
V we could get that ‖B‖2,1 = ‖SV T‖2,1 = ‖S‖2,1, the row sparse penalty can be applied to S.
Thus model (5) is equivalent to

min
S,V
‖YL−XLSV T‖2

F +α‖S‖2,1 +β tr(V ST XT
LU LXLU SV T ), s.t. V TV = Ir, (6)

where Ir ∈ Rr×r is the identity matrix.The full-rank factorization of B enables us to tackle
the sparsity regularization and the low-rank constraint separately. In other words, S selects
significant features from XL, while the orthogonal matrix V determines the subspace after
dimension reduction. So we can implement feature selection and extraction simultaneously.

Considering the `1 penalty cannot handle the collinearity and may lead to inconsistent
and biased estimation([23]), similar to `2,1, we advocate to use non-convex constraint such
as `2,0 instead of widely-used `2,1 penalty for S in (6)

min
S,V T V=Ir

‖YL−XLSV T‖2
F +β tr(V ST XT

LU LXLU SV T ), s.t. ‖S‖2,0 ≤ qs (7)

where qs is a parameter to control the number of selected features. Using the constraint form
instead of the penalty is intuitive, because we can directly control the number of features

Citation
Citation
{Luo, Tao, Geng, Xu, and Maybank} 2013{}

Citation
Citation
{Luo, Tao, Xu, Xu, Liu, and Wen} 2013{}

Citation
Citation
{Zhao and Yu} 2006



SHI ET AL.: MRSFE FOR SEMI-SUPERVISED IMAGE CLASSIFICATION 5

we need. Another advantage is that the constraint constant qs is in a large range for the
optimal solution. Although the `2,0 penalty is nonconvex and hard to optimization in classical
methods, it is doable in our algorithm 1, and the replacement of `2,0 does not affect the
optimal solution. Once S is obtained from (6) or (7), we can select the significant features
according to top-k index of the row-norms in descending order or nonzero rows of S. We
call both of the models (6) and (7) manifold-regularized semi-supervised selectable factor
extraction method(MRSFE).

3 Optimization Algorithm
We focus on model (6) and use alternating optimization method to solve this problem.
Briefly, our algorithm can be divided into two sub-processes: V-optimization step and S-
optimization step.

3.1 V-optimization
When matrix S is fixed, problem (6) reduces to

min
V
‖YL−XLSV T‖2

F , s.t. V TV = I. (8)

Note that V TV = Ir, thus the optimal solution of (8) is equivalent to

V̂ = arg min
V T V=Ir

‖YL−XLSV T‖2
F

= arg max
V T V=Ir

tr(Y T
L XLSV T )

= arg min
V T V=Ir

tr(V TY T
L XLS)

= arg min
V T V=Ir

‖V −Y T
L XLS‖2

F .

(9)

Namely, we have the following optimization problem:

min
V
‖V −Y T

L XLS‖2
F , s.t. V TV = I. (10)

This is the Procrustes problem [17]. To solve the problem, we can set W = Y T
L XLS and then

perform SVD of W =UwΣwV T
w , the optimal V is given by V̂ =UwVw. Note that W ∈ Rc×r,

where c is the class number and r is the rank which is significantly smaller than the sample
size. So the computational cost of the SVD decomposition of W is low.

3.2 S-optimization
When matrix V is fixed, problem (6) reduces to

min
S

F(S) = min
S
‖YLV −XLS‖2

F +α‖S‖2,1 +β tr(ST XT
LU LXLU S). (11)

We now denote formulation (11) as

min
S

F(S) = f (S)+g(S), (12)
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where f (S) = ‖YLV −XLS‖2
F +β tr(ST XT

LU LXLU S) and g(S) = α‖S‖2,1. Then we can define
the surrogate function at a given point Scur:

G(S,Scur) = f (Scur)+ 〈O f (Scur),S−Scur〉+ L( f )
2
‖S−Scur‖2

F +α‖S‖2,1, (13)

where
O f (S) = 2XT

L (XLS−YLV )+2βXT
LU LXLU S, (14)

and L( f ) is the Lipschitz constant of O f . By simple mathematical transformation, it is easy
to check that minimizing surrogate function (13) is equivalent to solving the optimization
problem

min
S

L( f )
2

∥∥∥∥S−Scur +
O f (Scur)

L( f )

∥∥∥∥2

F
+α‖S‖2,1, (15)

whose solution is given by Ŝ = ~Θ
(

Scur− O f (Scur)
L( f ) ; α

L( f )

)
, where ~Θ(·,λ ) is a row-wise soft

thresholding(group soft thresholding) operator defined as

~Θ(vvv;λ ) = vvvo
Θ(‖vvv‖2;λ ), and vvvo =

{
vvv
‖vvv‖2

, if vvv 6= 000

000, if vvv = 000
(16)

and Θ(·;λ ) is element-wise soft thresholding operator.
The surrogate function G(S,Scur) is a quadratic approximation as well as an upper bound

for the original objective function F(S). The following theorem illustrates that minimizing
the surrogate function (15) obtains the minimizer of problem F(S):

Theorem 3.1. Suppose L f ≥ 2λmax(XT
L XL+βXT

LU LXLU ). Then the sequence {Sk} generated
by problem (15) fulfills that

F(Sk+1)≤ F(Sk), for ∀ k. (17)

Proof. Recall that the surrogate function at current point Sk is defined as

G(S,Sk) = f (Sk)+ 〈O f (Sk),S−Sk〉+
L( f )

2
‖S−Sk‖2

F +α‖S‖2,1. (18)

Obviously,
G(Sk+1,Sk)≤ G(Sk,Sk) = F(Sk), (19)

where Sk+1 is the optimal solution of problem (15). From the Taylor expansion of f at Sk,
we obtain that

f (S) = f (Sk)+ 〈O f (Sk),S−Sk〉+
1
2
(S−Sk)

TO2 f (ξ )(S−Sk)

≤ f (Sk)+ 〈O f (Sk),S−Sk〉+
1
2
(S−Sk)

T (λmax(O
2 f (ξ ))I)(S−Sk)

= f (Sk)+ 〈O f (Sk),S−Sk〉+
1
2

λmax(O
2 f (Sk))‖S−Sk‖2

F

(20)

Where ξ =αSk+(1−α)S,α ∈ [0,1]. Taking L f ≥ λmax(O2 f (Sk)) and adding penalty ‖S‖2,1
to the both sides of (20), from (18) and (20), we have

F(S)≤ G(S,Sk), ∀ S. (21)
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Finally, let S = Sk+1, with (19) and (21), we obtain that

F(Sk+1)≤ F(Sk), ∀ k. (22)

3.3 Summary of Our Algorithm
The complete algorithm of our MRSFE is summarized in Algorithm 1. Notice that our
algorithm only consists of SVD decomposition of small-scale W , together with some thresh-
olding operations which are at low cost. Moreover, we do not have to solve the inner loop
exactly in Algorithm 1, which is time-consuming, rather, we set a small iteration number
for the inner loop is sufficient, e.g. 5. This strategy is also termed as an inexact method,
the convergence of this inexact method is guaranteed in [9]. As for the Lipschitz constant,
we could simply set it as the maximum eigenvalue of the Hessian matrix of f (S). The time
complexity of our algorithm is at most O(cr2)+O(dr), which is significantly faster than
state-of-the-art algorithms. The model (7) can also be solved in the framework of Algorithm
1, the only difference is that S update step is obtained by group hard thresholding not the
group soft thresholding, where group hard thresholding is designed for `2,0 penalty.

Algorithm 1 Manifold Regularization based Selectable Factor Extration

Input: Data matrix XL ∈ Rl×d ,XLU ∈ R(l+u)×d , label matrix YL ∈ Rl×c, desired rank r, pa-
rameters k,α,β and Lipschitz constant L f .

Initialization: S(0),V (0) such that (V (0))TV (0) = I.
Output: (S,V )

Repeat
Compute W = Y T

L XLS =UwΣWV T
w ,V ←UwV T

w .
Repeat

Compute O f (S)(Eq.(14)).
Compute S← ~Θ

(
S− O f (S)

L f
; α

L f

)
.

Until stopping criterion
Until stopping criterion
Select the significant features according to top-k index of the row-norms in descending
order or nonzero rows of S.

4 Experiments
In this section, we evaluate the effectiveness of our MRSFE by applying it to a challenge
web image dataset, NUS-WIDE-OBJECT.

4.1 Dataset and Parameter Settings
The NUS-WIDE-OBJECT is a real world object image dataset consisting of 31 object cat-
egories and 30000 images in total. The dataset has 17927 images for training and 12703
for testing. Six different kinds of features are provided to represent each image sample,
they are 500-D bag of visual words, 128-D wavelet texture, 73-D edge direction histogram,
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64-D color histogram, 144-D color auto-correlogram, and 225-D block-wise color moments
respectively.

In order to compare with other algorithms, we have removed images with multi labels
for both training and test images, thus 14270 training images and 9683 test images are left
in the dataset. In our experiments, we randomly select s={10,20,50} labeled training images
from each category, namely, 310, 620 and 1550 training samples are used respectively. The
remaining images in the training set are used as unlabeled samples. We utilize all 9683
single-label test samples for testing.

In particular, the following methods are compared with our algorithm:

AllFea: the baseline in which all features (1134-D) described before are concatenated
and normalized.

CSFS[2]: a convex semi-supervised multi-label feature selection algorithm which can
deal with large-scale datasets. The parameter µ is in the range of {2−5,2−4, . . . ,25}.

LSDF[22]: a semi-supervised feature selection method which labeled samples are used
to maximize the margin between different categories, while the unlabeled samples are used
to capture the manifold structure of the data. The parameter k which stands for the nearest
neighbors is set in the range {3,5,8,12,15,20}.

MRSFE: The proposed algorithm for feature selection. The parameter k is same with
LSDF, the reduced rank parameter r is in {21,23,25,27,30}. The parameters of manifold
regularization and sparse penalty are in the range of {10−3,5×10−3,10−2, . . . ,1}.

4.2 Experimental Results and Analysis

As described above, we randomly select 10/20/50 labeled samples in each category, and both
linear and non-linear SVM classifiers are applied to compare the performances of different
semi-supervised feature selection methods. All of the experiments are repeated 10 times
to report the average result. Figure 1 and 2 show annotation accuracy at different subset
features r = {113, 226, 340, 453, 567, 680, 793, 907,1020} with linear/non-linear classifiers.
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Figure 1: Prediction accuracy vs. the number of selected features using linear SVM and an
increasing number of labeled samples
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Figure 2: Prediction accuracy vs. the number of selected features using nonlinear SVM and
an increasing number of labeled samples

It can be seen from the figures 1 and 2: (1) classification performance is improved with
an increase of labeled samples. (2) with the increase of the selected features, the annota-
tion accuracy gets better as more and more information is involved. (3) prediction using
the subset of selected features can outperform the baseline which uses all the features in
some dimensions, since feature selection methods select significant variables to predict and
remove some redundant and noisy features. (4) the proposed method MRSFE outperforms
the other two semi-supervised feature selection methods in almost all the cases, especially
when the selected features are not sufficient, which owes to the low rank constraint of the
transformation matrix.

To verify the superiority of the proposed method compared with the other semi-supervised
feature selection approaches in utilizing the unlabeled data samples, we fix the number of
labeled samples as 50 in each category, and vary the number of unlabeled samples to be
2000/4000/8000. The number of subset features are fixed as before and nonlinear SVM is
applied to report the average result. From figure 3 we could see that: (1) the more unlabeled
samples we use, the higher of average prediction accuracy we obtain. This is because the
data distribution is better captured by manifold regularization if more samples are provided.
(2) the proposed method MRSFE outperforms the other two methods in almost all cases,
especially when the number of unlabeled samples is small. This may benefit from the low
rank constraint on the transformation coefficients matrix. The constraint could help reducing
the model complexity and thus the data distribution could be more effectively captured by
manifold regularization.
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Figure 3: Prediction accuracy vs. the number of selected features using nonlinear SVM and
an increasing number of unlabeled samples (#{labeled samples for each category} = 50)

We also give the time-consuming results of two semi-supervised feature selection meth-
ods and ours in Table 4.2. In this experiment, the number of labeled samples in each category
is also set as 50, and the number of unlabeled samples is in {2000,4000,8000}. It can be seen
that our method takes much less time than other methods, the reason is that our algorithm



10 SHI ET AL.: MRSFE FOR SEMI-SUPERVISED IMAGE CLASSIFICATION

only consists of some small scale SVD decompositions and group soft or hard thresholding
operations.

unlabeled samples 2000 4000 6000 8000 10000
OURS(s) 1.499 3.038 5.443 8.350 11.927
CSFS(s) 3.031 6.550 11.343 14.672 20.409
LSDF(s) 2.061 4.624 9.113 13.897 20.366

Table 1: Average time on different unlabeled samples sets.

5 Conclusion
In this paper, we propose a manifold regularized selectable factor extraction method for semi-
supervised feature selection problem. We use both low rank and sparse penalty to explore the
intrinsic property of feature transformation matrix, and the structure of data distribution is
well captured by manifold regularization. Moreover, both the convex and nonconvex penal-
ties are applied to the selected significant features. We integrate all this information into
a unified learning framework and design a fast and easy-to-implement algorithm. Experi-
ments on a challenge web image annotation task demonstrate the superiority of the proposed
method.
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