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Abstract

We show that for the problem of testing if a matrix
A ∈ Fn×n has rank at most d, or requires changing an
ε-fraction of entries to have rank at most d, there is a
non-adaptive query algorithm making Õ(d2/ε) queries.
Our algorithm works for any field F. This improves
upon the previous O(d2/ε2) bound (Krauthgamer
and Sasson, SODA ’03), and bypasses an Ω(d2/ε2)
lower bound of (Li, Wang, and Woodruff, KDD ’14)
which holds if the algorithm is required to read a
submatrix. Our algorithm is the first such algorithm
which does not read a submatrix, and instead reads
a carefully selected non-adaptive pattern of entries
in rows and columns of A. We complement our
algorithm with a matching Ω̃(d2/ε) query complexity
lower bound for non-adaptive testers over any field.
We also give tight bounds of Θ̃(d2) queries in the
sensing model for which query access comes in the
form of 〈Xi,A〉 := tr(X>i A); perhaps surprisingly
these bounds do not depend on ε.

Testing rank is only one of many tasks in deter-
mining if a matrix has low intrinsic dimensionality.
We next develop a novel property testing framework
for testing numerical properties of a real-valued ma-
trix A more generally, which includes the stable rank,
Schatten-p norms, and SVD entropy. Specifically, we
propose a bounded entry model, where A is required
to have entries bounded by 1 in absolute value. Such
a model provides a meaningful framework for test-
ing numerical quantities and avoids trivialities caused
by single entries being arbitrarily large. It is also
well-motivated by recommendation systems. We give
upper and lower bounds for a wide range of problems
in this model, and discuss connections to the sensing
model above. We obtain several results for estimat-
ing the operator norm that may be of independent
interest. For example, we show that if the stable rank
is constant, ‖A‖F = Ω(n), and the singular value
gap σ1(A)/σ2(A) = (1/ε)γ for any constant γ > 0,
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then the operator norm can be estimated up to a
(1± ε)-factor non-adaptively by querying O(1/ε2) en-
tries. This should be contrasted to adaptive methods
such as the power method, or previous non-adaptive
sampling schemes based on matrix Bernstein inequal-
ities which read a 1/ε2 × 1/ε2 submatrix and thus
make Ω(1/ε4) queries. Similar to our non-adaptive
algorithm for testing rank, our scheme instead reads
a carefully selected pattern of entries.

1 Introduction

Data intrinsic dimensionality is a central object of
study in compressed sensing, sketching, numerical
linear algebra, machine learning, and many other do-
mains [27, 20, 37, 36, 10, 41, 40]. In compressed
sensing and sketching, the study of intrinsic dimen-
sionality has led to significant advances in compressing
the data to a size that is far smaller than the ambient
dimension while still preserving useful properties of
the signal [30, 3]. In numerical linear algebra and
machine learning, understanding intrinsic dimension-
ality serves as a necessary condition for the success of
various subspace recovery problems [15], e.g., matrix
completion [6, 38, 13, 16, 33] and robust PCA [5, 39, 8].
The focus of this work is on the intrinsic dimensionality
of matrices, such as the rank, stable rank, Schatten-p
norms, and SVD entropy. The stable rank is defined
to be the squared ratio of the Frobenius norm and
the largest singular value, and the Schatten-p norm
is the `p norm of the singular values (see Eqn. (2.3)
for our definition of SVD entropy). We study these
quantities in the framework of non-adaptive property
testing [31, 9, 11]: given non-adaptive query access to
the unknown matrix A ∈ Fn×n over a field F, our goal
is to determine whether A is of dimension d (where
dimension depends on the specific problem), or is ε-far
from having this property. The latter means that at
least an ε-fraction of entries of A should be modified
in order to have dimension d. Query access typically
comes in the form of reading a single entry of the
matrix, though we will also discuss sensing models
where a query returns the value 〈Xi,A〉 := tr(X>i A)
for a given Xi. Without making assumptions on A,
we would like to choose our sample pattern or set
{Xi} of query matrices so that the query complexity
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is as small as possible.
Despite a large amount of work on testing matrix

rank, many fundamental questions remain open. In
the rank testing problem in the sampling model, one
such question is to design an efficient algorithm that
can distinguish rank-d vs. ε-far from rank-d with
optimal sample complexity. The best-known sampling
upper bound for non-adaptive rank testing for general
d is O(d2/ε2), which is achieved simply by sampling an
O(d/ε)×O(d/ε) submatrix uniformly at random [20].
For arbitrary fields F, only an Ω((1/ε) log(1/ε)) lower
bound for constant d is known [23].

Besides the rank problem above, testing many
numerical properties of real matrices has yet to be
explored. For example, it is unknown what the query
complexity is for the stable rank, which is a natural
relaxation of rank in applications. Other examples for
which previously we had no bounds are the Schatten-p
norms and SVD entropy. We discuss these problems
in a new property testing framework that we call
the bounded entry model. This model has many
realistic applications in the Netflix challenge [19],
where each entry of the matrix corresponds to the
rating from a customer to a movie, ranging from 1
to 5. Understanding the query complexity of testing
numerical properties in the bounded entry model is an
important problem in recommendation systems and
applications of matrix completion, where often entries
are bounded.

1.1 Problem Setup, Related Work, and Our
Results Our work has two parts: (1) we resolve
the query complexity of non-adaptive matrix rank
testing, a well-studied problem in this model, and (2)
we develop a new framework for testing numerical
properties of real matrices, including the stable rank,
the Schatten-p norms and the SVD entropy. Our
results are summarized in Table 1. We use Õ and
Ω̃ notation to hide polylogarithmic factors in the
arguments inside. For the rank testing results, the
hidden polylogarithmic factors depend only on d and
1/ε and do not depend on n; for the other problems,
they may depend on n.

Rank Testing. We first study the rank testing
problem when we can only non-adaptively query
entries. The goal is to design a sampling scheme on the
entries of the unknown matrix A and an algorithm so
that we can distinguish whether A is of rank d, or at
least an ε-fraction of entries of A should be modified
in order to reduce the rank to d. This problem was
first proposed by Krauthgamer and Sasson in [20]
with a sample complexity upper bound of O(d2/ε2).

In this work, we improve this to Õ(d2/ε) for every d

and ε, and complement this with a matching lower
bound, showing that any algorithm with constant
success probability requires at least Ω̃(d2/ε) samples:

Theorems 3.1, 3.3, and 3.4 (Informal). For any
matrix A ∈ Fn×n over any field, there is a randomized
non-adaptive sampling algorithm which reads Õ(d2/ε)
entries and runs in poly(d/ε) time, and with high
probability correctly solves the rank testing problem.
Further, any non-adaptive algorithm with constant
success probability requires Ω̃(d2/ε) samples over R or
any finite field.

Our non-adaptive sample complexity bound of
Õ(d2/ε) matches what is known with adaptive
queries [23], and thus we show the best known upper
bound might as well be non-adaptive.

New Framework for Testing Matrix Proper-
ties. Testing rank is only one of many tasks in de-
termining if a matrix has low intrinsic dimensionality.
In several applications, we require a less fragile mea-
sure of the collinearity of rows and columns, which
is known as the stable rank [34]. We introduce what
we call the bounded entry model as a new framework
for studying such problems through the lens of prop-
erty testing. In this model, we require all entries
of a matrix to be bounded by 1 in absolute value.
Boundedness has many natural applications in rec-
ommendation systems, e.g., the user-item matrix of
preferences for products by customers has bounded
entries in the Netflix challenge [19]. Indeed, there
are many user rating matrices, etc., which naturally
have a small number of discrete values, and therefore
fit into a bounded entry model. The boundedness of
entries also avoids trivialities in which one can modify
a matrix to have a property by setting a single entry
to be arbitrarily large, which, e.g., could make the
stable rank arbitrarily close to 1.

Our model is a generalization of previous work
in which stable rank testing was done in a model for
which all rows had to have bounded norm [23], and
the algorithm is only allowed to change entire rows at
a time. As our non-adaptive rank testing algorithm
will illustrate, one can sometimes do better by only
reading certain carefully selected entries in rows and
columns. Indeed, this is precisely the source of our
improvement over prior work. Thus, the restriction of
having to read an entire row is often unnatural, and
further motivates our bounded entry model. We first
informally state our main theorems on stable rank
testing in this model.

Theorem 4.2 (Informal). There is a randomized
algorithm for the stable rank testing problem to decide
whether a matrix is of stable rank at most d or is ε-far
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Table 1: Query complexity results in this paper for non-adaptive testing of the rank, stable rank, Schatten-p
norms, and SVD entropy. The testing of the stable rank, Schatten p-norm and SVD entropy are considered
in the bounded entry model.

Testing Problems Rank Stable Rank Schatten-p Norm Entropy

Sampling
Õ(d2/ε) (all fields) Õ(d3/ε4)

Ω(n)†Ω̃(d2/ε) (finite fields and R) Ω̃(d2/ε2)† Õ(1/ε4p/(p−2)) (p > 2)

Sensing
O(d2) (all fields) Õ(d2.5/ε2) Ω(n) (p ∈ [1, 2))

Ω̃(d2) (finite fields) Ω̃(d2/ε2)†

† The lower bound involves a reparameterization of the testing problem. See the respective theorem for details.

from stable rank at most d, with failure probability at
most 1/3, and which reads Õ(d3/ε4) entries.

Theorem 4.2 relies on a new (1± τ)-approximate
non-adaptive estimator of the largest singular value
of a matrix, which may be of independent interest.

Theorem 4.1 (Informal). Suppose that A ∈ Rn×n
has stable rank O(d) and ‖A‖2F = Ω(τn2). Then in
the bounded entry model, there is a randomized non-
adaptive sampling algorithm which reads Õ(d2/τ4)
entries and with probability at least 0.9, outputs a
(1± τ)-approximation to the largest singular value of
A.

We remark that when the stable rank is constant
and the singular value gap σ1(A)/σ2(A) = (1/τ)γ

for an arbitrary constant γ > 0, the operator norm
can be estimated up to a (1± τ)-factor by querying
O(1/τ2) entries non-adaptively. We refer the readers
to the full version for the details.

Other measures of intrinsic dimensionality include
matrix norms, such as the Schatten-p norm ‖ · ‖Sp ,
which measures the central tendency of the singular
values. Familiar special cases are p = 1, 2 and ∞,
which have applications in differential privacy [14]
and non-convex optimization [5, 12] for p = 1, and in
numerical linear algebra [29] for p ∈ {2,∞}. Matrix
norms have been studied extensively in the streaming
literature [21, 24, 25, 26], though their study in
property testing models is lacking.

We study non-adaptive algorithms for these
problems in the bounded entry model. We consider
distinguishing whether ‖A‖pSp is at least cnp for p > 2

(at least cn1+1/p for p < 2), or at least an ε-fraction
of entries of A should be modified in order to have
this property, where c is a constant (depending only
on p). We choose the threshold np for p > 2 and
n1+1/p for p < 2 because they are the largest possible
value of ‖A‖pSp for A under the bounded entry model.

When p > 2, ‖A‖Sp is maximized when A is of rank
1, and so this gives us an alternative “measure” of
how close we are to a rank-1 matrix. Testing whether

‖A‖Sp is large in sublinear time allows us to quickly
determine whether A can be well approximated by a
low-rank matrix, which could save us from running
more expensive low-rank approximation algorithms.
In contrast, when p < 2, ‖A‖Sp is maximized when
A has a flat spectrum, and so is a measure of how
well-conditioned A is. A fast tester could save us from
running expensive pre-conditioning algorithms. We
state our main theorems informally below.

Theorem 4.4 (Informal). For constant p > 2, there
is a randomized algorithm for the Schatten-p norm
testing problem with failure probability at most 1/3

which reads Õ(1/ε4p/(p−2)) entries.

Results for Sensing Algorithms. We also consider
a more powerful query oracle known as the sensing
model, where query access comes in the form of
〈Xi,A〉 := tr(X>i A) for some sensing matrices Xi of
our choice. These matrices are chosen non-adaptively.
We show differences in the complexity of the above
problems in this and the above sampling model. For
the testing and the estimation problems above, we
have the following results in the sensing model:

Theorem 3.5 (Informal). Over an arbitrary finite
field, any non-adaptive algorithm with constant success
probability for the rank testing problem in the sensing
model requires Ω̃(d2) queries.

Theorems 4.2 and 4.3 (Informal). There is a
randomized algorithm for the stable rank testing
problem with failure probability at most 1/3 in the

sensing model with Õ(d2.5/ε2) queries. Further, any
algorithm with constant success probability requires
Ω̃(d2/ε2) queries.

Theorem 4.5 (Informal). For p ∈ [1, 2), any
algorithm for the Schatten-p norm testing problem with
failure probability at most 1/3 requires Ω(n) queries.

Theorem 4.1 (Informal). Suppose that A ∈ Rn×n
has stable rank O(d) and ‖A‖2F = Ω(τn2). In the
bounded entry model, there is a randomized sensing
algorithm with sensing complexity Õ(d2/τ2) which
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outputs a (1± τ)-approximation to the largest singular
value with probability at least 0.9. This sensing
complexity is optimal up to polylogarithmic factors.

We also provide an Ω(n) query lower bound
for SVD entropy testing in the sensing model, see
Section 4.3.

1.2 Our Techniques We now discuss the tech-
niques in more detail, starting with the rank testing
problem.

Prior to the work of [23], the only known algo-
rithm for d = 1 was to sample an O(1/ε) × O(1/ε)
submatrix. In contrast, for rank 1 an algorithm in [23]
samples O(log(1/ε)) blocks of varying shapes “within
a random O(1/ε) × O(1/ε) submatrix” and argues
that these shapes are sufficient to expose a rank-2
submatrix. For d = 1 the goal is to augment a 1× 1
matrix to a full-rank 2× 2 matrix. One can show that
with good probability, one of the shapes “catches” an
entry that enlarges the 1×1 matrix to a full-rank 2×2
matrix. For instance, in Figure 1, (r, c) is our 1 × 1
matrix and the leftmost vertical block catches an “aug-

mentation element” (r′, c′) which makes
[

(r,c′) (r,c)

(r′,c′) (r′,c)

]
a full-rank 2× 2 matrix. Hereby, the “augmentation
element” means the entry by adding which we aug-
ment a r × r matrix to a (r + 1) × (r + 1) matrix.
In [23], an argument was claimed for d = 1, though
we note an omission in their analysis. Namely, the
“augmentation entry” (r′, c′) can be the 1× 1 matrix
we begin with (meaning that Ar′,c′ 6= 0, which might
not be true), and since one can show that both (r, c)
and (r′, c′) fall inside the same sampling block with
good probability, the 2 × 2 matrix would be fully
observed and the algorithm would thus be able to de-
termine that it has rank 2. However, it is possible that
Ar′,c′ = 0 and (r′, c′) would not be a starting point
(i.e., a 1 × 1 rank-1 matrix), and in this case, (r′, c)
may not be observed, as illustrated in Figure 1. In
this case the algorithm will not be able to determine
whether the augmented 2 × 2 matrix is of full rank.
For d > 1, nothing was known. One issue is that
the probability of fully observing a d× d submatrix
within these shapes is very small. To overcome this,
we propose what we call rebasing and transformation
to a canonical structure. These arguments allow us to
tolerate unobserved entries and conveniently obtain
an algorithm for every d, completing the analysis of
[23] for d = 1 in the process.

Rebasing Argument + Canonical Structure.
The best previous result for the rank testing problem
uniformly samples an O(d/ε)×O(d/ε) submatrix and
argues that one can find a (d+ 1)× (d+ 1) full-rank
submatrix within it when A is ε-far from rank-d [20].

(r, c)
(r, c′)

(r′, c′) ?
(r′, c)

(r′′, c′′)
(r′′, c′)

?
(r, c′′)

Figure 1: Our sampling scheme (the region enclosed by
the dotted lines modulo permutation of rows and columns)
and our path of augmenting a 1× 1 submatrix. The whole
region is the O(d/ε) × O(d/ε) submatrix sampled from
the n× n matrix.

In contrast, our algorithm follows from subsampling
an O(ε)-fraction of entries in this O(d/ε) × O(d/ε)
submatrix. Let R1 ⊆ · · · ⊆ Rm and C1 ⊇ · · · ⊇ Cm
be the indices of subsampled rows and columns,
respectively, with m = O(log(1/ε)). We choose these

indices uniformly at random such that |Ri| = Õ(d2i)

and |Ci| = Õ(d/(2iε)), and sample the entries in all m
blocks determined by the {Ri, Ci} (see Figure 1, where
our sampled regions are enclosed by the dotted lines).

Since there are Õ(log(1/ε)) blocks and in each block

we sample Õ(d2/ε) entries, the sample complexity of

our algorithm is as small as Õ(d2/ε).
The correctness of our algorithm for d = 1 follows

from what we call a rebasing argument. Starting from
an empty matrix, our goal is to maintain and augment
the matrix to a 2× 2 full-rank matrix when A is ε-far
from rank-d. By a level-set argument, we show an
oracle lemma which states that we can augment any
r × r full-rank matrix to an (r + 1) × (r + 1) full-
rank matrix by an augmentation entry in the sampled
region, as long as r ≤ d and A is ε-far from rank-d.
Therefore, as a first step we successfully find a 1× 1
full-rank matrix, say with index (r, c), in the sampled
region. We then argue that we can either (a) find a
2 × 2 fully-observed full-rank submatrix or a 2 × 2
submatrix which is not fully observed but we know
must be of full rank, or (b) move our maintained 1× 1
full-rank submatrix upwards or leftwards to a new
1×1 full-rank submatrix and repeat checking whether
case (a) happens or not; if not, we implement case (b)
again and repeat the procedure. To see case (a), by
the oracle lemma, if the augmented entry is (r′′, c′)
(see Figure 1), then we fully observe the submatrix
determined by (r′′, c′) and (r, c) and so the algorithm
is correct in this case. On the other hand, if the
augmented entry is (r′, c′), then we fail to see the
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entry at (r′, c). In this case, when Ar,c′ = 0, then
we must have Ar′,c′ 6= 0; otherwise, (r′, c′) is not an
augment of (r, c), which leads to a contradiction with
the oracle lemma. Thus we find a 2× 2 matrix with
structure

(1.1)

[
Ar,c′ Ar,c

Ar′,c′ Ar′,c

]
=

[
0 6= 0
6= 0 ?

]
,

which must be of rank 2 despite an unobserved entry,
and the algorithm therefore is correct in this case.
The remaining case of the analysis above is when
Ar,c′ 6= 0. Instead of trying to augment Ar,c, we
augment Ar,c′ in the next step. Note that the index
(r, c′) is to the left of (r, c). This leads to case (b). In
the worst case, we move the 1× 1 non-zero matrix to
the uppermost left corner,1 e.g., (r′′, c′). Fortunately,
since (r′′, c′) is in the uppermost left corner, we can,
as guaranteed by the oracle lemma, augment it to
a 2 × 2 fully-observed full-rank matrix. Again the
algorithm outputs correctly in this case.

The analysis becomes more challenging for gen-
eral d, since the number of unobserved/unimportant
entries (i.e., those entries marked as “?”) may propa-
gate as we augment an r× r submatrix (r = 1, 2, ..., d)
in each round. To resolve the issue, we maintain a
structure (modulo elementary transformations) simi-
lar to structure (1.1) for the r × r submatrix, that is,

(1.2)


0 0 · · · 0 · · · 0 6= 0
0 0 · · · 0 · · · 6= 0 ?
...

...
...

...
...

0 6= 0 · · · ? · · · ? ?
6= 0 ? · · · ? · · · ? ?

 .

Since the proposed structure has non-zero determi-
nant, the submatrix is always of full rank. Similar to
the case for d = 1, we show that we can either (a)
augment the r × r submatrix to an (r + 1)× (r + 1)
submatrix with the same structure (1.2) (modulo ele-
mentary transformations); or (b) find another r × r
submatrix of structure (1.2) that is closer to the upper-
left corner than the original r × r matrix. Hence the
algorithm is correct for general d. More details are
provided in the proof sketch of Theorem 3.1.

Pivot-Node Assignment. Our rank testing lower
bound under the sampling model over a finite field
F follows from distinguishing two hard instances
UV> vs. W, where U,V ∈ Ft×d and W ∈ Ft×t
have i.i.d. entries that are uniform over F. For

1The upper-left corner refers to the intersection of all
sampled blocks, namely, R1×Cm; it does not mean the top-left

entry.

an observed subset S of entries with |S| = O(d2),
we bound the total variation distance between the
distributions of the observed entries in the two cases
by a small constant. In particular, we show that
the probability Pr[(UV>)|S = x] is large for any
observation x ∈ F|S|, by a pivot-node assignment
argument, as follows. We reformulate our problem as
a bipartite graph assignment problem G = (L∪R,E),
where L corresponds to the rows of U, R the rows of
V and each edge of E one entry in S. We want to
assign each node a vector/affine subspace, meaning
that the corresponding row in U or V will be that
vector or in that affine subspace, such that they agree
with our observation, i.e., (UV>)|S = x. Since U,V
are random matrices, we assign random vectors to
nodes adaptively, one at a time, and try to maintain
consistency with the fact that (UV>)|S = x. Note
that the order of the assignment is important, as a
bad choice for an earlier node may invalidate any
assignment to a later node. To overcome this issue,
we choose nodes of large degrees as pivot nodes and
assign each non-pivot node adaptively in a careful
manner so as to guarantee that the incident pivot
nodes will always have valid assignments (which in
fact form an affine subspace). In the end we assign
the pivot node vectors from their respective affine
subspaces. We employ a counting argument for each
step in this assignment procedure to lower bound the
number of valid assignments, and thus lower bound
the probability Pr[(UV>)|S = x].

The above analysis gives us an Ω(d2) lower bound
for constant ε since W is constant-far from being of
rank d. The desired Ω(d2/ε) lower bound follows from
planting UV> vs. W with t =

√
εn into an n × n

matrix at uniformly random positions, and padding
zeros everywhere else.

New Analytical Framework for Stable Rank,
Schatten-p Norm, and Entropy Testing. We
propose a new analytical framework by reducing the
testing problem to a sequence of estimation problems
without involving poly(n) in the sample complexity.
There is a two-stage estimation in our framework:
(1) a constant-approximation to some statistic X
of interest (e.g., stable rank) which enables us to
distinguish X ≤ d vs. X ≥ 10d for the threshold
parameter d of interest. If X ≥ 10d, we can safely
output “A is far from X ≤ d”; otherwise, the statistic
is at most 10d, and (2) we show that X has a (1± ε)-
factor difference between “X ≤ d” and “far from
X ≤ d”, and so we implement a more accurate (1± ε)-
approximation to distinguish the two cases. The
sample complexity does not depend on n polynomially
because (1) the first estimator is “rough” and gives
only a constant-factor approximation and (2) the
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second estimator operates under the condition that
X ≤ 10d and thus A has a low intrinsic dimension.
We apply the proposed framework to the testing
problems of the stable rank and the Schatten-p norm
by plugging in our estimators in Theorem B.1 and
Theorem B.3. This analytical framework may be
of independent interest to other property testing
problems more broadly.

In a number of these problems, a key difficulty
is arguing about spectral properties of a matrix A
when it is ε-far from having a property, such as having
stable rank at most d. Because of the fact that the
entries must always be bounded by 1 in absolute
value, it becomes non-trivial to argue, for example,
that if A is ε-far from having stable rank at most d,
that its stable rank is even slightly larger than d. A
natural approach is to argue that you could change
an ε-fraction of rows of A to agree with a multiple of
the top left or right singular vector of A, and since
we are still guaranteed to have stable rank at least d
after changing such entries, it means that the operator
norm of A must have been small to begin with (which
says something about the original stable rank of A,
since its Frobenius norm can also be estimated). The
trouble is, if the top singular vector has some entries
that are very large, and others that are small, one
cannot scale the singular vector by a large amount
since then we would violate the boundedness criterion
of our model. We get around this by arguing there
either needs to exist a left or a right singular vector
of large `1-norm (in some cases such vectors may only
be right singular vectors, and in other cases only left
singular vectors). The `1-norm is a natural norm to
study in this context, since it is dual to the `∞-norm,
which we use to capture the boundedness property of
the matrix.

Our lower bounds for the above problems follow
from the corresponding sketching lower bounds for the
estimation problem in [25, 22], together with rigidity-
type results [35] for the hard instances regarding the
respective statistic of interest.

2 Preliminaries

We shall use bold capital letters A, B, ... to represent
matrices, bold lower-case letters u, v, ... to represent
vectors, and lower-case letters a, b, ... to represent
scalars. We adopt the convention of abbreviating the
set {1, 2, ..., n} as [n]. We write f & g (resp. f . g) if
there exists a constant C > 0 such that f ≥ Cg (resp.
f ≤ Cg).

For matrix functions, denote by rank(A) and
srank(A) the rank and the stable rank of A 6= 0,
respectively. It always holds that 1 ≤ srank(A) ≤
rank(A). For matrix norms, let ‖A‖Sp denote

the Schatten-p norm of A, defined as ‖A‖Sp =

(
∑n
i=1 σ

p
i (A))

1/p
. The Frobenius norm ‖A‖F is a

special case of the Schatten-p norm when p = 2,
the operator norm or the spectral norm (the largest
singular value) of ‖A‖ equals to the limit as p→ +∞.
When 0 < p < 1, ‖A‖Sp is not a norm but is still
a well-defined quantity, and it tends to rank(A) as
p → 0+. Let ‖A‖0 denote the number of non-zero
entries in A, and ‖A‖∞ denote the entrywise `∞ norm
of A, i.e., ‖A‖∞ = maxi,j |Ai,j |. The rigidity of a
matrix A over a field F, denoted by RF

A(r), is the
least number of entries of A that must be changed in
order to reduce the rank of A to a value at most r:

RF
A(r) := min{‖C‖0 : rankF(A + C) ≤ r}.

Sometimes we may omit the subscript A in RF
A(r)

when the matrix of interest is clear from the context.
We define the entropy of an unnormalized distri-

bution (p1, . . . , pn) (0 < p1 + · · ·+ pn ≤ 1 with pi ≥ 0
for all i) to be

H(p1, . . . , pn) = −
∑
i

pi log pi.

Let A ∈ Rn×n, we define its (SVD) entropy as

(2.3) H(A)=H

(
σ2

1(A)

n2
, . . . ,

σ2
n(A)

n2

)
=
−
∑
i
σ2
i (A)
n2 log

σ2
i (A)
n2∑

i
σ2
i (A)

n2

with the convention that 0 · ∞ = 0. For matrices
A satisfying ‖A‖∞ ≤ 1, it holds that σi(A) ≤ n for
all i and the entropy above coincides with the usual
Shannon entropy. Note that scaling only changes the
entropy additively; that is, H(βA) = H(A)− log β2.

Let G(m,n) denote the distribution of m×n i.i.d.
standard Gaussian matrix over R and UF(m,n) (or
U(S)) represent m × n i.i.d. uniform matrix over a
finite field F (or a finite set S). We use dTV (L1,L2)
to denote the total variation distance between two
distributions L1 and L2.

We shall also frequently use c, c′, c0, C, C ′, C0,
etc., to represent constants, which are understood
to be absolute constants unless the dependency is
otherwise specified.

3 Non-Adaptive Rank Testing

In this section, we study the problem of testing matrix
rank, which is defined in Section 1.1.

3.1 Positive Results We provide the first non-
adaptive algorithm for the rank testing problem in
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the sampling model with near-optimal Õ(d2/ε) queries
when ε ≤ 1/e and d ≥ 1. Let η ∈ (0, 1/2) be such that
η log(1/η) = ε and let m = dlog(1/η)e. We present
our algorithm in Algorithm 1.

Algorithm 1 Non-adaptive testing of matrix rank in
sampling model

1: Choose R1, . . . ,Rm and C1, . . . , Cm from
{1, 2, ..., n} uniformly at random such that
R1 ⊆ · · · ⊆ Rm, C1 ⊇ · · · ⊇ Cm, and
|Ri| = c[log d + log log(1/η)]d log(1/η)2i, |Ci| =
c[log d+log log(1/η)]d log(1/η)/(2iη), where c > 0
is an absolute constant. To impose containment
for Ri’s, Ri can be formed by appending to
Ri−1 a uniformly random set of |Ri| − |Ri−1|
rows. The containment for Ci’s can be imposed
similarly.

2: Query the entries in Q =
⋃m
i=1(Ri × Ci). Note

that the entries in (Rm × C1) \ Q are unobserved.
The algorithm solves the following minimization
problem by filling in those entries of A(Rm×C1)\Q
given input AQ
(3.4) r := min

A(Rm×C1)\Q
rank(ARm,C1).

3: Output “A is ε-far from having rank d” if r > d;
otherwise, output “A is of rank at most d”.

We note that the number of entries that Algorithm
1 queries is as small as Õ(d2/ε). Furthermore,
subproblem (3.4) in the algorithm can be solved in
poly(d/ε) time. The following theorem guarantees the
correctness of Algorithm 1.

Theorem 3.1. (Sampling upper bound over all
fields). Let ε ≤ 1/e and d ≥ 1. For any matrix
A over any field F, Algorithm 1 correctly solves the
rank testing problem in the sampling model with prob-
ability at least 1− 1/poly(d log(1/ε)). The algorithm

queries Õ(d2/ε) entries and can be implemented to
run in poly(d/ε) time.

Proof. If A is of rank at most d, then the algorithm
will never make mistake, so we assume that A is ε-far
from being rank d in the proof below.

The idea is that, we start with the base case
of an empty matrix, and augment it to a full-rank
r × r matrix in r rounds, where in each round we
increase the dimension of the matrix by exactly one.
Each round may contain several steps in which we
move the intermediate j × j matrix (j ≤ r) towards
the upper-left corner without augmenting it; here,
moving the matrix towards the upper-left corner
means changing AR,C to AR′,C′ , of the same rank,
with |R′| = |R| = |C′| = |C| = j and R′ � R and

C′ � C, where R′ � R means that, suppose that
r′1 < r′2 < · · · < r′j are the (sorted) elements in R′
and r1 < r2 < · · · < rj are the (sorted) elements in
R, it holds that r′i ≤ ri for all 1 ≤ i ≤ j, and C′ � C
has a similar meaning.

The challenge is that those unobserved entries
?’s may propagate as we augment the submatrix in
each round. Our goal is to prove that starting from a
structural (r − 1)× (r − 1) full-rank submatrix which
might have ?’s as its entries, no matter what values
of all ?’s are, with the augment operator we either
(1) make progress for (r − 1)× (r − 1) submatrix, or
(2) obtain an r × r full-rank submatrix with the same
structure. Let us first condition on the event in the
following lemma holds true.

Lemma 3.1. (Lemma 6, [23]) For fixed (R, C), sup-
pose that (R, C) has augment pattern i on A. Let
R′, C′ ⊆ [n] be uniformly random such that |R′| = c2i,
|C′| = c/(2iη). Then the probability that (R′, C′) con-
tains at least one augment of (R, C) on A is at least
1− 2e−c/2.

Regarding the structure, we have the following
claim.

Claim 1. There exists a searching path for r× r full-
rank submatrices with non-decreasing r which has the
following lower triangular form modulo an elementary
transformation

(3.5)



0 0 · · · 0 · · · 0 6= 0
0 0 · · · 0 · · · 6= 0 ?
...

...
...

...
...

0 0 · · · 6= 0 · · · ? ?
...

...
...

...
...

0 6= 0 · · · ? · · · ? ?
6= 0 ? · · · ? · · · ? ?


,

where 6= 0 denotes the known entry which is non-zero,
and ? denotes an entry which can be either observed
or unobserved.

Proof. [Proof of Claim 1] Without loss of generality,
we assume that all ?’s are unobserved, which is
the most challenging case; otherwise, the proof
degenerates to the discussion of central submatrix
in Case (iii) which we shall specify later. We prove
the claim by induction. The base case r = 0 is true.
Suppose the claims holds for r− 1. We now argue the
correctness for r.

Let (p, q) be the augment. Denote the augment
row by [

y1 · · · yb Ap,q yb+2 · · · yr
]
,
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and the augment column by[
x1 · · · xa Ap,q xa+2 · · · xr

]>
.

We now discuss three cases based on the relation
between a+ b and r.

Case (i). a+b = r−1 (Ap,q is on the antidiagonal
of r × r submatrix).

In this case, yb+2, . . . , yr and xa+2, . . . , xr are
all ?’s. We argue that x1 = x2 = · · · = xa = 0
and y1 = y2 = · · · = yb = 0; otherwise, we can
make progress. First consider yi for 1 ≤ i ≤ b.
If some yi 6= 0, we can delete the (r − i)-th row
in the (r − 1) × (r − 1) submatrix and insert the
augment row (without the augment entry Ap,q), which
is above the deleted row. Thus we obtain a new
(r − 1) × (r − 1) submatrix towards the upper-left
corner, and furthermore, the new submatrix exhibits
the structure in (3.5). The same argument applies
for x1, x2, ..., xa. Therefore, if no progress is made,
it must hold that x1 = x2 = ... = xa = 0 and
y1 = y2 = ... = yb = 0. In this case, Ap,q 6= 0;
otherwise, (p, q) is not an augment. Therefore we
obtain an r × r full-rank matrix of the form (3.5).

Case (ii). a + b < r − 1 (Ap,q is above the
antidiagonal of r × r submatrix).

In this case, yr−a+1, . . . , yr and xr−b+1, . . . , xr
are all ?’s. Similarly to Case (i), we shall argue
that x1 = · · · = xa = xa+2 = · · · = xr−b = 0 and
y1 = · · · = yb = yb+2 = · · · = yr−a = 0; otherwise, we
can make progress. To see this, consider first yi for
1 ≤ i ≤ b and then for b + 2 ≤ i ≤ r − a. If yi 6= 0
for some i ≤ b, we can delete the (r− i)-th row in the
(r−1)× (r−1) submatrix and insert the augment row
(without the augment entry Ap,q), which is above the
deleted row, and so we make progress. Now assume
that y1 = · · · = yb = 0. If yi 6= 0 for some i such that
b+ 2 ≤ i ≤ r− a, we can delete the (r− i+ 1)-st row
in the (r− 1)× (r− 1) submatrix of the last step and
insert the augment row (without the augment entry
Ap,q), which is above the deleted row. So we make
progress towards the most upper left corner. The
same argument applies to x1, . . . , xa, xa+2, . . . , xr−b.
Therefore, x1 = · · · = xa = xa+2 = ... = xr−b = 0
and y1 = · · · = yb = yb+2 = · · · = yr−a = 0. In this
case, Ap,q 6= 0; otherwise, (p, q) is not an augment
since all possible choices of ?’s cannot make the r × r
submatrix non-singular. By exchanging the (a+ 1)-st
row and the (r − b)-th row of the r × r submatrix or
exchanging the (b+ 1)-st column and the (r − a)-th
column, we obtain an r × r submatrix of the form
(3.5).

Case (iii). a + b > r − 1 (Ap,q is below the
antidiagonal of r × r submatrix).

In this case, we argue that xi = yj = 0 for all
i ≤ r − b − 1 and j ≤ r − a − 1; otherwise we can
make progress as Cases (i) and (ii) for yj . To see
this, let us discuss from j = 1 to r − a− 1. If yj 6= 0
(j = 1, 2, . . . , r − a− 1), we can delete the (r − j)-th
row in the (r − 1) × (r − 1) submatrix and insert
the augment row (without the augment entry Ap,q),
which is above the deleted row. So we make progress.
The same argument applies to x1, . . . , xr−b−1. So
xi = yj = 0 for all i ≤ r − b− 1 and j ≤ r − a− 1.

Given that there is only one non-zero entry in the
first r − b − 1 rows and the first r − a − 1 columns
of the r × r submatrix (i.e., the Laplace expansion
of the determinant), we only need to focus on a
minor corresponding to a min{a, b}×min{a, b} central
submatrix, which decides whether the determinant
of the r × r submatrix is zero and is fully-observed
because the augment (p, q) is at the lower right
corner of the central submatrix (see the red part in
Eqn. (3.6)).
(3.6)

0 · · · 0 · · · 0 · · · 6= 0
0 · · · 0 · · · 0 · · · ?
...

...
...

...
...

...
...

...
0 · · · 6= 0 · · · known · · · ?
...

...
...

...
0 · · · known · · · augment Ap,q · · · ?
...

...
...

...
0 · · · ? · · · ? · · · ?
6= 0 · · · ? · · · ? · · · ?



.

Since it is fully-observed, the minor must be non-
zero; otherwise, (p, q) cannot be an augment for all
choices of ?’s. Therefore, we can do an elementary
transformation to make the central submatrix a lower
triangular matrix with non-zero antidiagonal entries.
More importantly, such an elementary transformation
also transforms the r× r matrix to a lower triangular
matrix with non-zero antidiagonal entries, because all
the entries to the left and above of the central matrix
are 0’s, and all the entries to the right and below
of the central matrix are ?’s. Hence any elementary
transformation keeps 0’s and ?’s unchanged, and we
obtain therefore an r×r submatrix of the form (3.5).�

Now we are ready to prove Theorem 3.1. Note
that Lemma 3.1 works only for fixed (R, C). To
make the lemma applicable “for all” (R, C) through-
out the augmentation process, we shall take a union
bound by choosing |R| and |C| large enough. Specif-

ically, for each i, we divide Ri =
⋃`
k=1R

(k)
i uni-
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formly at random into ` = d + d log( 1
η )2 even parts

R(1)
i ,R(2)

i , . . . ,R(d)
i , where each |R(k)

i | = c[log(d) +

log log( 1
η )]2i, and divide Ci =

⋃d
k=1 C

(k)
i uniformly at

random into ` even parts C(1)
i , C(2)

i , . . . , C(`)
i , where

each |C(k)
i | = c[log(d) + log log( 1

η )]/(2iη) for every k.

We note that {R(k)
i }k (and {C(k)

i }k) are independent
of each other. It follows that the event in Lemma 3.1
holds with probability at least 1− 1

poly(d log(1/η)) . By

a union bound over all `2 = Θ(d2 log2( 1
η )) possible

choices of {R(k)
i }×{C

(k)
i } and Claim 1, with probabil-

ity at least 1− 1/poly(d log( 1
ε )), Algorithm 1 answers

correctly, when A is ε-far from having rank d. �

3.2 Hardness Results Our positive result in The-
orem 3.1 is supplemented by several negative results
over various fields.

3.3 Sampling Lower Bound over Finite Field
We first provide a hardness result for the rank testing
problem in the sampling model over any finite field,
which shows that the sample complexity in Theorem
3.1 is tight in this case.

According to Yao’s minimax principle, it suffices
to provide a distribution on n×n input matrices A for
which any deterministic testing algorithm fails with
significant probability over the choice of A. Before
proceeding, we first state a hardness result that we
want to reduce from.

Algorithm 2 Decomposing edges E

Input: A bipartite graph G = (L ∪R,E).
Output: Partition of E = E1 ∪ · · · ∪ Et and the set

of pivot nodes {wt}.
1: t← 0.
2: while E 6= ∅ do
3: Find v such that 1 ≤ deg(v) ≤ γd.
4: t→ t+ 1.
5: Et ← edges between v and all its neighbours.
6: wt ← v.
7: E ← E \ Et.
8: return E = E1 ∪ · · · ∪ Et and {wt}.

Lemma 3.2. Let G = (L ∪R,E) be a bipartite graph
such that |L| = |R| = n and |E| < γ2d2 for
d ≤ n/γ. Then Algorithm 2 returns a partition

2In the number of parts d + d log( 1
η

), the first term follows

from the operation of augmenting 1 × 1 submatrix to d × d.

The second term follows from moving the submatrix towards
the upper left corner (from the lower-right corner in the worst

case).

E = E1 ∪E2 ∪ · · · ∪Et, where t ≤ γ2d2 and |Ei| ≤ γd
for all i.

Proof. We first show that Algorithm 2 can be executed
correctly, that is, whenever E 6= ∅ there always exists
v such that 1 ≤ deg(v) ≤ γd. We note that 1 ≤ deg(v)
is obvious because E 6= ∅. If all vertices with non-zero
degree have degree at least γd, the total number of
edges would be at least γdn ≥ d2γ2, contradicting
our assumption on the size of E. When the algorithm
terminates, it is clear that each Ei generates at most
γd edges and the Ei’s are disjoint and so t ≤ γ2d2.�

Lemma 3.3. Suppose that there are t groups of (fixed)

vectors {v(k)
1 , ...,v

(k)
sk }k∈[t] ⊂ Fd such that the vectors

in each group are linearly independent (denoted by
⊥). Let w1, ...,wr be random vectors in Fd such that
each wi is chosen uniformly at random from some
set Si ⊆ Fd with |Si| ≥ |F|(1−γ)d. Let s = maxk sk.
When s+ r ≤ γd for all k and t ≤ γ2d2, it holds that

Pr
w1,...,wr

{
v

(k)
1 ⊥· · ·⊥v(k)

sk
⊥w1⊥· · ·⊥wr,∀k ∈ [t]

}
≥ 1− γ3d3

|F|(1−2γ)d
.

Proof. For fixed w1, . . . ,wi−1 such that

v
(k)
1 , . . . ,v

(k)
sk ,w1, . . . ,wi−1 are linearly indepen-

dent for all k ∈ [t], the probability that wi ∈ Si is

linearly independent of v
(k)
1 , . . . ,v

(k)
sk ,w1, . . . ,wi−1

for all k ∈ [t] is at least

1− t|F|sk+i−1

|Si|
≥ 1− t|F|sk+i−1

|F|(1−γ)d

= 1− t

|F|(1−γ)d−(sk+i−1)
≥ 1− t

|F|(1−γ)d−(s+i−1)
.

Therefore, for all k ∈ [t] with t ≤ γ2d2, we have

Pr
w1,...,wr

{v(k)
1 ⊥· · ·⊥ v(k)

sk
⊥w1⊥ . . .⊥ wr,∀k}

=

r∏
i=2

Pr
wi

{
v

(k)
1 ⊥· · ·⊥v(k)

sk
⊥w1⊥· · ·⊥wi,∀k

∣∣∣
v

(k)
1 ⊥· · ·⊥v(k)

sk
⊥w1⊥· · ·⊥wi−1,∀k

}
× Pr

w1

{v(k)
1 ⊥ · · · ⊥ v(k)

sk
⊥ w1 for all k}

≥
r∏
i=1

(
1− t

|F|(1−γ)d−(s+i−1)

)

≥
r∏
i=1

(
1− γ2d2

|F|(1−2γ)d

)
(s+i−1≤γd and t≤γ2d2)

≥ 1− rγ2d2

|F|(1−2γ)d
((1− x)t ≥ 1− tx for x ∈ (0, 1))

Copyright c© 2019 by SIAM
Unauthorized reproduction of this article is prohibited



≥ 1− γ3d3

|F|(1−2γ)d
. (r ≤ γd).

�

When |Si| = |F|d−di for di ≤ γd, it follows from
Lemma 3.3 that the number of choices of the event

|{(w1, . . . ,wr)∈
r∏
i=1

Si : v
(k)
1 ⊥· · ·⊥v(k)

sk

⊥w1⊥· · ·⊥wr,∀k}|

= Pr
w1,...,wr

{
v

(k)
1 ⊥· · ·⊥v(k)

sk
⊥w1⊥· · ·⊥wr,∀k

} r∏
i=1

|Si|

≥
(

1− γ3d3

|F|(1−2γ)d

)
·
r∏
i=1

|Si| (Lemma 3.3)

=

(
1− γ3d3

|F|(1−2γ)d

)
|F|rd−

∑r
i=1 di .

(recall that |Si| = |F|d−di)

(3.7)

Based on this result, we have the following lemma.

Lemma 3.4. Let U,V ∼ UF(n, d), where UF(m,n)
represents m× n i.i.d. uniform matrix over a finite
field F. Denote by S any subset of [n]× [n] such that
|S| < γ2d2 for γ ∈ (0, 1/4) and d ≤ n/γ. It holds that
for any x ∈ F|S|,

Pr[(UVT )|S = x]− 1

|F||S|
≥ − γ5d5

|F|(1−2γ)d+|S| .

Proof. Consider a bipartite graph G = (L ∪ R,E)
where |L| = |R| = n and (i, j) ∈ E if and only
if (i, j) ∈ S. We run Algorithm 2 on graph G.
By Lemma 3.2, we obtain a sequence of edge sets
E1 . . . , Et with w1, . . . , wt (called pivot nodes), such
that

1. {Ei, . . . , Et} forms a partition of E;

2. |Ei| ≤ γd for all i.

Since there is a one-by-one correspondence between
the edges and the entries in S, we will not distinguish
edges and entries in the rest of the proof.

We associate each node v of G with an affine
space Hv ⊆ Fd and a random vector xv ∈ Hv as
in Algorithm 3. Basically, Algorithm 3 first assigns
the non-pivot nodes (to determine the affine subspace
Hwi) from the Et down to the E1), and in the end
assigns all unassigned pivot nodes.

In the following argument, we number the for-
loop iterations in Algorithm 3 backwards, i.e., the

for-loop starts with the t-th iteration and goes down
to the first iteration. In the i-th iteration, let ri denote

the number of nodes v
(i)
j that are unassigned at the

runtime of Line 6 and let #Ei denote the number
of good choices (which do not trigger abortion) of
Step 8 over all ri nodes to be assigned. Let #G be the
number of possible choices of Step 13 of Algorithm
3 and s0 = |S0| be the number of assigned pivot
nodes by Step 13. Note that by the construction of
Algorithm 2, the non-pivot nodes of Ei cannot be
the pivot nodes of Ej for j < i. So Algorithm 3, if
terminated successfully, can find an assignment such
that (UV>)|S = x. We now lower bound the success
probability.

Let d
(i)
j = d−dim(H

v
(i)
j

), which is either 0 or |Ek|
for some k > i. For any given realization x, we have

Pr{(UV>)|S = x}

≥ #Et ·#Et−1 · · ·#E1
|F|d(rt+···+r1)

#G
|F|ds0

(by definition of #Ei)

≥
t∏
i=1

1

|F|d
(i)
1 +···+d(i)ri

(
1− γ3d3

|F|(1−2γ)d

)t
#G
|F|ds0

(by (3.7))

≥ 1

|F|
∑t

i=1

∑ri
j=1 d

(i)
j

(
1− γ5d5

|F|(1−2γ)d

)
#G
|F|d×s0

=
1

|F|
∑t

i=1

∑ri
j=1 d

(i)
j

(
1− γ5d5

|F|(1−2γ)d

)
1

|F|
∑

s∈S0
|Es|

≥ 1

|F||E1|+···+|Et|

(
1− γ5d5

|F|(1−2γ)d

)
,

where the second to last inequality follows from
the definition of #G and the last inequality follows

from that |E1| + · · · + |Et| =
∑t
j=1

∑rj
i=1 d

(j)
i +∑

s∈S0 |Es| since every pivot and non-pivot node
must be assigned exactly once by Algorithm 3 upon

successful termination. (Recall that d
(j)
i is either equal

to 0 when v
(i)
j is non-pivotal, or equal to |Ek| when

v
(i)
j = wk.) �

Denote by S ⊂ [n]× [n] a set of indices of an n×n
matrix. For any distribution L over Fn×n, define L(S)
on F|S| as the marginal distribution of L on the entries
of S, namely,

(Xp1,q1 ,Xp2,q2 , ...,Xp|S|,q|S|) ∼ L(S), X ∼ L.

Now we are ready to show a lower bound of robust
testing problem over any finite field.

Theorem 3.2. Suppose that F is a finite field and
γ ∈ (0, 1/4) is an absolute constant. Let U,V ∼
UF(n, d) and W ∼ UF(n, n), where UF(m,n) repre-
sents m×n i.i.d. uniform matrix over a finite field F.
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Algorithm 3 Path for assigning subspace Hv and random vector xv to each node v

Input: Bipartite graph G = (L ∪R,E), partition E = E1 ∪ · · · ∪ Et and pivot nodes {wt} by Algorithm 2,
observed entries x|E .

Output: An affine space Hv of vectors for every node v and a vector xv ∈ Hv for every node v.
1: Hv ← Fd for all v.
2: Set all nodes v unassigned.
3: for i← t down to 1 do
4: Let v

(i)
1 , ..., v

(i)
|Ei| be the non-pivot nodes in Ei (i.e., the edges in Ei are (wi, v

(i)
j )).

5: for j ← 1 to |Ei| do

6: if v
(i)
j is unassigned then

7: W
v
(i)
j
←H

v
(i)
j
\
⋃
k≤i:v(i)j 6=wk

span{x(i)
v1 , . . . ,x

(i)
vj−1 ,previously assigned non-pivot nodes in Ek}.

8: Choose w
v
(i)
j

uniformly at random from H
v
(i)
j

.

9: if w
v
(i)
j
6∈W

v
(i)
j

then

10: abort.
11: Set v

(i)
j to be assigned.

12: Let Hwi
be the solution set to the linear system (w.r.t. xwi

): x>wi
[x

(i)
v1 , · · · ,x

(i)
v|Ei|

] = (x|Ei
)>.

13: Choose xws
uniformly from Hws

of dimension d− |Es| for all s ∈ S0 = {p ∈ [t] | wp is unassigned}.
14: return {Hv} and {xv}.

Consider two distributions L1 and L2 over Fn×n de-
fined by UV> and W, respectively. Let S ⊂ [n]× [n].
When |S| < γ2d2, it holds that

dTV (L1(S),L2(S)) ≤ Cd5|F|−cd,

where C, c > 0 are constants depending on γ, and
dTV (·, ·) represents the total variation distance be-
tween two distributions.

Proof. Let

X =

{
x ∈ F|S|

∣∣∣∣ Pr
[
(UV>)|S = x

]
<

1

|F||S|

}
.

It follows from the definition of total variation distance
that

dTV (L1(S),L2(S)) =
∑
x∈X

[
1

|F||S|
− Pr[(UV>)|S = x]

]
≤
∑
x∈X

γ5d5

|F|(1−2γ)d

1

|F||S|
≤ γ5d5

|F|(1−2γ)d
,

where the last inequality holds since |X | ≤ |F||S|. �

Based on the above theorem, we have the following
lower bound for the rank testing problem over finite
field.

Theorem 3.3. (Sampling lower bound over finite
field). Let d ≤

√
εn. Any non-adaptive algorithm

for the rank testing problem over any finite field F
requires Ω(d2/ε) queries.

Proof. We first show that for constant ε, any non-
adaptive algorithm for the rank testing problem
over finite field F requires Ω(d2) queries. Note that
W ∼ UF(n, n) is ε-far from having rank less than d.
It follows immediately from the preceding theorem
that any algorithm which solves the matrix rank
testing problem over a finite field must read Ω(d2)
entries; otherwise when d is large enough, it will
hold that dTV (L1(S),L2(S)) < 1/4, contradicting
the correctness of the algorithm on distinguishing L1

from L2.
We now prove the case for arbitrary ε. Denote

by A and B the two hard instances in Theorem
3.2. We construct two hard instances C and D by
uniformly at random planting the above-mentioned
hard instances A and B of dimension

√
εn ×

√
εn,

respectively, and padding zeros everywhere else. Note
that D being ε-far from rank d is equivalent to B
being constant-far from rank d. Suppose that we can
request cd2/ε queries with a small absolute constant c
to distinguish the ranks of the hard instances C and
D, then in expectation (and with high probability by
a Markov bound) we can request cd2 queries of the
hard instances A and B to distinguish their ranks,
which leads to a contradiction. �

3.4 Other Lower Bounds for Rank Testing
Our second lower bound studies the hardness of the
rank testing problem in the sampling model over R.

Theorem 3.4. (Sampling lower bound over R). Let
d ≤
√
εn. Any non-adaptive algorithm for the rank
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testing problem in the sampling model over R requires
Ω(d2/ε) queries.

Proof Sketch. Our hard instances are A1 = UV>

vs. A2 = UV> + n−14G, where U,V ∈ Rn×d and
G ∈ Rn×n have i.i.d. standard Gaussian entries. We
observe that A1 is of rank d while A2 is constant-far
from having rank d by the rigidity of the Gaussian
random matrix. On the other hand, the total variation
distance between the induced distributions on the
samples of A1 and A2 is a small constant whenever
we read fewer than O(d2) entries.

The desired Ω(d2/ε) lower bound follows from uni-
formly at random planting the above hard instances
A1 and A2 (replacing n above with

√
εn) into a n×n

matrix, and padding zeros everywhere else. �

It can be more challenging to study the hardness
of testing with a more powerful sensing oracle. We
have the following result for the rank testing problem
in the sensing model over any finite field.

Theorem 3.5. (Sensing lower bound over GF(p)).
Any non-adaptive algorithm for the rank testing
problem in the sensing model over GF(p) requires
Ω(d2/ log p) queries, where GF(p) denotes the Galois
field of prime order p.

Proof Sketch. Denote by Matchingn,k,ε the k-player
simultaneous communication problem of estimating
the size of a maximum matching up to a factor of
(1 ± ε), where the edges of an n-vertex input graph
are partitioned across the k players and the referee.
For our purpose, we reduce from the problem of
Matchingn,k,ε to our problem of rank testing : we
use the adjacency matrices of the hard instances of
Matchingn,k,ε [2] as our hard instances. �

4 Stable Rank, Schatten-p Norm, Entropy:
A New Testing Framework

In this section, we study the problem of non-adaptively
testing numerical properties of real-valued matrices.
They can be studied under a unified framework in this
section.

Roughly, our analytical framework reduces the
testing problem to a sequence of estimation problems
without involving poly(n) in the sample complexity.
Our framework consists of two levels of estimation:
(1) a constant-factor approximation to the statistic X
of interest (e.g., stable rank), and (2) a more accurate
(1± τ)-approximation to X.

4.1 Stable Rank Testing We present our algo-
rithm for stable rank testing in Algorithm 4. The
sample complexity in Algorithm 4 depends on the

bottleneck Step 10, which involves implementing a
(1±ε/d1/4)-approximation to the largest singular value.
For the sampling and sensing models, we establish the
following guarantees for the estimator.

Theorem 4.1. ((1 ± τ)-approximation to operator
norm). Let A ∈ Rn×n be a stable-rank-O(d) ma-
trix such that ‖A‖2F = Ω(τn2) and |Ai,j | ≤ 1 for all
i, j. There exist (a) a non-adaptive sampling algo-
rithm of query complexity O(d2 log2(n)/τ4) and (b) a
non-adaptive sensing algorithm of query complexity
O(max{log2(d log(n)/τ), d2 log(n)}/τ2), which both
output a (1± τ)-approximation to the operator norm
‖A‖ with probability at least 0.9. The sensing com-
plexity in (b) is optimal up to a polylogarithmic factor.

Result (a) is built upon a non-uniform sampling
of matrix rows and columns with probability propor-
tional to their squared `2 norms, and the estimations
of these squared `2 norms (see Algorithm 5). Result
(b) is built upon a cycle estimator, akin to that in [23],

for the Schatten-p norm with p = Õ(1/ε) (see Al-
gorithm 7). We note that the sample complexity in
Theorem 4.1 does not depend on n polynomially.

Now we are ready to prove the correctness of
Algorithm 4.

Theorem 4.2. (Upper bounds). Suppose that d =
Ω((1/ε)1/3). Then Algorithm 4 is a correct algorithm
for the stable rank testing problem with failure proba-
bility at most 1/3 under both (a) the sampling model,
with O(d3/ε4 · log2 n) sampled entries, and (b) the
sensing model, with O(d2.5/ε2 · log n) sensing queries.

Proof Sketch. Denote by srank(A) the stable rank
of A. Our goal is to distinguish H0: “srank(A) ≤ d”
from H1: “A is ε/d-far from srank(A) ≤ d”. When
A ∈ H1, we claim that ‖A‖2F ≥ εn2(1− 1

d ). Otherwise,
replacing any εn

d rows of A each with an all-one
row vector 1> results in a new matrix B such that
‖B‖2 ≥ εn2

d and ‖B‖2F = ‖A‖2F + εn2

d ≤ εn
2(1− 1

d ) +
εn2

d = εn2, leading to srank(B) ≤ d, a contradiction.
Sample q0 entries from A and stack them as vector

y. The resulting estimator X = n2

q20
‖y‖22 is a (1± τ)-

approximation to the squared Frobenius norm with
τ = ε/d1/4. So the algorithm is correct in Step 4.

Case (i). srank(A) > c1d when A is far from
srank(A) ≤ d. We first discuss the case when A is
far from srank(A) ≤ d. Rudelson and Vershynin [32]
show that uniformly sampling q rows of a matrix
gives a subsampled matrix Arow such that ‖Arow‖ .√

q
n‖A‖ +

√
log q‖A‖(n/q) , where ‖A‖(n/q) is the

average of the n/q largest `2 norms of the columns
of A. Applying this result once for row sampling
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Algorithm 4 Algorithm for stable rank testing under sampling/sensing model

1: Uniformly sample q0 = O(
√
d

ε2.5 ) entries A, forming vector y.

2: X ← n2

q0
‖y‖22. . X is an estimator of ‖A‖2F .

3: if X ≤ 9
10 (1− 1

d )εn2 then
4: Output “stable rank ≤ d”.
5: else
6: Uniformly sample a q × q submatrix Ã′ with q = O(d logn

ε ).

7: if ‖Ã′‖ ≤ C0

√
X√
c1d

q
n then . ‖Ã′‖ is a (1st-level) constant-approximation to the operator norm.

8: Output “ε/d-far from being stable rank ≤ d”.
9: else

10: Implement an estimator Z with (1± ε/d1/4)-approximation to the operator norm.
11: if Z2 ≥ X

d then . Z is the refined (2nd-level) estimator to the operator norm.
12: Output “stable rank ≤ d”.
13: else
14: Output “ε/d-far from being stable rank ≤ d”.

and once for column sampling, we obtain a submatrix

A′ such that ‖Ã′‖ . q
n
‖A‖F√
c1d

. On the other hand,

Magdon-Ismail [28] shows that when q = O(d logn
ε ),

uniformly sampling q rows of a stable-rank-O(d)
matrix gives a submatrix Arow such that ‖Arow‖ &√

q
n‖A‖ . So when srank(A) ≤ d, we have with

high probability that ‖Ã′‖ & q
n
‖A‖F√

d
. Therefore there

is a constant-factor gap in stable rank between the
two cases when c1 is large enough, and we can thus
distinguish H0 from H1 by checking ‖Ã′‖ in case (i).

Case (ii). srank(A) ≤ c1d when A is far
from srank(A) ≤ d. We show that when A ∈
H1, srank(A) > (1 + Θ(ε/d1/4))d. This can be
demonstrated by replacing the εn

d least correlated
columns/rows (w.r.t. the leading left/right singular
vector) with the signs of the top left/right singular
vector. This forms a matrix B. By the definition
of “ε/d-far”, we have that srank(B) > d. Expressing
srank(B) in terms of ‖A‖F and ‖A‖, we can show
that srank(A) > (1 + Θ(ε/d1/4))d. Finally, we note
that srank(A) = O(d) for both H0 and H1 in case (ii).
Applying Theorem 4.1 with τ = Θ(ε/d1/4) gives the
desired result. �

The positive results of our framework are comple-
mented by a lower bound to formalize the hardness
of the stable rank testing problem in both sampling
and sensing models.

Theorem 4.3. (Lower bounds). Let ε ∈ (0, 1/3)

and d ≥ 4. For any A ∈ R(d/ε2)×d with all entries
bounded by 1 in absolute value, any linear sketching
algorithm that distinguishes “the stable rank of A
is at most d0” from “A is ε0/d0-far from having
stable rank ≤ d0” with error probability at most

1/6 requires Ω(d2/(ε2 log(d/ε))) sketch length, where
d0 = d/(1 + Θ(ε)) and ε0 = Θ(ε/ log2(d/ε)).

Proof Sketch. Our hard instances are A1 = C
log(d/ε)G

vs. A2 = C
log(d/ε) (G0 +3

√
ε
duv>), where u,v ∈ Rn×1

and G ∈ Rn×n have i.i.d. standard Gaussian entries,
and the scaling term C

log(d/ε) guarantees that the

entries of A1 and A2 are bounded by 1 with high
probability. Observe that A2 is of stable rank d0

while A2 is ε0/d0-far from having stable rank d0

because of its rigidity. On the other hand, the total
variation distance between distributions A1 and A2

is at most 1/10 if the sketch length is shorter than
O(d2/(ε2 log(d/ε))). �

4.2 Schatten-p Norm Testing In this section, we
develop our theory for Schatten-p norm testing based
on our framework. We study the problem in the
bounded entry model, where every entry is bounded
by 1 in absolute value. Our goal is to distinguish “H0:
‖A‖pSp is at least cnp for p > 2 or at least cn1+1/p for
p < 2” from “H1: at least an ε-fraction of entries of
A should be modified in order to have that property”.
We remark that np for p > 2 and n1+1/p for p ∈ [1, 2)
are the largest possible values of ‖A‖pSp conditioned on

‖A‖2F ≤ n2, and are thus the largest possible values
of ‖A‖pSp for A in the bounded entry model.

Our positive result shows that for p > 2, there is
an algorithm in the sampling model which correctly
solves the Schatten-p norm testing problem with high
probability, and the sampling complexity depends on
n only logarithmically.

Theorem 4.4. (Upper bounds for p > 2). Let
p > 2 be a constant. There exist constants c =
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c(p), C = C(p) and ε0 = ε(p) such that for any
ε ∈ [C/n, ε0], there is a randomized algorithm which
reads O

(
ε−4p/(p−2) log2 n

)
entries and with probability

≥ 0.99 solves the Schatten-p norm testing problem.

The proof framework for Theorem 4.4 is similar
to that of Theorem 4.2.

In contrast, for Schatten-p norm testing for p < 2,
we have a negative result. We show that any algorithm
which distinguishes H0 from H1 correctly must have
query complexity linear in n, based on the hard
instance for Schatten-p norm estimation in [22].

Theorem 4.5. (Lower bounds for p ∈ [1, 2)). Let
p ∈ [1, 2) be a constant. There exist constants c = c(p)
and ε0 = ε0(p) such that for any ε ≤ ε0 and A ∈ Rn×n,
any non-adaptive algorithm that correctly tests H0
against H1 with probability at least 0.99 must make
Ω(n) sensing queries.

4.3 Entropy Testing We consider the problem of
testing the matrix entropy H(A), defined in (2.3), for
matrices A in the bounded entry model. Our goal is
to distinguish “H0. : H(A) ≤ log n+ log log log n− c”
and “A is ε

logn log logn -far from having entropy at most
log n+ log log log n− c” for some absolute constant c.
We show a lower bound of Ω(n) queries.

Theorem 4.6. There exist absolute constants c > 0
and ε0 > 0 such that for any ε ≤ ε0 and A ∈ Rn×n,
any non-adaptive algorithm that correctly tests H0
against H1 with probability at least 0.99 must make
Ω(n) queries (i.e., the sketch size is Ω(n)).
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A Other Related Works

Property Testing of Low-Rank Matrices.
Krauthgamer and Sasson [20] studied the problem
of property testing of data dimensionality, building
upon earlier work of Parnas and Ron [31]. They pre-
sented algorithms for testing low dimensionality of a
set of vectors and for testing whether a matrix is of low
rank. Their algorithm achieves O(d2/ε2) non-adaptive
samples by uniformly sampling an O(d/ε) × O(d/ε)
submatrix. Later Li et al. [23] studied the adaptive
testing of matrix rank with a sample complexity upper
bound Õ(d2/ε). Despite a large amount of work on
the positive results of rank testing, non-trivial nega-
tive results in this direction remain absent. Barman
et al. [7] studied a slightly different setting of the rank
problem by testing whether H0: rank(A) ≤ d or H1:
ε-far from rank(A) ≤ 20d/ε2 with a different definition
of “ε-far” in terms of ε-approximate rank [1]. The ε-
approximate rank is defined as the minimum rank over
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matrices that approximate every entry of A to within
an additive ε. In contrast to these works, we provide
the first Õ(d2/ε) sample complexity upper bound for
the more traditional rank testing problem without
any rank gap between H0 and H1. We complement
this positive result with various matching negative
results, showing that any algorithm requires at least
Ω̃(d2/ε) samples in order to succeed with constant
probability over various fields. We also extend the
results to sensing oracles and obtain an O(d2) upper

bound and an Ω̃(d2) matching lower bound.

Property Testing of Stable Rank. To the best
of our knowledge, this is the first work that studies
the stable rank (and the Schatten-p norm) testing
problem in the bounded entry model. Perhaps the
most related work to ours is [23], which studied non-
adaptive testing of stable rank in the bounded row
model. In this model, the rows of A and of the matrix
after change have Euclidean norm at most 1. The
algorithm determines if A has stable rank at most
d, or requires changing an ε/d-fraction of rows to
have stable rank at most d. For this problem, Li et
al. [23] provided a tight Θ(d/ε2) bound. We argue
that the bounded entry model is more challenging
than the bounded row model, as our restrictions are
in fact weaker, which allows for more flexible options
of changing the matrix A.

Estimation of Rank. Estimating the matrix rank is
a learning version of the rank testing problem. Balcan
and Harvey [4] showed that the rank of a subsampled
submatrix is highly concentrated around its expec-
tation. Balcan and Zhang [6] proved that uniformly
sampling an O(µd log d)×O(µd log d) submatrix suf-
fices to preserve the rank of the original matrix A,
under the standard incoherence assumption that the
underlying rank-d matrix A admits a skinny SVD, i.e.,
A = UΣV> satisfies max{‖U>ei‖22, ‖V>ei‖22} ≤

µd
n

for all i. Unfortunately, in the worst case the inco-
herence parameter µ may be as large as poly(n), e.g.,
when A is a sparse matrix. In contrast, we show that
it is possible to detect the rank inexpensively without
polynomial dependence in n in the sample complexity.

Estimation of Schatten-p Norm. The Schatten-
p norm has found many applications in differential
privacy [14] and non-convex optimization [5, 12] for
p = 1, and in numerical linear algebra [29] for
p ∈ {2,∞}. The paper of [21] studied the problem of
sketching Schatten-p norms for various p under the
bilinear sketch and general sketch models. Both the
upper bounds and the lower bounds there depend
polynomially on n. For even p ≥ 4, they also

proposed the first cycle estimator with a (1 ± τ)
approximation in the sketching model. More recently,
Kong and Valiant [18] applied a similar cycle estimator
to approximate the Schatten-p norm of the covariance
matrix with computationally efficient algorithms.
Khetan and Oh [17] estimated the Schatten-p norm in
the sampling model by connecting the cycle estimator
with the p-cyclic pseudograph, and showed that when
p ∈ {3, 4, 5, 6, 7}, the estimator can be calculated
in O(nω) time , where ω < 2.373 is the exponent
of matrix multiplication. For the special case of
p = ∞ (i.e., estimating the largest singular value),
to obtain a (1 ± ε) approximation, one would need

to raise p to as large as Θ̃(1/ε). However, the
sample complexity in prior work blows up if p goes
beyond an absolute constant. Though Magdon-
Ismail [28] showed that non-uniform sampling of
rows of matrix provides a (1 ± ε) approximation
to the largest singular value with small samples,
the sampling probability depends on the unknown
`2 norm of each row. In contrast, we provide the
first non-adaptive algorithm to estimate the largest
singular value up to (1± ε) relative error with sample
complexity poly(d/ε), under modest assumptions that
the input matrix has stable rank d and a large
Frobenius norm. For constant-factor approximation
to the largest singular value ‖ · ‖, Rudelson and
Vershynin [32] showed that uniformly sampling q
rows of a matrix A gives a subsampled matrix Arow

such that ‖Arow‖ .
√

q
n‖A‖+

√
log q‖A‖(n/q), where

‖A‖(n/q) is the average of n/q biggest Euclidean
lengths of the columns of A.

B New Operator Norm Estimators

In this section, we develop new (1± τ)-approximation
estimators to the operator norm in sampling and
sensing models.

B.1 Sampling Algorithms We first discuss the
sampling algorithms which are only allowed to read
the entries of a matrix.

B.1.1 Estimation without Eigengap Before
proceeding, we first cite the following result from
[28].

Lemma B.1. (Theorem 20, [28]) Let A ∈ Rn×n
have rows {At,:}nt=1. Independently sample q rows
At1,:, . . . ,Atq,: with replacement from A according to
the probabilities:

pt ≥ β
‖At,:‖22
‖A‖2F
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for β < 1. Let

A0 =


At1,:√
qpt1
...

Atq,:
√
qptq

 .
Then if q ≥ 4srank(A)

βτ2 log 2n
δ , with probability at least

1− δ, we have

‖A>A−A>0 A0‖ ≤ τ‖A‖2.

Remark 1. Lemma B.1 implies that

(1− τ)‖A‖2 ≤ ‖A0‖2 ≤ (1 + τ)‖A‖2,

because∣∣‖A‖2 − ‖A0‖2
∣∣ =

∣∣‖A>A‖ − ‖A>0 A0‖
∣∣

≤ ‖A>A−A>0 A0‖ ≤ τ‖A‖2.

Theorem B.1. Suppose that A is an n × n matrix
satisfying that ‖A‖2F = Ω(τn2), ‖A‖∞ ≤ 1 and
srank(A) = O(d). Then with probability at least 0.9,
the output of Algorithm 5 satisfies (1 − τ)‖A‖ ≤
‖Ã‖ ≤ (1 + τ)‖A‖. The sample complexity is
O(d2 log2(n)/τ4).

Proof. We note that for any row Ai,: such that
|Ai,j | ≤ 1 and η ≤ ‖Ai,:‖22 ≤ n, uniformly sampling
Θ(nη ) entries of Ai,: suffices to estimate ‖Ai,:‖22 within
a constant multiplicative factor. To see this, we
use Chebyshev’s inequality. Let s = Θ(nη ) be the
number of sampled entries, Zj be the square of
the j-th sampled entry Ai,l(j) of vector Ai,:, and
Z = n

s

∑s
j=1 Zj . So Z is an unbiased estimator:

E[Z] =
n

s
sE[Z1] = n

n∑
j=1

1

n
A2
i,l(j) = ‖Ai,:‖22.

For the variance, we have

Var[Z] =
n2

s2

s∑
j=1

Var[Zj ] ≤
n2

s2

s∑
j=1

E[Z2
j ] =

n2

s
E[Z2

1 ]

=
n2

s

n∑
j=1

1

n
A4
i,j

≤ n

s

n∑
j=1

A2
i,j (since |Ai,j | ≤ 1)

= Θ(η)‖Ai,:‖22
≤ Θ(‖Ai,:‖42). (since η ≤ ‖Ai,:‖22)

Therefore, by Chebyshev’s inequality, we have

Pr
[∣∣Z − ‖Ai,:‖22

∣∣ ≥ 10‖Ai,:‖22
]
≤ 1

3
.

Note that in Step 5 of Algorithm 5, in total
we sample qrow = O(d logn

τ2 ) row indices, obeying
the conditions in Lemma B.1 for a constant β. By

concentration, with high probability r = O(
‖A‖2F
τn )

in Step 5, because in expectation we sample O( 1
τ2 )

entries to estimate r and we scale ‖x‖22 by a τn
factor in Steps 3 and 4, and that ‖A‖2F is as large
as Ω(τn2). The probability that any given row i is
sampled is equal to 1

nτ ×
ri
r = Ω( ri

‖A‖2F
). Suppose

first that ‖Ai,:‖22 ≤ τn. Then we have ri = τn.
Consequently, for such i, the probability of sampling

row i is at least Ω( τn
‖A‖2F

) ≥ Θ(
‖Ai,:‖22
‖A‖2F

), just as in

Lemma B.1. Suppose next that ‖Ai,:‖22 ≥ τn. Then
we have ri = Θ(‖Ai,:‖22). Consequently, for such i,

the probability of sampling row i is at least Ω(
‖Ai,:‖22
‖A‖2F

),

just as in Lemma B.1. Therefore, in the followings we
can set β in Lemma B.1 as an absolute constant.

It follows from Lemma B.1 that with probability
at least 0.9,

(1− τ)‖A‖2 ≤ ‖Arow‖2 ≤ (1 + τ)‖A‖2,

where Arow is the scaled row sampling of A as in
Lemma B.1. Conditioning on this event, by applying
Lemma B.1 again to the column sampling of Arow, we
have with high probability,

(B.1) (1− τ)2‖A‖2 ≤ (1− τ)‖Arow‖2 ≤ ‖Ã‖2

≤ (1 + τ)‖Arow‖2 ≤ (1 + τ)2‖A‖2,

where we have used the fact that srank(Arow) = O(d).
The statement srank(Arow) = O(d) holds because
E ‖Arow‖2F = ‖A‖2F and by the Markov bound,
we have with constant probability that ‖Arow‖2F ≤
c‖A‖2F , so

srank(Arow) =
‖Arow‖2F
‖Arow‖2

≤ c‖A‖2F
(1− τ)‖A‖2

≤ Csrank(A) ≤ C ′d.

�

B.1.2 Estimation with Eigengap Let A ∈
Rn×n. Suppose that p = 2q. We define a cycle
σ to be an ordered pair of a sequence of length q:
λ = ((i1, ..., iq), (j1, ..., jq)) such that ir, jr ∈ [k] for
all r. Now we associate with λ a scalar

(B.2) Aλ =

q∏
`=1

Ai`,j`Ai`+1,j` ,
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Algorithm 5 The sampling algorithm to estimate ‖A‖ up to (1± τ) relative error

. Lines 1-5 estimates the row norms of A and then sample rows non-uniformly.
1: Sample each row of A by Bernoulli distribution with probability O( 1

nτ ). Denote by Srow the sampled set
and q = |Srow|.

2: for i← 1 to q do
3: Uniformly sample O( 1

τ ) entries from ASrow(i),:, forming vector x.
4: ri ← max{τn‖x‖22, τn}.
5: Sample qrow = O(d logn

τ2 ) indices in Srow independently with replacement according to the probability
pi = ri

r , where r =
∑q
j=1 rj . Denote by Irow the sampled row indices.

. Lines 6-10 estimates the column norms of A and then sample columns non-uniformly.
6: Sample each row with probability O( 1

nτ ). Repeat the procedure n times with replacement. Denote the
sampled set by Scol and q′ = |Scol|.

7: for i← 1 to q′ do
8: Uniformly sample O( 1

τ ) entries from AIrow,Scol(i) , forming vector x.

9: r′i ← max{τq‖x‖22, τq}.
10: Sample qcol = O(d logn

τ2 ) indices in Scol independently with replacement according to the probability

p′i =
r′i
r′ , where r′ =

∑q′

j=1 r
′
j . Denote by Icol the sampled row indices.

11: Ã← AIrow,Icol . Rescale the rows of Ã by
{√

q
piqrow

}
and the columns of Ã by

{√
q′

p′iqcol

}
.

12: return index sets Irow, Icol, scaling factors
{√

q
piqrow

}
,
{√

q′

p′iqcol

}
, Ã, and ‖Ã‖.

where for convention we define that iq+1 = i1. Denote
by

(B.3) Z =
1

N

N∑
i=1

Aλi
.

Our goal is to estimate σ1(A) up to (1± τ) relative
error, which is an (1± τ) approximation to ‖A‖.

Algorithm 6 Estimate ‖A‖ up to (1 ± τ) relative
error
Input: Cycle length q, matrix size n.
Output: (1± τ)-approximation estimator.

1: for i = 1 to N do
2: Uniformly sample a cycle λi of length q.
3: Compute Aλi by Eqn. (B.2).

4: Compute Z as defined in (B.3).
5: return Z1/(2q)n.

Theorem B.2. Let τ ∈ (0, 1
2 ) be the accuracy param-

eter and suppose that the input matrix A ∈ Rn×n
satisfies
• ‖A‖∞ ≤ 1;

• ‖A‖F ≥ cn for some absolute constant c > 0;

• σ2(A)/σ1(A) ≤ τγ for some absolute constant
γ > 0;

• srank(A) = O(1).

Let N = C1

τ2 exp( c1γ ) and q = C2

γ for some large
constants C1, C2 > 0 and some small constant c1 >
0. Then with probability at least 0.9, the estimator
returned by Algorithm 6 satisfies (1 − τ)‖A‖ ≤
Z1/(2q)n ≤ (1 + τ)‖A‖. The sample complexity is

Θ(Nq) = Θ
(

1
γτ2 exp( c1γ )

)
.

Proof. [Proof of Theorem B.2] We show that the
cycle estimator approximates ‖A‖ within a (1 ± τ)
relative error. Let λ = ({is}, {js}) which is chosen
uniformly with replacement. Recall that Aλ =∏q
`=1 Ai`,j`Ai`+1,j` . Hence

EAλ = E

[
q∏
`=1

Ai`,j`Ai`+1,j`

]

=
1

n2q

 ∑
i1,i2,...,iq,j1,j2,...,jq

q∏
`=1

Ai`,j`Ai`+1,j`

 .
Note that (see, e.g., [24])

∑
i1,i2,...,iq,j1,j2,...,jq

q∏
`=1

Ai`,j`Ai`+1,j` = ‖A‖2q2q,

and by the assumption on the singular values and
the stable rank, σ1(A)2q ≤ ‖A‖2q2q ≤ (1 + τ)σ1(A)2q,

provided that q ≥ 1
2γ ( log srank(A)

log(1/τ) + 1), and thus it

suffices to take q = Θ( 1
γ ).
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Therefore, noting that E[Z] = E[Aλ],

(B.4) E[Z] ≤ 1 + τ

n2q
σ1(A)2q ≤ 1 + τ,

(B.5) E[Z] ≥ 1

n2q
σ1(A)2q ≥ 1

n2q

(
‖A‖2F

srank(A)

)q
≥
(

c2

srank(A)

)q
= exp

(
c1
γ

)
.

We now bound the variance of Aλ. Observe
that Var[Aλ] ≤ E[A2

λ] ≤ 1, because |Ai,j | ≤ 1
for all i, j ∈ [n]. Thus by repeating the proce-

dure N = C1

τ2 exp
(

2c1
γ

)
times, we have Var[Z] =

1
NVar[Aλ] ≤ 1

10τ
2 exp

(
2c1
γ

)
, by choosing C1 suffi-

ciently large. It follows from the Chebyshev inequality

that Pr [|E[Z]− Z| > τE[Z]] ≤ Var[Z]
τ2E[Z]2 ≤

1
10 , where

we have used the lower bound (B.5). This together
with (B.4) and (B.5) implies that

Pr

[
(1−τ)

1

n2q
σ1(A)2q≤Z≤(1+τ)2 1

n2q
σ1(A)2q

]
>

9

10
.

So

Pr
[
(1− τ)σ1(A) ≤ Z1/(2q)n ≤ (1 + τ)σ1(A)

]
>

9

10
.

�

B.2 Sensing Algorithms

Theorem B.3. Suppose that A is an n × n matrix
such that ‖A‖2F = Ω(τn2), ‖A‖∞ ≤ 1 and srank(A) =
O(d). Then Algorithm 7 outputs a value Z, which
satisfies (1 − τ)‖A‖ ≤ Z ≤ (1 + τ)‖A‖ with
probability at least 0.9. The sketching complexity is
O(max{log2(d log(n)/τ), d2 log(n)}/τ2).

Before proving Theorem B.3, we introduce a
new estimator of operator norm under the sensing
model, which approximates the operator norm by the
Schatten-p norm of large p.

Specifically, let A be an n× n matrix. We define
a cycle σ to be an ordered pair of a sequence of length
q with p = 2q: λ = ((i1, . . . , iq), (j1, . . . , jq)) such that
ir, jr ∈ [k] for all r, ir 6= is and jr 6= js for r 6= s.
Now we associate with λ a scalar

(B.6) Aλ =

q∏
`=1

Ai`,j`Ai`+1,j` ,

where for convention we define that iq+1 = i1. Denote
by C the set of cycles. We define

(B.7) Y =
1

|C|
∑
λ∈C

(GAH>)λ

Algorithm 7 The sketching/sensing algorithm to
estimate ‖A‖ up to (1± τ) relative error

1: Obtain indices Irow, Icol and scaling factors{√
q

piqrow

}
,
{√

q′

p′iqcol

}
by Algorithm 5 with

|Irow| = |Icol| = O(d log(n)/τ2).

2: Let G and H be Θ(max{log(d log(n)/τ),d}
τ ) ×

O(d logn
τ2 ) matrices with i.i.d. N (0, 1) entries.

Scale the columns of G by
{√

q
piqrow

}
and the

columns of H by
{√

q′

p′iqcol

}
.

3: Maintain GAIrow,IcolH
>.

4: Compute Y defined in Eqn. (B.7).

5: return Y τ/(2 log(d log(n)/τ2)).

for even p, where G ∼ G(k, n), H ∼ G(k, n), and k ≥
q. This estimator, akin to that in [21], approximates
the Schatten-p and thus the operator norm, as we
shall show below.

Lemma B.2. Suppose that A is a n × n matrix of
stable rank at most d. Let k = Θ(max{

√
nd, log n})

and Y be the estimator defined in (B.7). With
probability at least 0.9, it holds that (1 − τ)‖A‖ ≤
Y τ/(2 log(n)) ≤ (1 + τ)‖A‖. The sketching complexity
is O(k2) = O(max{nd, log2 n}).

Proof. [Proof of Lemma B.2] We first show that
‖A‖Sp and ‖A‖ differ at most a (1 ± τ) factor for
p = 2dlog(n)/τe. To see this,

1 ≤
‖A‖pSp
‖A‖p

=
σp1(A) + σp2(A) + · · ·+ σpn(A)

σp1(A)
≤ n,

and therefore 1 ≤ ‖A‖Sp‖A‖ ≤ n
1/p ≤ 1 + 1

2τ.

We now show that the cycle estimator Y 1/p

approximates ‖A‖Sp within a (1± 1
2τ) relative error.

We say that two cycles λ = ({i}, {j}) and τ =
({i′}, {j′}) are (a1, a2)-disjoint if |i∆i′| = 2a1 and
|j∆j′| = 2a2, denoted by |λ∆τ | = (a1, a2). Here ∆
is the symmetric difference. Denote by A = UΣV>

the skinny SVD of A. Let G and H be random
matrices with i.i.d. N (0, 1) entries. Note that GAH>

is identically distributed as GΣH> by rotational
invariance. Let Ã be the k× k matrix GΣH>, where
k ≥ q. It is clear that Ãs,t =

∑n
i=1 σiGs,iHt,i. Define

Y = 1
|C|
∑
λ∈C Ãλ. Let λ = ({is}, {js}). Then

Ãλ =
∑

`1∈[n],...,`q∈[n]
m1∈[n],...,mq∈[n]

q∏
s=1

σ`sσmsGis,`sHjs,`sGis+1,msHjs,ms .
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We note that

EY = E Ãλ =

n∑
i=1

σ2q
i = ‖A‖pSp .

We now bound the variance of Y . Let τ = ({i′s}, {j′s}).
Observe that

EY 2 =
1

|C|2
q∑

a1=0

q∑
a2=0

∑
λ,τ∈C

|λ∆τ |=(a1,a2)

E(ÃλÃτ ),

where

E(ÃλÃτ ) =
∑

`1∈[n],...,`q∈[n]

`′1∈[n],...,`′q∈[n]

m1∈[n],...,mq∈[n]

m′1∈[n],...,m′q∈[n]

(
q∏
i=1

σ`iσmi
σ`′iσm′i

)

× E

(
q∏
s=1

Gis,`sGis+1,ms
Gi′s,`

′
s
Gi′s+1,m

′
s

)

× E

(
q∏
s=1

Hjs,`sHjs,ms
Hj′s,`

′
s
Hj′s,m

′
s

)
.

(B.8)

For any fixed cycles λ = ({is}, {js}) and τ =
({i′s}, {j′s}) such that |λ∆τ | = (a1, a2), we notice that

(B.9) E(ÃλÃτ ) ≤ (2cnd)p‖A‖2pSp ,

for an absolute constant c. To see this, we observe
that for the expectation E(ÃλÃτ ) to be non-zero,
we must have that each appeared G and H in Eqn.
(B.8) repeats an even number of times. Though there
are totally n4q many of configurations for {`s}, {`′s},
{ms} and {m′s}, there are at most n2q3q non-zero
terms among the summation in Eqn. (B.8). This is
because each G and H must have power 2 or 4 by
the construction of the cycle. We know that for each
fixed configuration of blocks there are at most n2q free
variables, and there are at most 16q different kinds
of configurations of blocks because the size of each
block is at most 4. So the number of non-zero terms
is at most (4n)2q. This is true no matter whether
there exists some ir, i

′
s or jr, j

′
s such that ir = i′s or

jr = j′s. We also claim that for each non-zero term in
the summation of Eqn. (B.8),

E

(
q∏
s=1

Gis,`sGis+1,msGi′s,`
′
s
Gi′s+1,m

′
s

)

· E

(
q∏
s=1

Hjs,`sHjs,ms
Hj′s,`

′
s
Hj′s,m

′
s

)
≤ 25q.

This is because EG2 = EH2 = 1 and EG4 =
EH4 = 3. Therefore, for a certain configuration
in which p1, . . . , pw are free variables with multiplicity
r1, . . . , rw ≥ 2, the summation in Eqn. (B.8) is
bounded by

4n2q100q
∑

p1,...,pw

σr1p1 · · ·σ
rw
pw ≤ (2n)p‖A‖r1Sr1 · · · ‖A‖

rw
Srw

≤ (2nd)p‖A‖2pSp ,

where the last inequality follows from the facts that∑w
i=1 ri = 2p and, by the assumption srank(A) ≤ d,

that ‖A‖Sr ≤ ‖A‖F ≤
√
d‖A‖Sp for any r ≥ 2. Thus

we obtain Eqn. (B.9).
We now bound EY 2. Note that |C| = Θ(kp) and

there are(
k

q

)(
q

q−a1

)(
k−(q−a1)

a1

)(
k

q

)(
q

q−a2

)(
k−(q−a2)

a2

)
pairs of (a1, a2)-disjoint cycles, which can be upper
bounded by O(10q). Hence

EY 2 =
1

|C|2
q∑

a1=0

q∑
a2=0

∑
λ,τ∈C

|λ∆τ |=(a1,a2)

E(ÃλÃτ )

≤ C ′ 1

k2p
q210q(2nd)p‖A‖2pSp ≤ ‖A‖

2p
Sp

by the assumption that k = Ω(
√
nd).

It follows that Var[Y ] ≤ EY 2 ≤ ‖A‖2pSp . Then by
the Chebyshev inequality,

Pr

[∣∣∣‖A‖pSp − Y ∣∣∣ > 1

2
‖A‖pSp

]
≤ Var[Y ]

4‖A‖2pSp
≤ 1

10
,

i.e., Pr
[(

1− 1
2τ
)
‖A‖Sp ≤ Y 1/p ≤

(
1+ 1

2τ
)
‖A‖Sp

]
>

9
10 . This together with the fact that
‖A‖ ≤ ‖A‖Sp ≤ (1 + 1

2τ)‖A‖ implies that

Pr
[
(1− τ)‖A‖ ≤ Y 1/p ≤ (1 + τ)‖A‖

]
> 9

10 , as
desired. This completes the proof of Lemma B.2. �

We are now ready to prove Theorem B.3. Recall
that we have shown that by focusing on an O(d logn

τ2 )×
O(d logn

τ2 ) submatrix (without sampling it), we can
achieve guarantee (B.1) when ‖A‖2F = Ω(τn2) and

‖A‖∞ ≤ 1. Letting d ← c1d and n ← O(d logn
τ2 ) in

Lemma B.2 concludes the proof of Theorem B.3.
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