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Abstract

We show a hardness result for the number of training domains
required to achieve a small population error in the test do-
main. Although many domain generalization algorithms have
been developed under various domain-invariance assumptions,
there is significant evidence to indicate that out-of-distribution
(o.o.d.) test accuracy of state-of-the-art o.o.d. algorithms is on
par with empirical risk minimization and random guess on the
domain generalization benchmarks such as DomainBed. In
this work, we analyze its cause and attribute the lost domain
generalization to the lack of training domains. We show that,
in a minimax lower bound fashion, any learning algorithm that
outputs a classifier with an ϵ excess error to the Bayes optimal
classifier requires at least poly(1/ϵ) number of training do-
mains, even though the number of training data sampled from
each training domain is large. Experiments on the DomainBed
benchmark demonstrate that o.o.d. test accuracy is monotoni-
cally increasing as the number of training domains increases.
Our result sheds light on the intrinsic hardness of domain gen-
eralization and suggests benchmarking o.o.d. algorithms by
the datasets with a sufficient number of training domains.

Introduction
Domain generalization (Mahajan, Tople, and Sharma 2021;
Wang et al. 2020; Dou et al. 2019; Yang et al. 2021; Bui et al.
2021; Robey, Pappas, and Hassani 2021; Wald et al. 2021;
Recht et al. 2019; Wang et al. 2023; Wang, Shi, and Zhang
2023)—where the training distribution is different from the
test distribution—has been a central research topic in ma-
chine learning (Blanchard et al. 2021; Chuang, Torralba, and
Jegelka 2020; Zhou et al. 2021; Wu et al. 2023a,b), com-
puter vision (Piratla, Netrapalli, and Sarawagi 2020; Gan,
Yang, and Gong 2016; Huang et al. 2021; Song et al. 2019;
Taori et al. 2020; Wu, Zhang, and Huang 2022; Wu, Huang,
and Zhang 2023), and natural language processing (Wang,
Lapata, and Titov 2021; Fried, Kitaev, and Klein 2019). In
machine learning, the study of domain generalization has
led to significant advances in the development of new algo-
rithms for out-of-distribution (o.o.d.) generalization (Li et al.
2022; Bitterwolf et al. 2022; Thulasidasan et al. 2021). In
computer vision and natural language processing, new bench-
marks such as DomainBed (Gulrajani and Lopez-Paz 2021)
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and WILDs (Koh et al. 2021; Sagawa et al. 2021) are built
toward closing the gap between the developed methodology
and real-world deployment. In both cases, the problem can
be stated as given a set of training domains {Pe}Ee=1 which
are drawn from a domain distribution P and given a set of
training data {(xe

i , y
e
i )}ni=1 which are drawn from Pe, the

goal is to develop an algorithm based on the training data
and their domain labels e so that the algorithm in expectation
performs well on the unseen test domains drawn from P .

Despite progress on domain generalization, many funda-
mental questions remain unresolved. For example, in search
of lost domain generalization, Gulrajani and Lopez-Paz
(2021) conducted extensive experiments using DomainBed
and found that, when carefully implemented, empirical risk
minimization (ERM) shows state-of-the-art performance
across all datasets despite many algorithms being carefully
designed for the out-of-distribution tasks. For example, when
the algorithm is trained on the “+90%” (the degree of corre-
lation between color and label) and “+80%” domains of the
ColoredMNIST dataset (Arjovsky et al. 2019) and is tested
on the “−90%” domain, the best-known o.o.d. algorithm
achieves test accuracy no better than a random-guess algo-
rithm under all three model selection methods in Gulrajani
and Lopez-Paz (2021). So, it is natural to ask what causes the
lost domain generalization and how to find it?

In this paper, we attribute the lost domain generalization
to the lack of training domains. Our study is motivated by an
observation that off-the-shelf benchmarks often suffer from
few training domains. For example, the number of training
domains in DomainBed (Gulrajani and Lopez-Paz 2021) for
all its 7 datasets is at most 6; in WILDs (Koh et al. 2021;
Sagawa et al. 2021), 7 out of 10 datasets have the number
of training domains fewer than 350 (see Table 1). Therefore,
one may conjecture that increasing the number of training
domains might improve the empirical performance of existing
domain generalization algorithms significantly. In this paper,
we show that, information-theoretically, one requires at least
poly(1/ϵ2) number of training domains in order to achieve
a small excess error ϵ for any learning algorithm. This is in
sharp contrast to many existing benchmarks in which the
number of training domains is limited.



WILDs iWildCam Camelyon17 RxRx1 OGB-MolPCBA BlobalWheat CicilComments FMoW PovertyMap Amazon Py150

# domains 323 5 51 120,084 47 16 80 46 2,586 8,421

DomainBed CMNIST RMNIST VLCS PACS Office-Home Terra Incognita DomainNet

# domains 3 6 4 4 4 4 6

Table 1: The number of domains in the o.o.d. benchmarks WILDs (Koh et al. 2021; Sagawa et al. 2021) and DomainBed (Gulrajani
and Lopez-Paz 2021). It shows that most of the datasets in the two benchmarks suffer from the small number of domains, which
might not be sufficient to learn a classifier with good domain generalization.

Related Work
Out-of-distribution (o.o.d) generalization (Hendrycks and
Dietterich 2019; Shankar et al. 2018; Zhou et al. 2021) has re-
ceived extensive attention in recent years. One representative
way is the causal modeling inspired by Invariant Risk Min-
imization (IRM) (Arjovsky et al. 2019). IRM tries to learn
an invariant feature representation to capture the underlying
causal mechanism of interest across domains such that the
classifier based on this invariant feature representation shall
be invariant across all domains. Given multiple training do-
mains, IRM learns invariant representations approximately by
adding a regularization. The results of IRM indicate that fail-
ing to generalize to o.o.d. data comes from failing to capture
the causal factors of variation in different domains. Following
IRM, Risk Extrapolation (REx) (Krueger et al. 2021) pro-
poses to reduce differences in risk across training domains.
Derivative Invariant Risk Minimization (DIRM) (Bellot and
van der Schaar 2020) maintains the invariance of the gradient
of training risks across different domains.

Another line of research uses different metrics to tackle the
o.o.d problem. For example, Maximum Mean Discrepancy-
Adversarial AutoEncoder (Li et al. 2018b) employs Genera-
tive Adversarial Networks and the maximum mean discrep-
ancy metric (Gretton et al. 2012) to align different feature
distributions. Mixture of Multiple Latent Domains (Matsuura
and Harada 2020) learns domain-invariant features by cluster-
ing techniques without knowing which domain the training
samples belong to. Recently, Meta-Learning Domain gener-
alization (Li et al. 2020) employs a lifelong learning method
to tackle the sequential problem of new incoming domains.

To explore the o.o.d problem, one line of research focuses
on the case where only one training domain is accessible.
Causal Semantic Generative model (CSG) (Liu et al. 2021)
uses two sets of correlated latent variables, i.e., the semantic
and non-semantic features, to model the relation between the
data and the corresponding labels. In their assumption, the
semantic features relate the data to their corresponding labels
while the non-semantic features only affect the generation of
data. CSG decouples the semantic and non-semantic features
to improve o.o.d generalization given only one training do-
main. Another related line of research (Ben-David et al. 2010;
Zhao et al. 2019; Wang et al. 2022) might be analyzing the
domain complexity for unsupervised domain adaption, which
is a sub-problem of domain generalization. They mainly fo-
cus on analyzing the performance of learning algorithms on
another distribution (domain), while our analysis targets a
broader scenario, i.e., the performance of learning algorithms
on all distributions (domains).

However, recent work (Gulrajani and Lopez-Paz 2021)

claims that all existing algorithms cannot capture the true
invariant feature and observes that their performance is on
par with ERM and random guess on several datasets. In this
paper, to explain why it occurs, we theoretically analyze the
o.o.d. generalization problem and provide a minimax lower
bound for the number of training domains required to achieve
a small population error in the test domain. Massart and
Nédélec (2006) have proved that it requires at least Ω(1/ϵ2)
samples from a distribution to estimate the success probabil-
ity of a Bernoulli variable with an ϵ error. Motivated by this,
we observe a similar phenomenon and prove that the learning
algorithms need at least Ω(1/ϵ2) number of training domains.
Recently, a concurrent work (Li, Gouk, and Hospedales 2022)
presents an upper bound on the expected excess error of the
ERM algorithm using the Rademacher complexity. Similarly,
another work (Blanchard et al. 2021) gives an upper bound
on the excess error of general learning algorithms with high
probability and shows that the sample size of each domain
is inversely proportional to the excess error. On the other
side, while Li, Gouk, and Hospedales (2022); Blanchard et al.
(2021) showed positive results on the domain generalization,
we present a negative result (i.e., a lower bound regarding the
number of training domains) on the expected excess error for
all possible learning algorithms.

Minimax Lower Bound for Domain
Generalization

In this section, we provide a minimax lower bound for do-
main generalization. Our results lower bound the number of
training domains required for good o.o.d. generalization.

Notation. We will use bold capital letters such as X to
represent a random vector, bold lower-case letters such as x
to represent the implementation of a random vector, capital
letters such as Y to represent a random variable, and lower-
case letters such as y to represent the implementation of a
random variable. Specifically, we denote by X the random
vector of instance, denote by x the implementation of ran-
dom vector X, denote by Y the random variable of the label,
and denote by y ∈ {0, 1} the implementation of a random
variable Y . We will use L(f) to represent the expected 0-1
loss of classifier f w.r.t. the mixture of data distributions of
all domains, i.e., L(f) = Pr(X,Y )(f(X) ̸= Y ). Throughout
the paper, we will frequently use P and D to represent a
set of distributions, and the distribution of distribution, i.e.,
the domain distribution, will use P e to represent the data
distribution of the e-th domain, and will use (xe, ye) to rep-
resent the data sampled from the e-th domain Pe. We call
e ∈ {1, 2, 3, ...} the domain labels, which are accessible to
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Figure 1: Illustration of our o.o.d. generalization problem. We show how data is sampled and how learning algorithms learn
the knowledge. When generating training data, E domains from the data distribution D are first sampled, and after that for
each domain, n training data are sampled to form the training dataset which will be fed into a learning algorithm. The learning
algorithm recovers the underlying label α by the estimation of the underlying label ae, e ∈ [E] under the observation of training
data.

the learner.
Problem setups. In our hard instance, we view the e-th do-

main as a data distribution Pe given by Pr(X, Y |Ae = ae),
where e is the domain label and Ae’s represent i.i.d. Bernoulli
random vectors that parameterize the data distribution of the
e-th domain. In this paper, we will regard Pr(X, Y |Ae1) and
Pr(X, Y |Ae2) as two different domains as long as e1 ̸= e2.
We assume that each domain is sampled from a domain dis-
tribution D (i.e., the distribution of Ae), and the data in the
e-th domain are sampled from a data distribution De given
by Pr(X, Y |Ae = ae). All the domains from D share the
same supporting space containing m data points. Let f∗ be
the Bayes optimal classifier of the mixture of data distri-
butions across all domains, and assume f∗ ∈ F , where F
can be any function class such as deep neural networks. For
any h ∈ [0, 1], we define a class of domain distributions by
P(h,F) := {P : |2Pr(Ae = 1) − 1| ≥ h}. Note that the
margin parameter h determines the randomness of the do-
main: large h (e.g., h = 1) means Pr(Ae = 1) is bounded
away from 1/2. We will investigate the following minimax
risk:

RE,n(h,F) :=

inf
f̃E,n∈F

sup
P

EPe∼PE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
,

(1)

where E is the number of training domains, n is the number
of training samples from each domain, and the two expecta-
tions are taken over the sampling of training data and domains
to learn f̃E,n. The minimax problem in Equation (1) char-
acterizes the access risk of the best learning algorithm with
access to E training domains and n data samples under the
worst-case domain distribution.

Let V be the VC dimension of F , which is defined as the
maximum number of points that can be arranged so that F
shatters them. Our main results are as follows:

Theorem 1. For n = ∞, V ≥ m, any h ∈ [0, 1], and any

E ≥ V , we have the lower bound

RE,∞(h,F) ≥ cmin

(
m− 1

Eh
,

√
m− 1

E

)
, (2)

where c > 0 is an absolute constant.
We defer the proofs of Theorem 1 to the Appendix . The

theorem provides a lower bound on the number of training
domains required to achieve a small population error, even
though one can sample as many data points as possible from
each domain. The case of n = ∞ captures the “easiest” case
for the learner, where the learning algorithm can access full
knowledge about each training domain. The case of finite n is
harder than n = ∞, as the learner has only partial knowledge
about each training domain and RE,n(h,F) ≥ RE,∞(h,F).
Therefore, Equation (2) provides a universal lower bound
for general n ≥ 1. Theorem 1 implies that, information-
theoretically, one requires at least poly(V/ϵ) number of train-
ing domains in order to achieve a small excess error ϵ for
any learning algorithm of F . This is in sharp contrast to
many existing benchmarks on which the number of training
domains is limited (see Table 1). For example, in the cele-
brated ColoredMNIST dataset (Arjovsky et al. 2019), there
are only 2 training domains. When the algorithm is trained
on the “+90%” and “+80%” domains and is tested on the
“−90%” domain, the best-known o.o.d. algorithm achieves
test accuracy no better than random guess under all three
model selection methods in Gulrajani and Lopez-Paz (2021).
Theorem 1 predicts the failures of future algorithms on these
datasets and attributes the poor performance of existing o.o.d.
algorithms to the lack of training domains.

Differences between our work and Massart and
Nédélec (2006). The major differences include: 1) the con-
struction of the hard instance, i.e., a two-stage data generative
procedure (Section ), and 2) the strategy of splitting the hard
problem into two sub-problems (see Figure 1). These two
aspects are original and separate our contributions from pre-
vious works. For 1), our data generative model first samples



E domains from the domain distribution D by generating
the domain-specific label ae,∀e ∈ [E] and then samples the
training data from each sampled domain. On the other hand,
Massart and Nédélec (2006) considered a totally different
scenario: they investigated the effect of training sample size
on the excess risk in the single-domain problem when the
training and test data are i.i.d. For 2), our proof has to deal
with two expectations given that we have designed a novel
two-stage recovery strategy. Our two-stage problem splits the
hard problem into two simpler problems which estimate a
binary string α and ae,∀e ∈ [E], while Massart and Nédélec
(2006) only considered one binary string estimation problem.
The two binary string estimation problems are entangled,
making our analysis more challenging.

Experiments
Theorem 1 shows that any learning algorithm that outputs a
classifier with an ϵ excess error to the Bayes optimal classi-
fier requires at least poly(1/ϵ) number of training domains,
even though the number of training data sampled from each
training domain is large. In this section, we complement
our theoretical results with an empirical study to evaluate
the impact of the number of training domains. Although the
datasets we use, ColoredMNIST and RotatedMNIST, may
not necessarily adhere to the Bernoulli distribution utilized
in our theoretical results, the empirical results are still useful
for supporting our theoretical results, since our lower bounds
consider the worst-case distributions.

Datasets
We conducted extensive experiments on two datasets from
DomainBed, i.e., ColoredMNIST (Arjovsky et al. 2019) and
RotatedMNIST (Ghifary et al. 2015). We notice that there are
other popular domain generalization datasets, e.g., PACS (Li
et al. 2017), VLCS (Fang, Xu, and Rockmore 2013), Office-
Home (Venkateswara et al. 2017), and Terra Incognita (Beery,
Horn, and Perona 2018). However, these datasets are hard
to generate more training domains synthetically as their data
generation process cannot be parameterized by a single vari-
able (e.g., correlation between color and label in ColoredM-
NIST, or rotation degree in RotatedMNIST). Thus, in our
paper, we do not consider these datasets.

ColoredMNIST (Arjovsky et al. 2019) is a variant of
the MNIST hand written digit classification dataset (LeCun
et al. 1998). It is a synthetic dataset containing three domains
pe ∈ [0.1, 0.2, 0.9] colored either red or blue formalizing
70, 000 examples of dimension (2, 28, 28) and 2 classes. The
label is a noisy function of the digit and color, such that color
bears correlation pE with the label and the digit bears correla-
tion 0.75 with the label. Inspired by the protocol introduced
in DomainBed, we randomly split the training dataset into
10 sub-datasets with equal training samples. Each domain of
ColoredMNIST is generated as follows: 1) Assign a prelimi-
nary binary label y′ to the image based on the digit: y′ = 0
for digits 0− 4 and y′ = 1 for 5− 9; 2) Obtain the final label
y by flipping y′ with probability 0.25; 3) Sample the color
id z by flipping y with probability pe; 4) Color the image
red if z = 1 or green if z = 0. The only parameter of a

training domain is pe. We use the domain with pe = 0.5 as
the test domain and uniformly sample E parameters pe from
(0, 1)/{0.5} to form E training domains.

RotatedMNIST (Ghifary et al. 2015) is another vari-
ant of MNIST with 6 domains containing digits rotated by
{0, 15, 30, 45, 60, 75} degrees. It contains 70, 000 examples
of dimension (1, 28, 28) and 10 classes. Similar to ColoredM-
NIST, we use the domain with 45 degrees rotation as the
test domain and uniformly sample E rotation degrees from
[0, 90)/{45} to form E training domains.

Algorithms and evaluation settings
Algorithms. To validate our theoretical results, we evaluate
the effect of the number of training domains on o.o.d. algo-
rithms, including ERM (Vapnik 1991), IRM (Arjovsky et al.
2019), GroupDRO (Sagawa et al. 2020), Mixup (Xu et al.
2020), MLDG (Li et al. 2018a), CORAL (Sun and Saenko
2016), MMD (Li et al. 2018b), DANN (Ganin et al. 2016),
and C-DANN (Li et al. 2018c). As we can not evaluate the
empirical performance of all the possible algorithms, we ran-
domly use 9 algorithms from DomainBed (Gulrajani and
Lopez-Paz 2021). The details of the algorithms are shown
in the Appendix. For each algorithm, we employ the default
hyper-parameter introduced in Section D.2 of DomainBed,
as our goal is not to show the best performance of algorithms
but to show the correlations to our theoretical results. Follow-
ing DomainBed, we use MUNIT (Table 4 in the Appendix)
for ColoredMNIST and RotatedMNIST.

Model Evaluation. We train models using 9 different
Domain Generalization algorithms, with a varying number
of training domains on ColoredMNIST and RotatedMNIST.
Each trial is done with 5 different random seeds, and we
present the average results. We use the code repository of
DomainBed with PyTorch (Paszke et al. 2019). Following
DomainBed, we employ and adapt three different model
selection methods for training algorithms. The details of the
three model selection methods are shown in the Appendix.

Experimental results on ColoredMNIST and
RotatedMNIST
We first introduce the average results on two different datasets
using 9 algorithms with the number of training domains
varying from 2 to 192 and then present the results with a
limited number of domains. Due to the limitation of space,
we present the most important results in our paper while
leaving the left results in the Appendix.

Evaluating the effect of the number of training domains
Results. We run the experiments on ColoredMNIST and Ro-
tatedMNIST with ERM, IRM, GroupDRO, Mixup, MLDG,
CORAL, MMD, DANN, and C-DANN while the number of
training domains varies from 2 to 192. The average accuracy
w.r.t the number of training domains is shown in Tables 2
and 3 in the main paper, Tables 6 and 8 and Figures 4 and 5 in
the Appendix. It shows that the test accuracy is proportional
to the number of training domains with all the algorithms on
both ColoredMNIST and RotatedMNIST which is consistent
with our theoretical results (Theorem 1).



\# ERM IRM GroupDRO Mixup MLDG CORAL

4 0.6697±0.0120 0.5500±0.0091 0.6710±0.0134 0.6081±0.0144 0.6744±0.0046 0.6586±0.0139

6 0.7135±0.0027 0.5910±0.0072 0.7158±0.0013 0.6703±0.0088 0.7107±0.0035 0.7141±0.0020

8 0.7183±0.0018 0.6278±0.0031 0.7199±0.0016 0.7129±0.0017 0.7195±0.0005 0.7199±0.0013

10 0.7226±0.0005 0.6685±0.0086 0.7220±0.0004 0.7159±0.0006 0.7271±0.0011 0.7228±0.0004

12 0.7280±0.0011 0.6968±0.0034 0.7288±0.0012 0.7223±0.0015 0.7287±0.0008 0.7278±0.0010

14 0.7289±0.0016 0.6709±0.0123 0.7284±0.0016 0.7215±0.0007 0.7316±0.0015 0.7285±0.0015

16 0.7268±0.0011 0.6777±0.0055 0.7272±0.0010 0.7230±0.0014 0.7322±0.0008 0.7258±0.0010

18 0.7304±0.0017 0.7031±0.0045 0.7292±0.0018 0.7255±0.0015 0.7338±0.0009 0.7297±0.0008

20 0.7305±0.0018 0.6957±0.0069 0.7321±0.0011 0.7239±0.0010 0.7336±0.0008 0.7311±0.0013

22 0.7323±0.0011 0.6935±0.0078 0.7298±0.0010 0.7276±0.0012 0.7368±0.0014 0.7296±0.0011

24 0.7330±0.0015 0.6908±0.0086 0.7358±0.0009 0.7269±0.0014 0.7366±0.0012 0.7354±0.0012

26 0.7350±0.0019 0.6995±0.0026 0.7343±0.0016 0.7323±0.0013 0.7366±0.0011 0.7353±0.0015

28 0.7336±0.0016 0.6997±0.0076 0.7347±0.0014 0.7327±0.0011 0.7370±0.0013 0.7332±0.0014

30 0.7331±0.0023 0.7113±0.0027 0.7326±0.0023 0.7297±0.0020 0.7391±0.0012 0.7329±0.0020

48 0.7386±0.0014 0.7219±0.0007 0.7398±0.0015 0.7352±0.0014 0.7410±0.0010 0.7385±0.0014

96 0.7427±0.0014 0.7182±0.0015 0.7424±0.0013 0.7399±0.0012 0.7444±0.0011 0.7424±0.0014

192 0.7437±0.0014 0.7287±0.0012 0.7443±0.0014 0.7424±0.0013 0.7461±0.0010 0.7437±0.0014
Table 2: The experimental results on ColoredMNIST with ERM, IRM, GroupDRO, Mixup, MLDG, and CORAL w.r.t the
number of training domains using the training-domain validation set model selection method.

\# ERM IRM GroupDRO Mixup MLDG CORAL

4 0.6697±0.0120 0.5517±0.0085 0.6710±0.0134 0.6081±0.0144 0.6750±0.0046 0.6586±0.0139

6 0.7138±0.0027 0.5915±0.0073 0.7158±0.0013 0.6703±0.0088 0.7133±0.0038 0.7141±0.0020

8 0.7203±0.0014 0.6278±0.0031 0.7205±0.0017 0.7129±0.0017 0.7213±0.0009 0.7209±0.0010

10 0.7244±0.0012 0.6685±0.0086 0.7236±0.0012 0.7159±0.0006 0.7271±0.0011 0.7244±0.0012

12 0.7284±0.0009 0.6968±0.0034 0.7288±0.0012 0.7224±0.0015 0.7302±0.0010 0.7280±0.0010

14 0.7291±0.0017 0.6709±0.0123 0.7284±0.0016 0.7216±0.0007 0.7317±0.0015 0.7286±0.0015

16 0.7274±0.0011 0.6777±0.0055 0.7274±0.0010 0.7230±0.0013 0.7326±0.0010 0.7265±0.0011

18 0.7314±0.0012 0.7031±0.0045 0.7311±0.0012 0.7260±0.0016 0.7343±0.0008 0.7307±0.0010

20 0.7311±0.0015 0.6958±0.0069 0.7321±0.0011 0.7259±0.0010 0.7341±0.0010 0.7313±0.0012

22 0.7323±0.0011 0.6935±0.0078 0.7305±0.0012 0.7278±0.0011 0.7371±0.0014 0.7306±0.0014

24 0.7357±0.0013 0.6908±0.0086 0.7358±0.0009 0.7281±0.0018 0.7372±0.0012 0.7354±0.0012

26 0.7351±0.0018 0.6995±0.0026 0.7345±0.0015 0.7323±0.0013 0.7368±0.0011 0.7353±0.0015

28 0.7341±0.0015 0.6997±0.0076 0.7351±0.0014 0.7331±0.0011 0.7370±0.0013 0.7338±0.0012

30 0.7333±0.0023 0.7113±0.0027 0.7338±0.0024 0.7300±0.0018 0.7396±0.0014 0.7334±0.0021

48 0.7390±0.0012 0.7219±0.0007 0.7398±0.0015 0.7362±0.0012 0.7415±0.0009 0.7390±0.0014

96 0.7432±0.0014 0.7182±0.0015 0.7425±0.0013 0.7401±0.0011 0.7446±0.0011 0.7427±0.0014

192 0.7439±0.0012 0.7287±0.0012 0.7448±0.0012 0.7426±0.0014 0.7468±0.0010 0.7439±0.0013
Table 3: The experimental results on ColoredMNIST with ERM, IRM, GroupDRO, Mixup, MLDG, and CORAL w.r.t the
number of training domains using the test-domain validation set (oracle) model selection method.

Training-domain validation set analysis. The results are
shown in Tables 2 and 6 and Figure 4. We observe that the
test accuracy of almost all the algorithms on both ColoredM-
NIST and RotatedMNIST is monotonically increasing as the
number of training domains grows while the accuracy of
IRM on both datasets, MMD on ColoredMNIST, DANN,
and CDANN on RotatedMNIST experiences slight drops for
a certain number of training domains. We also find that the

standard deviations of MMD are quite big which might be
due to the hyperparameter setting as we did not try to tune
the hyperparameters to gain the best performance. Besides,
the standard deviations of all the algorithms in the first exper-
iments (the least number of training domains) are quite large.
That is because the number of training domains is limited and
the algorithms are hard to capture general patterns. As the
number of training domains grows, the standard deviations
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Figure 2: The experimental results on ColoredMNIST and RotatedMINST using ERM, IRM, DRO, Mixup, MLDG, CORA,
MLDG, DANN, and C-DANN w.r.t the number of training domains using the leave-one-domain-out cross-validation method.

of almost all the algorithms decrease.

Test-domain validation set (oracle) analysis. Figure 5
and Tables 3 and 8 show the results using the oracle model
selection method. Similar observations can be obtained. The
accuracy of ERM, DANN, CDANN, CORAL, GroupDRO,
and Mixup on ColoredMNIST and RotatedMNIST is pro-
portional to the number of training domains while there are
fluctuations in the lines of MMD and IRM on both datasets,
which might be due to the fact that MMD and IRM are
sensitive to the hyperparameters as we did not tune the hy-
perparameters for the best performance. The line of IRM on
RotatedMNIST drops slightly when the number of training
domains is over 100. That might be caused by the limited
number of training images n in our theorem. In that case, algo-
rithms might not be able to extract general patterns and might
learn biased information, which causes the performance drop.
Besides, as we only conduct 5 trials for each experiment, the
randomness of the experiments might also be another rea-
son why the performance of IRM on RotatedMNIST drops
slightly. Overall, the results using the test-domain valida-
tion set and training-domain validation set model selection

methods are the same, which supports our theoretical results.

Leave-one-domain-out cross-validation analysis. As the
leave-one-domain-out cross-validation requires huge com-
putational resources, we only conduct the experiments with
the number of training domains from 2 to 30 with a step
of 2. The results are shown in Figure 2 in the main paper,
Figure 6 and tables 9 and 10 in the Appendix. Observed
from the two tables and the figure, we conclude that the test
accuracy of most algorithms is proportional to the number
of training domains, while there are some exceptions, e.g.,
IRM on ColoredMNIST and GroupDRO on ColoredMNIST.
For all the results on RotatedMNIST, we observe that the
results perfectly match our theoretical results even without
any hyper-parameter tuning, especially for the experiments
on IRM. But we still can observe exactly the same fact that
without any hyper-parameter tuning, the test accuracy of IRM
on RotatedMNIST grows with the increase of the number of
training domains.
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Figure 3: The experimental results on ColoredMNIST using ERM and IRM, w.r.t the number of training domains with the oracle
model selection method. The left two figures show the results with different architectures, i.e., MUNIT and VGG11 (Simonyan
and Zisserman 2014), while the right two figures present the corresponding results with a different number of n.

Ablation study
Analysis on different architectures. To test how our theoreti-
cal results generalize to other architecture of neural networks,
we further conduct experiments on ColoredMNIST with MU-
NIT (Table 4 in the Appendix) and VGG11 (Simonyan and
Zisserman 2014) with the oracle model selection method. We
use the learning rate of 5e−5 while the remaining other hypa-
rameters are the same. The corresponding results are shown
in Figure 3(a) in the main paper, Figure 7(a) and tables 11
to 14 in the Appendix. A similar conclusion can be summa-
rized that the test accuracy still grows with the increase of the
number of training domains while using a totally different
architecture. But we observe more fluctuation in line with
VGG11 as we only conduct 1 trial for VGG11. There is a
big “valley” around E = 100 in the experiments of ERM
on ColoredMNIST, which is quite unusual as it is too big
compared with other fluctuations.

Analysis on the number n of data from each domain.
To testify the effect of the number of data from each domain,
we conduct experiments on ColoredMNIST using ERM and
IRM with n from 1000 to 20000 and the oracle model se-
lection method, while the original n is set to be 7000. The
experimental results are shown in Figure 3(b) in the main
paper, Figure 7(b), and Tables 15 to 18 in the Appendix.
It shows that when n is relatively small, especially when
n = 1000, the line of the accuracy experiences lots of fluc-
tuations. The randomness may be the biggest reason as we
only conducted one trial for the ablation study, while we still
observe that, the test accuracy is “overall” proportional to the
number of training domains. When n ≥ 2000, the line of test
accuracy is absolutely proportional to the number of training
domains, which fits our theoretical results well. But that also
arises a question, what is the minimum requirement on n for
a similar theoretical result?

Discussion on E < V . Under this assumption, the lower
bound on the excess error might be higher than the current
results (Theorem 1). But we might be able to have a similar
conclusion with our theoretical result. Experimental results
shown in Figure 2 in the main paper and Table 9, Table 10 in
the Appendix indicate that, even when the number of domains
(less than 30) is relatively small compared with the dimension
of the training data, the performance is still proportional to
the number of training domain E in the most of cases, which
supports our theoretical results.

Conclusion
In this paper, we investigated the out-of-distribution problem
and analyzed how many training domains were required to
achieve a small population error in the test domain under rea-
sonable assumptions. Our results theoretically characterized
the phenomenon of the lost domain generalization which had
been found by Gulrajani and Lopez-Paz (2021) in 2021. And
our work showed that in a minimax lower bound fashion, any
learning algorithm with an ϵ excess error to the Bayes optimal
classifier required at least poly(1/ϵ) number of training do-
mains, even when the number of training data sampled from
each training domain was large. There were strong correla-
tions between our work and some empirical results (Arjovsky
et al. 2019; Liu et al. 2021; Krueger et al. 2021) in the o.o.d
area. Besides, though we used Bernoulli (discrete) random
variables to present our theoretical results, our lower bounds
hold true for the broader distribution class as we look at the
worst-case distributions.

To complement our theoretical results, we conduct experi-
ments on two typical o.o.d benchmarks, i.e., ColoredMNIST
and RotatedMNIST, with 9 different o.o.d methods, showing
that for the methods used in this paper, the test accuracy on
the test domain was proportional to the number of training
domains under three different model selection methods. That
matched our theoretical results perfectly and indicated us that
it is possible to increase the number of domains to improve
the domain generalization ability of algorithms practically.

There are several future directions for our work. Our theo-
rem assumed that the number of data samples n from each
domain was ∞. This assumption was used to lower bound
the case of general n because intuitively, the case of n = ∞
should be simpler than the case where n is a finite number.
It is interesting to understand how n affects a tight mini-
max lower bound. Another future direction is to explore the
case where the numbers of samples from each domain are
different. It would be interesting to see which domain domi-
nates the training procedure and how to design o.o.d training
algorithms under this scenario. Moreover, in our case, the
instance support (feature space) was shared across domains.
Another case we should consider is that each domain only
has its own instance support. This domain shift is frequently
observed in real-world scenarios and it would help us under-
stand the o.o.d problem further. Besides, we would also like
to explore the upper bound of o.o.d problems to see whether



our lower bound results match the upper bound. Next, ex-
ploring the relationship between the theoretical analysis of
domain adaptation and domain generalization would be in-
spiring. Last, though multi-class classification can be seen
as a combination of multiple binary classification problems
(e.g., one-vs.-rest classifier), it is interesting to extend our
results to the multi-classification problem.

References
Arjovsky, M.; Bottou, L.; Gulrajani, I.; and Lopez-Paz,
D. 2019. Invariant Risk Minimization. arXiv preprint
arXiv:1907.02893.
Beery, S.; Horn, G. V.; and Perona, P. 2018. Recognition
in Terra Incognita. In European Conference on Computer
Vision, Lecture Notes in Computer Science, 472–489.
Bellot, A.; and van der Schaar, M. 2020. Accounting for
Unobserved Confounding in Domain Generalization. arXiv
preprint arXiv:2007.10653.
Ben-David, S.; Blitzer, J.; Crammer, K.; Kulesza, A.; Pereira,
F.; and Vaughan, J. W. 2010. A theory of learning from
different domains. Mach. Learn., 79(1-2): 151–175.
Bitterwolf, J.; Meinke, A.; Augustin, M.; and Hein, M. 2022.
Revisiting Out-of-Distribution Detection: A Simple Baseline
is Surprisingly Effective.
Blanchard, G.; Deshmukh, A. A.; Dogan, U.; Lee, G.; and
Scott, C. 2021. Domain Generalization by Marginal Transfer
Learning. Journal of Machine Learning Research, 22(2):
1–55.
Bui, M.; Tran, T.; Tran, A.; and Phung, D. Q. 2021. Ex-
ploiting Domain-Specific Features to Enhance Domain Gen-
eralization. In Advances in Neural Information Processing
Systems, 21189–21201.
Chuang, C.; Torralba, A.; and Jegelka, S. 2020. Estimat-
ing Generalization under Distribution Shifts via Domain-
Invariant Representations. In International Conference on
Machine Learning, 1984–1994.
Dou, Q.; de Castro, D. C.; Kamnitsas, K.; and Glocker, B.
2019. Domain Generalization via Model-Agnostic Learning
of Semantic Features. In Advances in Neural Information
Processing Systems, 6447–6458.
Fang, C.; Xu, Y.; and Rockmore, D. N. 2013. Unbiased Met-
ric Learning: On the Utilization of Multiple Datasets and Web
Images for Softening Bias. In IEEE International Conference
on Computer Vision, 1657–1664. Sydney, Australia.
Fried, D.; Kitaev, N.; and Klein, D. 2019. Cross-Domain
Generalization of Neural Constituency Parsers. In Annual
Meeting of the Association for Computational Linguistics,
323–330.
Gan, C.; Yang, T.; and Gong, B. 2016. Learning Attributes
Equals Multi-Source Domain Generalization. In IEEE Con-
ference on Computer Vision and Pattern Recognition, 87–97.
Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; March, M.; and Lempitsky, V. 2016.
Domain-Adversarial Training of Neural Networks. Journal
of Machine Learning Research, 17(59): 1–35.

Ghifary, M.; Kleijn, W. B.; Zhang, M.; and Balduzzi, D. 2015.
Domain Generalization for Object Recognition with Multi-
task Autoencoders. In IEEE International Conference on
Computer Vision, 2551–2559.
Gretton, A.; Borgwardt, K. M.; Rasch, M. J.; Schölkopf, B.;
and Smola, A. 2012. A Kernel Two-Sample Test. Journal of
Machine Learning Research, 13(25): 723–773.
Gulrajani, I.; and Lopez-Paz, D. 2021. In Search of Lost Do-
main Generalization. In International Conference on Learn-
ing Representations.
Hendrycks, D.; and Dietterich, T. 2019. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Pertur-
bations. In International Conference on Learning Represen-
tations.
Huang, J.; Guan, D.; Xiao, A.; and Lu, S. 2021. FSDR:
Frequency Space Domain Randomization for Domain Gen-
eralization. In IEEE Conference on Computer Vision and
Pattern Recognition, 6891–6902.
Koh, P. W.; Sagawa, S.; Marklund, H.; Xie, S. M.; Zhang,
M.; Balsubramani, A.; Hu, W.; Yasunaga, M.; Phillips, R. L.;
Gao, I.; Lee, T.; David, E.; Stavness, I.; Guo, W.; Earnshaw,
B.; Haque, I.; Beery, S. M.; Leskovec, J.; Kundaje, A.; Pier-
son, E.; Levine, S.; Finn, C.; and Liang, P. 2021. WILDS:
A Benchmark of in-the-Wild Distribution Shifts. In Interna-
tional Conference on Machine Learning, 5637–5664.
Krueger, D.; Caballero, E.; Jacobsen, J.-H.; Zhang, A.; Binas,
J.; Zhang, D.; Priol, R. L.; and Courville, A. 2021. Out-of-
Distribution Generalization via Risk Extrapolation (REx). In
International Conference on Machine Learning, 5815–5826.
LeCam, L. 1973. Convergence of estimates under dimension-
ality restrictions. The Annals of Statistics, 38–53.
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.; and others.
1998. Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11): 2278–2324.
Li, D.; Gouk, H.; and Hospedales, T. 2022. Finding lost
DG: Explaining domain generalization via model complexity.
arXiv preprint arXiv:2202.00563.
Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. 2018a.
Learning to Generalize: Meta-Learning for Domain General-
ization. In AAAI Conference on Artificial Intelligence.
Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. 2020. Se-
quential learning for domain generalization. In European
Conference on Computer Vision, 603–619. Springer.
Li, D.; Yang, Y.; Song, Y.-Z.; and Hospedales, T. M. 2017.
Deeper, Broader and Artier Domain Generalization. In IEEE
International Conference on Computer Vision, 5543–5551.
Venice, Italy.
Li, H.; Pan, S. J.; Wang, S.; and Kot, A. C. 2018b. Do-
main Generalization with Adversarial Feature Learning. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 5400–5409.
Li, X.; Dai, Y.; Ge, Y.; Liu, J.; Shan, Y.; and DUAN, L. 2022.
Uncertainty Modeling for Out-of-Distribution Generalization.
In International Conference on Learning Representations.
Li, Y.; Tian, X.; Gong, M.; Liu, Y.; Liu, T.; Zhang, K.; and
Tao, D. 2018c. Deep Domain Generalization via Conditional



Invariant Adversarial Networks. In European Conference on
Computer Vision, 647–663.
Liu, C.; Sun, X.; Wang, J.; Tang, H.; Li, T.; Qin, T.; Chen,
W.; and Liu, T.-Y. 2021. Learning Causal Semantic Repre-
sentation for Out-of-Distribution Prediction. In Advances in
Neural Information Processing Systems, 6155–6170.
Mahajan, D.; Tople, S.; and Sharma, A. 2021. Domain gener-
alization using causal matching. In International Conference
on Machine Learning, 7313–7324.
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Proofs
Proof of Theorem 1
Preparation We first construct a “hard” instance over the supremum to lower bound the minimax problem and then reduce it
into a label recovery problem. We begin with the definition of domain distribution and some lemmas, and we assume h > 0
throughout our proof.

Definition 2. A domain distribution is said to satisfy the Massart noise condition (Massart and Nédélec 2006) with margin h if
|2η(X)− 1| ≥ h with probability 1, where η(x) = E[Y |X = x] = P (Y = 1|X = x) is the regression function. We denote the
set of domains satisfying the Massart noise condition by P(h,F) = {P ∈ P(F) : |2η(X)− 1| ≥ h with probability 1}, where
P(F) denote the subset of X × {0, 1} such that the Bayes optimal distribution of all joint distribution P ∼ P (F) is in F .

Lemma 3. For any classifier f : X → {0, 1}, any distribution P on X × {0, 1} and the Bayes optimal classifier f∗ on P , we
have

L(f)− L(f∗) = E|2η(X)− 1||f(X)− f∗(X)| .
Specifically, if P ∈ P(h,F), we have

L(f)− L(f∗) ≥ hE|f(X)− f∗(X)| = h∥f − f∗∥L1(X) ,

where the L1(X) norm is computed w.r.t the distribution of X, i.e., ∥f − f∗∥L1(X) =
∑

x∈X Pr(X = x)|f(x) − f∗(x)| if
X is drawn from a discrete distribution or ∥f − f∗∥L1(X) =

∫
x∈X

p(x)|f(x) − f∗(x)|dx if X is drawn from a continuous
distribution.

Lemma 4. Let f be any learning algorithm satisfying f ∈ F , f̃ be the learning algorithm which is closest to f̃ in L1(X) norm
w.r.t the distribution of sampled data x, i.e., f̃ = argminf ′∈F ∥f ′ − f∥L1(X), and f∗

β is a classifier given by a binary string β

on x1,x2, ...,xm such that [f∗
β(x1), . . . , f

∗
β(xm)] = β. For any β ∈ {0, 1}m, we have

∥f̃ − f∗
β∥L1(X) ≤ ∥f̃ − f∥L1(X) + ∥f − f∗

β∥L1(X) ≤ 2∥f − f∗
β∥L1(X) .

The goal of f̃E,n is to estimate the ground-truth label a of the supporting data by observing and learning from E · n data
points uniformly sampled from E domains. We observe that, given any domain distribution D such that P ∈ P(h,F),∀P ∼ D,
the minimax risk RE,n (h,F) (1) can be lower-bounded as

RE,n (h,F) ≥ inf
f̃E,n∈F

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
. (3)

D will be constructed such that the supporting space (X, α) of D contains V data points (xi, αi), i ∈ [m]. We denote by
{xi}i∈[m] and {αi}i∈[m] the feature space and the label space, respectively. The label space of D can be indexed by the vertices
of a binary hypercube and the expected excess risk can be reduced to the problem of label recovery. The feature support
x1,x2, ...,xm is shared by all the domains in D. All learning algorithms f with the VC dimension bigger than V can shatter
these data points as V ≥ m.

Theorem 5. Let {Pθ : θ ∈ {0, 1}m} be a collection of probability distributions on some set Z index by the vertices of the binary
hypercube Θ = {0, 1}m. Suppose that there exists some constant c > 0, such that

H2(Pθ, Pθ′ ) ≤ c, if dH(θ, θ
′
) = 1 , (4)

where the squared Hellinger distance H2(P,Q) between P and Q is defined as H2(P,Q) = 1
2

∫
λ

(√
dP
dλ −

√
dQ
dλ

)2

dλ and

dH(α, β) =
∑

i |αi − βi|,∀α, β ∈ {0, 1}m is the hamming distance.
Consider the problem of estimating the parameter θ ∈ Θ based on n i.i.d observations from Pθ, where the loss is measured by

the Hamming distance. Then the corresponding minimax risk, which we denote by Mn(Θ), is lower-bounded as

Mn(Θ) ≥ m

2
(1−

√
cn) . (5)

Constructing hard instance In this part, we lower bound this minimax problem by constructing a “hard” domain distribution
D ∈ P(h,F). We first show how to sample E training domains from the domain set D. Then, we illustrate the procedure of
sampling data points from the domain e by picking the marginal distribution PrX of feature X while specifying the condition
distributions PreY of the binary label Y given X and the domain. Finally, we show that the label space α ∈ {0, 1}m, which is the
underlying label of X, of D can be naturally indexed by the vertices of a binary hypercube of dimension m− 1.



Generating E domains from the set D. As the data generation procedure of o.o.d generalization is of two stages, we show
how to sample domains based on the feature space X. The domain-specific label ae of the e-th domain is generated by the
Bernoulli

(
1+(2α−1)h

2

)
distribution as

Pr(aej = 1) =


1 + h

2
, if αj = 1;

1− h

2
, if αj = 0,

∀j ∈ [V ] ,

where αj and aej are the j-th element of α and ae.
Sampling data from e-th domain. Now, E domains are sampled from D and we present how to sample the training data

from the e-th domain. Given p ∈ [0, 1/(m− 1)], which will be defined later, PreX is constructed as follows,

PreX(X = xj) =

{
p, if 1 ≤ j ≤ m− 1;

1− (m− 1)p, otherwise .

In this way, we ensure that PrX({x1, . . . ,xm}) = 1. The labels of the samples follow the distribution Pr(Y |X,Ae) given
Ae = ae ∈ {0, 1}m and X = xe. Similarly, for a fixed ae ∈ {0, 1}m, the conditional distribution of Y e given xe is given by
two Bernoulli distributions as

Bernoulli

(
1 + (2aej − 1)h

2

)
, if xe = xj and j ∈ [m− 1] ;

Bernoulli(0), otherwise .

Thus, we have

ηae(x) = Pr(Y = 1|X = x,Ae = ae) =


1− h

2
, if x = xj , j ∈ [m− 1] and aej = 0;

1 + h

2
, if x = xj , j ∈ [m− 1] and aej = 1;

0, otherwise.

, (6)

where βe,j is the j-th element of βe.
The corresponding Bayes optimal classifiers on the e-th domain and on the mixed data distribution over all domains, denoted

by f∗
e and f∗, respectively, are given by

f∗
e (x) =


0, if x = xj , j ∈ [m− 1] and ae

j = 0;

1, if x = xj , j ∈ [m− 1] and ae
j = 1;

0, otherwise,
f∗(x) =


0, if x = xj , j ∈ [m− 1] and αj = 0;

1, if x = xj , j ∈ [m− 1] and αj = 1;

0, otherwise.
(7)

From each domain, we i.i.d draw n samples. That is, the learning algorithm f̃E,n can access to E · n samples in total. Next,
we have the following lemma to show that D = {Pae : ae ∈ {0, 1}V , e ∈ [E]} is in P(h,F).

Lemma 6 (Property of “Hard” Case). All the instances of D satisfy the Massart noise condition with margin h. The distribution
D belongs to P(h,F), i.e., D ∈ P(h,F).

Now, the domain distribution D has been constructed. In the following part, we will show that the problem of learning a
classifier in our setting is at least as difficult as recovering the label α given ae∀e ∈ [E]. With the Bayes optimal classifier f∗

(Eq. (7)) on the domain set D, we can reduce the problem to a label recovery problem.

Analyzing the o.o.d. minimax problem by reducing it to a label recovery problem We show that the o.o.d minimax problem
can be reduced to a label recovery problem by the following theorem.

Theorem 7 (Reducing to A Label Recovery Problem). Given a set of domains D ∈ P(h,F) constructed as in Section , then
o.o.d minimax problem can be reduced to an estimation problem on a binary hypercube whose vertices index the label space of
D, i.e., α, which is the underlying label of X, and the minimax risk RE,n (h,F) (1) satisfies

RE,n (h,F) ≥h

2
inf

β̃E,n∈{0,1}m−1
max

β∈{0,1}m−1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃∗
β̃E,n

− f∗
β

∥∥∥
L1(X)

,

where the L1 norm is computed w.r.t the distribution of X, β = [α1, . . . , αm−1], and β̃E,n is a string.



Proof. We first apply Lemma 3. Now, the o.o.d generalization minimax risk RE,n (h,F) (1) becomes

inf
f̃E,n∈F

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
≥h inf

f̃E,n∈F
max

β∈{0,1}m−1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃E,n − f∗
β

∥∥∥
L1(X)

,

where the L1(X) norm is w.r.t the distribution of samples PreX, f̃E,n and f∗
β are any classifier in F and the Bayes optimal

classifier trained on the En training samples from E domains, respectively. We let β = [α1, . . . , αm−1]
1.

Next, by using Lemma 4 with f̃ = f̃∗
β̃E,n

and f = f̃E,n, we have

h inf
f̃E,n∈F

max
β∈{0,1}m−1

EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃E,n − f∗
β

∥∥∥
L1(X)

≥h

2
inf

β̃E,n∈{0,1}m−1
max

β∈{0,1}m−1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃∗
β̃E,n

− f∗
β

∥∥∥
L1(X)

,

where [f̃∗
β̃E,n

(x1), . . . , f̃
∗
β̃E,n

(xm−1)] = β̃E,n is the binary string that indexes the element of {f̃β̃E,n
: β̃E,n ∈ {0, 1}m−1}.

Hence, we have reduced the o.o.d minimax problem to an estimation problem on a binary hypercube (i.e., a label recovery
problem).

By definition, given n = ∞, we have the following results
h

2
inf

β̃E,∞∈{0,1}m−1
max

β∈{0,1}m−1
EPe∼DE(Xe,Y e)∼Pe

∥∥∥f̃∗
β̃E,∞

− f∗
β

∥∥∥
L1(X)

≥ h

2
inf

β̃E,∞∈{0,1}m−1
max

β∈{0,1}m−1
EPe∼D

∥∥∥f̃∗
β̃E,∞

− f∗
β

∥∥∥
L1(X)

=
h

2
inf

β̃E,∞∈{0,1}m−1
max

β∈{0,1}m−1
Eβ

∥∥∥f̃∗
β̃E,∞

− f∗
β

∥∥∥
L1(X)

,

where Eβ represents the expectation with respect to Prβ .

Now, we are ready to analyze the L1 norm
∥∥∥f̃∗

β̃E,∞
− f∗

β

∥∥∥
L1(X)

, ∀β̃E,∞, β ∈ {0, 1}m−1. By definition, we derive the

following results,∥∥∥f̃β̃E,∞
− f∗

β

∥∥∥
L1(X)

=

m−1∑
j=1

PrX(X = xj)
∣∣∣f̃∗

β̃E,∞,j
− f∗

βj

∣∣∣ = p

m−1∑
j=1

∣∣∣β̃E,∞,j − βj

∣∣∣ = p · dH
(
β̃E,∞, β

)
,

where dH is the Hamming distance, i.e., dH (β1, β2) =
∑

j |β1,j − β2,j |, and β1,j and β2,j are the j-th items of β1 and β2. Now,
the minimax problem becomes as measuring the distance between two strings β̃E,n and β,

inf
f̃E,∞∈F

sup
D⊆P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,∞)− L(f∗)

]
≥ ph

2
inf

β̃E,∞∈{0,1}m−1
max

β∈{0,1}m−1
EβdH

(
β̃E,∞, β

)
.

To analyze this problem, we apply Theorem 5 and have the following theorem:

Theorem 8 (Minimax Bound). Given H2
(
Prβ̃E,∞

, P rβ

)
≤ 2p

(
1−

√
1− h2

)
≤ 2ph2, we have the following lower bound

for the o.o.d minimax problem,

inf
f̃E,∞∈F

sup
D⊆P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,∞)− L(f∗)

]
≥ m− 1

54Eh
,

with p ∈ (0, 1/(m− 1)].

Proof. We need to upper-bound the squared Hellinger distance2 H2
(
Prβ̃E,∞

, P rβ

)
,∀β̃E,∞, β that satisfies dH

(
β̃E,∞, β

)
=

1. Based on the definition of the squared Hellinger distance, we have

H2
(
Prβ̃E,∞

, P rβ

)
=

m−1∑
i=1

∑
y∈{0,1}

(√
Prβ̃E,∞

(xi, y)−
√

Prβ(xi, y)

)2

1Strings can be removed by one element due to the fact that the label of last element xm will only be 0.

2The squared Hellinger distance H2(P,Q) between P and Q is defined as H2(P,Q) = 1
2

∫
λ

(√
dP
dλ

−
√

dQ
dλ

)2

dλ.



= p

m−1∑
i=1

H2

(
Bernoulli

(
1 + (2β̃E,∞,i − 1)h

2

)
,Bernoulli

(
1 + (2βi − 1)h

2

))
.

For j ∈ [m− 1], the j-th term in the above summation is nonzero if and only if β̃E,∞,j ̸= βj , in which case it is equal to the
squared Hellinger distance between the Bernoulli

(
1−h
2

)
and Bernoulli

(
1+h
2

)
distributions. Thus,

H2
(
Prβ̃E,∞

, P rβ

)
= p · dH

(
β̃E,∞, β

)
H2

(
Bernoulli

(
1− h

2

)
,Bernoulli

(
1 + h

2

))

= 2p · dH
(
β̃E,∞, β

)(√1− h

2
−
√

1 + h

2

)2

= 2p · dH
(
β̃E,∞, β

)(
1−

√
1− h2

)
.

Inserting Theorem 5 with H2(Prβ̃E,∞
, P rβ) = 2p

(
1−

√
1− h2

)
≤ 2ph2, we obtain

inf
f̃E,∞

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,∞)− L(f∗)

]
≥ ph

2
inf

β̃E,∞∈{0,1}m−1
sup

β∈{0,1}m−1

EβdH(β̃, β)

≥ ph

2

m− 1

2

(
1−

√
αE
)

≥ p(m− 1)h

4

(
1−

√
2Eph2

)
.

We let p = 2
9h2E and now we have

inf
f̃E,∞

sup
D∈P(h,F)

EPe∼DE(Xe,Y e)∼Pe

[
L(f̃E,n)− L(f∗)

]
≥ m− 1

54Eh
.

Next, we discuss the above theorem for different choices of h. First, given h ≥
√

m−1
E , we have

RE,∞(F) ≥ m− 1

54Eh
, if h ≥

√
m− 1

E
.

When 0 ≤ h <
√

m−1
E , consider h̃ =

√
m−1
E . As P(h̃,F) ⊆ P(h,F), we have

RE,∞(F) ≥m− 1

54Eh̃
=

1

54

√
m− 1

E
, if 0 ≤ h <

√
m− 1

E
.

Combine the two cases of h. The proof is completed.

Proofs of Useful Lemmas and Theorems
Proof of Lemma 3
For any classifier f : X → {0, 1} and any distribution P on X × {0, 1}, we have

L(f)− L(f∗) = E[1 (f(X) ̸= Y )− 1 (f∗(X) ̸= Y )] = E[|2η(X)− 1||f(X)− f∗(X)|] , (8)

where 1(·) is the indicator function. If cond holds, 1(cond) = 1. Otherwise, 1(cond) = 0.
Assuming that P ∈ P(h,F), we have

L(f)− L(f∗) ≥ hE[|f(x)− f∗(x)|] = h∥f − f∗∥L1(X) , (9)

where the L1 norm is computed w.r.t the distribution of sampled data x, i.e., ∥f − f∗∥L1(X) =
∑

x Pr(X = x)|f(x)− f∗(x)|.



Proof of Lemma 4
Let f be any learning algorithm in F , and f̃ be the learning algorithm which is closest to f∗

β in L1 norm, i.e., f̃ =

argminf∈F,β∈{0,1}m−1 ∥f − f∗
β∥L1(X), where f∗

β is indexed by β ∈ {0, 1}m−1. For any β ∈ {0, 1}m−1, we have

∥f̃ − f∗
β∥L1(X) ≤ ∥f̃ − f∥L1(X) + ∥f − f∗

β∥L1(X) ≤ 2∥f − f∗
β∥L1(X) , (10)

where the first one is by the triangle inequality and the second one is due to the definition of f̃ .

Proof of Lemma 6
First, by Eq. (6), we have |2ηae(x) − 1| ≥ h,∀x ∈ X . Second, all learning algorithms with VC dimensions bigger than
m can shatter these data points. There exists at least one f ∈ F , such that f∗

α(x) = f(x) for all x ∈ {x1, . . . ,xm}. Thus,
D ⊆ P(h,F).

Proof of Theorem 5
As the total variation distance can be both upper- and lower-bounded by the Hellinger distance, we have

1

2
H2(P,Q) ≤ ∥P −Q∥TV ≤ H(P,Q) . (11)

For any θ ∈ Θ, let Pn
θ denote the product of n copies of Pθ, i.e., the joint distribution of n i.i.d samples from Pθ. For any two

θ, θ
′ ∈ Θ with dH(θ, θ

′
), by letting P = Pn

θ and Q = Pn
θ′ , we have the following results

∥Pn
θ − Pn

θ′∥TV ≤H(Pn
θ , Q

n
θ ) . (12)

Besides, for any n pairs of distributions (Pθ,1, Pθ′ ,1), . . . , (Pθ,n, Pθ′ ,n), where Pθ,∗ and Pθ′ ,∗ are copies of Pθ and Pθ′ , we
have

H(Pn
θ , Q

n
θ ) = H(Pθ,1 × · · · × Pθ,n, Pθ′ ,1 × · · · × Pθ′ ,n) ≤

√√√√ n∑
i=1

H2(Pθ,i), Pθ′ ,i. (13)

With the assumption (4) on the square of Hellinger, we have

∥Pn
θ − Pn

θ′∥TV ≤

√√√√ n∑
i=1

H2(Pθ,i), Pθ′ ,i ≤
√
αn. (14)

With Theorem 11, the proof is completed.

Background and Lemmas
We begin this section with some definitions.

The minimax risk M(Θ) is defined as
M(Θ) = inf

θ̂
sup
θ∈Θ

Eθ[d(θ, θ̂(Z))] , (15)

where Θ is a parameter set, θ̂ = θ̂(Z) is an estimator to recover θ from the observation of a sample Z sampled from an indexed
set {Pθ : θ ∈ Θ} of a probability distributions on a finite set Z . Eθ represent the expectation with respect to Pθ, i.e.,

Eθ[d(θ, θ̂(Z))] =
∑
z∈Z

Pθ(z)d(θ, θ̂(z)) . (16)

Besides, the distance metric d(·, ·) : Θ×Θ → R+is a pseudometric on Θ and satisfies the following three properties,

1. Symmetry. d(θ, θ
′
= d(θ

′
, θ)),∀θ, θ′ ∈ Θ;

2. Triangle inequality. d(θ, θ
′
) ≤ d(θ, θ∗) + d(θ∗, θ

′
),∀θ, θ′

, θ∗ ∈ Θ;

3. Non-negative. d(θ, θ
′
) ≥ 0,∀θ, θ′ ∈ Θ.

The minimax risk (Eq. (16)) takes the infimum over all estimators θ̂ = θ̂(Z). In another word, this risk tries to find an estimator
θ̂ to minimize the worst-case risk supθ∈Θ Eθ[d(θ, (̂θ)(Z))]

We introduce the total variance distance based on the previous definitions.



Definition 9 (Total Variation Distance). For any two probability P,Q ∈ P(Z), the total variation distance is

∥P −Q∥TV =
1

2

∑
z∈Z

|P (z)−Q(z)| . (17)

And it can be expressed as follows,
∥P −Q∥TV = 1−

∑
z∈Z

min(P (z), Q(z)) . (18)

In the literature, there is an important lemma named the two-point method introduced by (LeCam 1973) for getting lower
bounds on the minimax risk,
Lemma 10 (LeCam’s Lemma). For any θ, θ

′ ∈ Θ and any estimator θ̂, we have

Eθ[d(θ, θ̂(Z))] +Eθ[d(θ
′
, θ̂(Z))] ≥d(θ, θ

′
) ·
∑
z∈Z

min(Pθ(z), Pθ′ (z))

=d(θ, θ
′
)(1− ∥Pθ − Pθ′∥TV ) .

(19)

Proof. Given a point z ∈ Z , assuming Pθ(z) ≥ Pθ′ (z), we have

Pθ(z)d(θ, θ̂(Z)) + Pθ′ (z)d(θ
′
, θ̂(Z))

=Pθ(z)(d(θ, θ̂(Z)) + d(θ
′
, θ̂(Z))) + (Pθ′ (z)− Pθ(z))d(θ

′
, θ̂(Z))

≥Pθ(z)(d(θ, θ̂(Z)) + d(θ
′
, θ̂(Z)))

≥Pθ(z)d(θ, θ
′
) .

(20)

Similar, if Pθ(z) > Pθ′ (z), we have
Pθ(z)d(θ, θ̂(Z)) ≥ Pθ′ (z)d(θ, θ

′
) . (21)

Sum over Z with the definition of total variation distance. The proof is completed.

Next, we introduce an important lemma.
Lemma 11. Supposing Θ = {0, 1}m, ∀θ, θ′ ∈ Θ, we consider the Hamming metric

dH(θ, θ
′
) =

∑
i∈[m]

|θi − θ
′

i| , (22)

where θi and θ
′

i are i-th entries of θ and θ
′
. Then, we can lower-bound the minimax problem as

M ≥ m

2

(
1− max

dH(θ,θ′ )=1
∥Pθ − Pθ′∥TV

)
. (23)

Proof. Let π be the uniform distribution on Θ = {0, 1}m and µi be the joint distribution of a random pair (θ, θ
′
) ∈ Θ × Θ,

∀i ∈ [m], such that the marginal distributions of both θ and θ
′

are equal to π. Then, the minimax risk can be lower-bounded as,

M(Θ) ≥ inf
θ̂
Eπ[d(θ, θ̂(Z))] = inf

θ̂

∑
i∈[m]

Eπ[d(θi, θ̂i(Z))]

≥
∑
i∈[m]

inf
θ̂
Eπ[d(θi, θ̂i(Z))]

≥1

2

∑
i∈[m]

Eµi
[d(θi, θ

′

i) · (1− ∥Pθ − Pθ′∥TV )] .

(24)

The first inequality is due to the supremum over all the prior distribution on Θ while the third one is by definition and Eq. (18).
Next, since d(θi, θ

′

i),∀i ∈ [m], we have

M(Θ) ≥1

2

∑
i∈[m]

Eµi [d(θi, θ
′

i) · (1− ∥Pθ − Pθ′∥TV )]

≥1

2

∑
i∈[m]

Eµi
[1− ∥Pθ − Pθ′∥TV ]

≥1

2

∑
i∈[m]

min
θ,θ′ :dH(θ,θ′ )=1

[1− ∥Pθ − Pθ′∥TV ]

=
m

2
(1− max

θ,θ′ :dH(θ,θ′ )=1
∥Pθ − Pθ′∥TV ) .

(25)



Experiments
Experimental settings
We first introduce the details of the algorithms we use.
• ERM (Vapnik 1991) is a famous machine learning algorithm that minimizes the sum of errors across domains and examples.
• IRM (Arjovsky et al. 2019) tries to learn an invariant feature representation ϕ(·) to capture the underlying causal mechanism

of interest across domains such that the optimal linear classifier on top of that representation matches across domains.
• GroupDRO (Sagawa et al. 2020) learns models minimizing the worst-case training loss over a set of pre-defined groups while

increasing the importance of domains with larger errors.
• Mixup (Xu et al. 2020) guarantees domain-invariance in a continuous latent space and guides the domain discriminator in

judging samples’ difference relative to source and target domains.
• MLDG (Li et al. 2018a) simulates train/test domain shift during training by synthesizing virtual testing domains within each

mini-batch.
• CORAL (Sun and Saenko 2016) aligns correlations of layer activations in deep neural networks to learn domain-invariant

features.
• MMD (Li et al. 2018b) extend adversarial autoencoders by imposing the Maximum Mean Discrepancy (MMD (Gretton et al.

2012)) measure to align the distributions among different domains, and matching the aligned distribution to an arbitrary prior
distribution via adversarial feature learning.

• DANN (Ganin et al. 2016) encourages the emergence of features that are discriminative for the main learning task on the
source domain and indiscriminate with respect to the shift between the domains with an adversarial network.

• C-DANN (Li et al. 2018c) is a variant of DANN matching the conditional distributions on features and labels across domains,
for all labels.

Next, to empirically evaluate out theoretical results, following DomainBed (Gulrajani and Lopez-Paz 2021), we employ and
adapt three different model selection methods for training algorithms. The details of the three model selection methods are shown
in the Appendix.

• Leave-one-domain-out cross-validation. E models are trained on E training domains with equal hyperparameters, while
each experiment holds out one of the training domains. The evaluation of each model is conducted on its held-out domain and
we choose the model when maximizing the accuracy on the held-out domain. This method has an assumption that training and
test domains are drawn from a meta-distribution over domains, and that our goal is to maximize the expected performance
under this meta-distribution. This method corresponds to our data generation model. But it requires huge computational
resources. We only use this method to select models with the number of domains varying from 2 to 30.

• Training-domain validation set. Each training domain is split into training and validation subsets and the overall validation
set consists of the validation subsets of each training domain. Finally, we choose the model maximizing the accuracy of the
overall validation set. This method has an assumption that the training and test examples follow similar distributions.

• Test-domain validation set (oracle). We choose the model maximizing the accuracy on a validation set that follows the
distribution of the test domain. All the models are trained for the same fixed number of steps and the final checkpoints are
used for evaluation. It assumes and requires that models have the access to the test domain which might not be possible in the
real-world application.

Last, we testify whether using different models, i.e., VGG and MUNIT, affects empirical conclusions. The details of MUNIT
are shown in Table 4.



Table 4: Details of our MUNIT architecture. We use MUNIT for all the experiments.

# Layer

1-3 Conv2D (in=d, out=64, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

4-6 Conv2D (in=64, out=128, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

7-9 Conv2D (in=128, out=128, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

10-12 Conv2D (in=128, out=128, kernels = 3× 3, padding=1) + ReLU() + GroupNorm(gourps=8)

13 Global Average-Pooling2D(1× 1)



Results of the training-domain validation set model selection method
In this part, we present more results of the training-domain validation set model selection method in Figure 4 and tables 5 and 6.
Similar observations can be obtained.
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Figure 4: The experimental results on ColoredMNIST and RotatedMINST using MMD (Li et al. 2018b) w.r.t the number of
training domain using the training-domain validation set model selection method.



\# MMD DANN C-DANN

4 0.63538±0.02597 0.62982±0.01211 0.65068±0.00695

6 0.66993±0.02912 0.69510±0.00172 0.69963±0.00317

8 0.67565±0.03004 0.71342±0.00234 0.71345±0.00196

10 0.68154±0.02749 0.72152±0.00100 0.71956±0.00081

12 0.68186±0.03106 0.71911±0.00109 0.71891±0.00122

14 0.69503±0.02374 0.72483±0.00140 0.72573±0.00121

16 0.68263±0.02939 0.72692±0.00172 0.72476±0.00154

18 0.68983±0.02663 0.72563±0.00133 0.72598±0.00089

20 0.68481±0.03156 0.72949±0.00117 0.72901±0.00111

22 0.68234±0.03114 0.72862±0.00115 0.73109±0.00105

24 0.68848±0.03216 0.73055±0.00059 0.73061±0.00132

26 0.68784±0.03208 0.73190±0.00146 0.73113±0.00130

28 0.69221±0.02758 0.73087±0.00084 0.73003±0.00086

30 0.68739±0.03204 0.73068±0.00036 0.73132±0.00108

48 0.73826±0.00150 0.73373±0.00128 0.73453±0.00114

96 0.69388±0.03278 0.73868±0.00131 0.73890±0.00117

192 0.74353±0.00140 0.74228±0.00118 0.74247±0.00124

Table 5: The experimental results on ColoredMNIST with MMD, DANN, and C-DANN w.r.t the number of training domains
using the training-domain validation set model selection method.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

4 0.93514±0.00764 0.35761±0.00945 0.93309±0.00837 0.79103±0.07864 0.94826±0.00217 0.92907±0.01075 0.76172±0.10825 0.89796±0.01262 0.91515±0.00440

6 0.96407±0.00215 0.47395±0.02740 0.95934±0.00228 0.94945±0.00486 0.96699±0.00148 0.96703±0.00193 0.79759±0.11377 0.94013±0.00342 0.93833±0.00505

8 0.97236±0.00106 0.62999±0.01684 0.96503±0.00104 0.96744±0.00181 0.97532±0.00105 0.97197±0.00123 0.80961±0.10859 0.94604±0.00121 0.94758±0.00113

10 0.97500±0.00081 0.67588±0.01914 0.97011±0.00122 0.97063±0.00094 0.97898±0.00103 0.97477±0.00081 0.80276±0.11462 0.95787±0.00218 0.95568±0.00165

12 0.97644±0.00074 0.80758±0.02122 0.97136±0.00130 0.97384±0.00101 0.98117±0.00056 0.97702±0.00128 0.80450±0.11491 0.95578±0.00227 0.96018±0.00224

14 0.97860±0.00082 0.79219±0.01893 0.97316±0.00130 0.97660±0.00077 0.98203±0.00052 0.97853±0.00115 0.80501±0.11500 0.96381±0.00093 0.96484±0.00180

16 0.97921±0.00118 0.78589±0.04100 0.97271±0.00093 0.97872±0.00120 0.98496±0.00061 0.97966±0.00120 0.80623±0.11520 0.96478±0.00143 0.96699±0.00186

18 0.97943±0.00042 0.86145±0.00724 0.97387±0.00122 0.98036±0.00050 0.98502±0.00084 0.98049±0.00055 0.81787±0.10798 0.96577±0.00121 0.96783±0.00208

20 0.98065±0.00099 0.84882±0.01469 0.97712±0.00123 0.97959±0.00100 0.98551±0.00063 0.98126±0.00116 0.80713±0.11535 0.96992±0.00096 0.96773±0.00128

22 0.98203±0.00059 0.89565±0.00707 0.97615±0.00086 0.98203±0.00089 0.98567±0.00051 0.98265±0.00067 0.80948±0.11504 0.96735±0.00091 0.96722±0.00144

24 0.98284±0.00055 0.86788±0.02032 0.97770±0.00072 0.98043±0.00089 0.98531±0.00028 0.98332±0.00092 0.81009±0.11496 0.97043±0.00098 0.97018±0.00229

26 0.98335±0.00095 0.90802±0.00669 0.97901±0.00084 0.98175±0.00081 0.98599±0.00056 0.98364±0.00081 0.80945±0.11573 0.96915±0.00173 0.96976±0.00240

28 0.98258±0.00116 0.89642±0.01438 0.97946±0.00074 0.98345±0.00059 0.98798±0.00046 0.98329±0.00118 0.80919±0.11569 0.97204±0.00081 0.96940±0.00116

30 0.98348±0.00064 0.92055±0.00437 0.98023±0.00049 0.98200±0.00071 0.98747±0.00056 0.98399±0.00086 0.80974±0.11578 0.97294±0.00102 0.97416±0.00169

48 0.98377±0.00041 0.92685±0.01240 0.98139±0.00045 0.98461±0.00069 0.98936±0.00045 0.98522±0.00046 0.81070±0.11594 0.97535±0.00123 0.97374±0.00069

96 0.98885±0.00040 0.93225±0.01117 0.98454±0.00056 0.98743±0.00059 0.99164±0.00041 0.98891±0.00029 0.81404±0.11650 0.97680±0.00153 0.97718±0.00191

192 0.99078±0.00057 0.90812±0.03302 0.98856±0.00052 0.98975±0.00039 0.99364±0.00030 0.99087±0.00033 0.99045±0.00026 0.98043±0.00062 0.98207±0.00074

Table 6: The experimental results on RotatedMNIST with ERM, IRM, GroupDRO, Mixup, MLDG, CORAL, MMD, DANN,
and C-DANN w.r.t the number of training domains using the training-domain validation set model selection method.



Results for the test-domain validation set (oracle) model selection method

In this part, we present more results of the test-domain validation set (oracle) model selection method in Figure 5 and tables 7
and 8. Similar observations can be obtained.
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Figure 5: Experimental results on ColoredMNIST and RotatedMINST using MMD (Li et al. 2018b)w.r.t the number of training
domains using the test-domain validation set (oracle) model selection method.



\# MMD DANN C-DANN

4 0.63715±0.02492 0.62982±0.01211 0.65319±0.00740

6 0.67170±0.02795 0.69513±0.00170 0.70268±0.00291

8 0.68003±0.02788 0.71480±0.00151 0.71387±0.00174

10 0.68314±0.02778 0.72152±0.00100 0.71965±0.00081

12 0.68391±0.02993 0.71994±0.00107 0.71965±0.00088

14 0.69516±0.02376 0.72537±0.00143 0.72573±0.00121

16 0.68314±0.02948 0.72692±0.00172 0.72525±0.00140

18 0.69082±0.02680 0.72663±0.00101 0.72637±0.00087

20 0.68658±0.03038 0.72984±0.00125 0.73000±0.00128

22 0.68514±0.03015 0.72891±0.00109 0.73129±0.00095

24 0.69025±0.03098 0.73077±0.00072 0.73061±0.00132

26 0.68784±0.03208 0.73238±0.00123 0.73113±0.00130

28 0.69278±0.02767 0.73090±0.00085 0.73084±0.00115

30 0.68967±0.03090 0.73126±0.00056 0.73206±0.00108

48 0.73923±0.00130 0.73479±0.00106 0.73534±0.00135

96 0.69581±0.03176 0.73919±0.00111 0.73906±0.00112

192 0.74392±0.00127 0.74257±0.00109 0.74295±0.00116

Table 7: The experimental results on ColoredMNIST with MMD, DANN, and C-DANN w.r.t the number of training domains
using the test-domain validation set (oracle) model selection method.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

4 0.93514±0.00764 0.35928±0.00964 0.93309±0.00837 0.79103±0.07864 0.94977±0.00195 0.92933±0.01077 0.76198±0.10829 0.89815±0.01249 0.91515±0.00440

6 0.96407±0.00215 0.47488±0.02682 0.96024±0.00223 0.94945±0.00486 0.96895±0.00127 0.96703±0.00193 0.79759±0.11377 0.94045±0.00343 0.94074±0.00407

8 0.97236±0.00106 0.62999±0.01684 0.96571±0.00121 0.96744±0.00181 0.97532±0.00105 0.97197±0.00123 0.80961±0.10859 0.94604±0.00121 0.94961±0.00144

10 0.97522±0.00078 0.67588±0.01914 0.97024±0.00121 0.97088±0.00078 0.97917±0.00102 0.97574±0.00078 0.80344±0.11473 0.95793±0.00214 0.95661±0.00125

12 0.97699±0.00077 0.80758±0.02122 0.97146±0.00127 0.97403±0.00100 0.98117±0.00056 0.97737±0.00120 0.80485±0.11497 0.95642±0.00223 0.96143±0.00161

14 0.97860±0.00082 0.79219±0.01893 0.97381±0.00103 0.97660±0.00077 0.98319±0.00062 0.97905±0.00095 0.80553±0.11508 0.96381±0.00093 0.96484±0.00180

16 0.97940±0.00107 0.78589±0.04100 0.97342±0.00112 0.97885±0.00120 0.98496±0.00061 0.97982±0.00110 0.80640±0.11523 0.96478±0.00143 0.96789±0.00136

18 0.97962±0.00041 0.86145±0.00724 0.97400±0.00117 0.98036±0.00050 0.98525±0.00082 0.98085±0.00044 0.81822±0.10803 0.96577±0.00121 0.96818±0.00186

20 0.98081±0.00104 0.84882±0.01469 0.97737±0.00110 0.98014±0.00089 0.98557±0.00067 0.98139±0.00115 0.80723±0.11537 0.96992±0.00096 0.96773±0.00128

22 0.98303±0.00067 0.89565±0.00707 0.97747±0.00104 0.98216±0.00087 0.98624±0.00056 0.98309±0.00063 0.80993±0.11512 0.96776±0.00097 0.96805±0.00135

24 0.98284±0.00055 0.86788±0.02032 0.97821±0.00057 0.98107±0.00086 0.98608±0.00056 0.98348±0.00083 0.81025±0.11498 0.97043±0.00098 0.97152±0.00162

26 0.98377±0.00077 0.90802±0.00669 0.97911±0.00078 0.98229±0.00075 0.98608±0.00056 0.98377±0.00073 0.80958±0.11576 0.96915±0.00173 0.97082±0.00229

28 0.98313±0.00087 0.89642±0.01438 0.97946±0.00074 0.98345±0.00059 0.98798±0.00046 0.98412±0.00079 0.81003±0.11583 0.97204±0.00081 0.96950±0.00116

30 0.98361±0.00059 0.92055±0.00437 0.98023±0.00049 0.98220±0.00074 0.98759±0.00059 0.98403±0.00085 0.80977±0.11579 0.97294±0.00102 0.97422±0.00169

48 0.98464±0.00044 0.92685±0.01240 0.98168±0.00044 0.98506±0.00056 0.98943±0.00044 0.98576±0.00041 0.81125±0.11603 0.97535±0.00123 0.97374±0.00069

96 0.98885±0.00040 0.93225±0.01117 0.98467±0.00052 0.98792±0.00046 0.99197±0.00037 0.98891±0.00029 0.81404±0.11650 0.97680±0.00153 0.97718±0.00191

192 0.99119±0.00038 0.90812±0.03302 0.98865±0.00048 0.98975±0.00039 0.99377±0.00027 0.99087±0.00033 0.99045±0.00026 0.98094±0.00034 0.98207±0.00074

Table 8: The experimental results on RotatedMNIST with ERM, IRM, GroupDRO, Mixup, MLDG, CORAL, MMD, DANN,
and C-DANN w.r.t the number of training domains using the test-domain validation set (oracle) model selection method.



Results of leave-one-domain-out cross-validation method
In this part, we present more results of the test-domain validation set (oracle) model selection method in Tables 9 and 10 and fig. 6.
Similar observations can be obtained.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

2 0.50590±0.00590 0.50641±0.00612 0.50590±0.00590 0.50558±0.00586 0.54707±0.01912 0.50590±0.00590 0.50590±0.00590 0.50702±0.00559 0.50702±0.00559

4 0.70339±0.00971 0.58743±0.02309 0.70815±0.00860 0.62600±0.01984 0.70407±0.01104 0.70403±0.00876 0.66312±0.07855 0.69606±0.00697 0.68925±0.01099

6 0.71843±0.00544 0.62555±0.01763 0.72126±0.00383 0.70924±0.00852 0.71898±0.01061 0.72132±0.00513 0.68462±0.06970 0.71175±0.00477 0.71541±0.00457

8 0.72325±0.00194 0.66830±0.01954 0.71927±0.00736 0.71445±0.00681 0.72229±0.00372 0.72332±0.00273 0.68208±0.08341 0.71760±0.00569 0.71949±0.00304

10 0.72235±0.00399 0.68131±0.01824 0.72094±0.00382 0.71699±0.00755 0.72377±0.00415 0.72216±0.00301 0.68003±0.08520 0.72084±0.00523 0.71991±0.00585

12 0.72582±0.00416 0.68549±0.02169 0.72663±0.00485 0.72306±0.00851 0.72483±0.00693 0.72608±0.00332 0.68134±0.08941 0.72251±0.00401 0.72110±0.00542

14 0.72634±0.00179 0.65743±0.02809 0.72255±0.00313 0.72103±0.00576 0.72923±0.00458 0.72579±0.00142 0.68925±0.07201 0.72428±0.00553 0.72283±0.00717

16 0.72756±0.00341 0.67437±0.03324 0.72435±0.00405 0.72463±0.00621 0.73048±0.00533 0.73228±0.00350 0.68957±0.08461 0.72312±0.00604 0.72255±0.00468

18 0.72643±0.00564 0.68501±0.02319 0.73019±0.00598 0.72618±0.00425 0.72814±0.00695 0.72682±0.00497 0.68244±0.08955 0.72444±0.00724 0.72087±0.00324

20 0.72839±0.00317 0.63712±0.00778 0.72650±0.00432 0.72553±0.00352 0.72946±0.00418 0.72849±0.00364 0.68449±0.08874 0.72679±0.00529 0.72759±0.00554

22 0.73299±0.00726 0.67083±0.02748 0.72868±0.00358 0.72534±0.00474 0.72917±0.00338 0.73215±0.00442 0.69799±0.07162 0.72502±0.00622 0.72380±0.00388

24 0.73289±0.00435 0.68343±0.03175 0.73238±0.00473 0.72782±0.00612 0.73135±0.00746 0.73440±0.00560 0.69314±0.08267 0.72608±0.00595 0.72586±0.00736

26 0.73061±0.00318 0.66977±0.02562 0.73257±0.00408 0.72769±0.01092 0.73215±0.00307 0.73260±0.00454 0.69680±0.06567 0.72682±0.00283 0.72875±0.00501

28 0.72872±0.00950 0.65329±0.03800 0.73232±0.00896 0.72913±0.00615 0.73434±0.00258 0.73135±0.00779 0.68822±0.08396 0.73135±0.00403 0.72759±0.00670

30 0.72817±0.00777 0.66534±0.03140 0.72949±0.00778 0.72737±0.00636 0.73543±0.00529 0.73360±0.00847 0.68857±0.08788 0.72589±0.00805 0.73177±0.00121

Table 9: The experimental results on ColoredMNIST with ERM, IRM, GroupDRO, Mixup, MLDG, CORAL, MMD, DANN,
and C-DANN w.r.t the number of training domains with the leave-one-domain-out cross-validation method.

# ERM IRM GroupDRO Mixup MLDG CORAL MMD DANN C-DANN

2 0.76915±0.02097 0.28944±0.04402 0.76915±0.02097 0.77532±0.01590 0.80247±0.02643 0.76915±0.02097 0.76915±0.02097 0.71027±0.04250 0.71027±0.04250

4 0.94479±0.00741 0.46200±0.07928 0.94029±0.01190 0.92846±0.01422 0.95777±0.00656 0.94736±0.00570 0.78348±0.32848 0.91191±0.01518 0.92001±0.01761

6 0.96889±0.00154 0.58390±0.06660 0.96317±0.00185 0.96012±0.00528 0.96860±0.00400 0.96998±0.00256 0.81536±0.31159 0.93990±0.00774 0.94334±0.00562

8 0.97387±0.00216 0.69259±0.03608 0.96754±0.00272 0.97021±0.00304 0.97718±0.00291 0.97435±0.00236 0.81713±0.31376 0.95648±0.00360 0.95359±0.00672

10 0.97786±0.00229 0.78133±0.06174 0.97204±0.00256 0.97223±0.00351 0.97946±0.00168 0.97670±0.00218 0.80389±0.34498 0.96137±0.00431 0.96066±0.00416

12 0.97712±0.00289 0.82160±0.03162 0.97403±0.00335 0.97593±0.00203 0.97943±0.00278 0.97824±0.00193 0.80543±0.34519 0.96433±0.00358 0.96728±0.00235

14 0.97895±0.00116 0.86595±0.01777 0.97352±0.00099 0.97692±0.00136 0.98284±0.00186 0.98085±0.00265 0.81096±0.33751 0.96696±0.00299 0.96706±0.00196

16 0.98245±0.00206 0.88954±0.02443 0.97641±0.00368 0.97924±0.00221 0.98454±0.00172 0.98300±0.00218 0.81816±0.32801 0.96854±0.00196 0.97063±0.00286

18 0.98300±0.00221 0.90757±0.01948 0.97705±0.00321 0.98158±0.00156 0.98666±0.00221 0.98319±0.00257 0.82423±0.31812 0.96937±0.00210 0.97127±0.00184

20 0.98309±0.00126 0.92811±0.01539 0.97725±0.00397 0.98043±0.00258 0.98695±0.00185 0.98393±0.00132 0.82324±0.31930 0.97046±0.00246 0.97165±0.00126

22 0.98390±0.00041 0.91956±0.02096 0.97905±0.00276 0.98242±0.00265 0.98747±0.00164 0.98361±0.00202 0.81967±0.32668 0.97220±0.00177 0.97397±0.00129

24 0.98338±0.00165 0.94189±0.01098 0.97869±0.00183 0.98432±0.00112 0.98673±0.00226 0.98461±0.00169 0.82185±0.32207 0.97345±0.00162 0.97416±0.00178

26 0.98551±0.00137 0.94395±0.01244 0.97966±0.00174 0.98223±0.00207 0.98763±0.00179 0.98387±0.00189 0.82732±0.31274 0.97590±0.00202 0.97541±0.00160

28 0.98563±0.00188 0.95529±0.00930 0.98113±0.00185 0.98322±0.00188 0.99062±0.00069 0.98689±0.00153 0.82336±0.32491 0.97503±0.00256 0.97757±0.00247

30 0.98698±0.00108 0.95549±0.00887 0.98097±0.00263 0.98599±0.00107 0.98972±0.00139 0.98698±0.00261 0.98499±0.00138 0.97394±0.00219 0.97718±0.00281

Table 10: The experimental results on RotatedMNIST with ERM, IRM, GroupDRO, Mixup, MLDG, CORAL, MMD, DANN,
and C-DANN w.r.t the number of training domains with the leave-one-domain-out cross-validation method.
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Figure 6: The experimental results on ColoredMNIST and RotatedMINST using MMD (Li et al. 2018b), w.r.t the number of
training domain with the leave-one-domain-out cross-validation method.



Results of ablation study
In this part, we present more results of ablation study. Specifically, the results on different models are presented in Figure 7
and tables 11 to 14. The results on the number n of data from each domain are presented in Tables 15 to 18. Similar results can
be obtained.
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Figure 7: The experimental results on ColoredMNIST using ERM (Vapnik 1991) and IRM (Arjovsky et al. 2019) w.r.t the
number of training domains using the training-domain validation set model selection method. The left two figures show the
results with different architectures, i.e., MUNIT and VGG11 (Simonyan and Zisserman 2014), while the left three figures present
the corresponding results with a different number of n.

\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.6697 0.7135 0.7183 0.7226 0.7280 0.7289 0.7268 0.7304 0.7305 0.7323 0.7330 0.7350 0.7336 0.7331 0.7386 0.7427 0.7437

VGG11 0.7085 0.7281 0.7324 0.5918 0.7417 0.7412 0.7413 0.7426 0.7464 0.7428 0.7481 0.7507 0.7465 0.7527 0.7603 0.7810 0.7997

Table 11: The experimental results on ColoredMNIST with ERM w.r.t the number of training domains using the training-domain
validation set model selection method with MUNIT and VGG11.

\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.5500 0.5910 0.6278 0.6685 0.6968 0.6709 0.6777 0.7031 0.6957 0.6935 0.6908 0.6995 0.6997 0.7113 0.7219 0.7182 0.7287

VGG11 0.5589 0.6312 0.5716 0.6466 0.6659 0.6476 0.6585 0.6548 0.6694 0.6571 0.6897 0.6743 0.6994 0.7029 0.7025 0.7379 0.7603

Table 12: The experimental results on ColoredMNIST with IRM w.r.t the number of training domains using the training-domain
validation set model selection method with MUNIT and VGG11.



\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.6697 0.7138 0.7203 0.7244 0.7284 0.7291 0.7274 0.7314 0.7311 0.7323 0.7357 0.7351 0.7341 0.7333 0.7390 0.7432 0.7439

VGG11 0.7087 0.7281 0.7324 0.5918 0.7417 0.7412 0.7442 0.7429 0.7464 0.7456 0.7489 0.7507 0.7510 0.7553 0.7605 0.7810 0.7997

Table 13: The experimental results on ColoredMNIST with ERM w.r.t the number of training domains using the test-domain
validation set (oracle) model selection method with MUNIT and VGG11.

\# 4 6 8 10 12 14 16 18 20 22 24 26 28 30 48 96 192

MUNIT 0.5517 0.5915 0.6278 0.6685 0.6968 0.6709 0.6777 0.7031 0.6958 0.6935 0.6908 0.6995 0.6997 0.7113 0.7219 0.7182 0.7287

VGG11 0.5589 0.6312 0.5803 0.6466 0.6659 0.6476 0.6608 0.6548 0.6694 0.6571 0.6897 0.6743 0.6994 0.7036 0.7025 0.7382 0.7603

Table 14: The experimental results on ColoredMNIST with IRM w.r.t the number of training domains using the test-domain
validation set (oracle) model selection method with MUNIT and VGG11.

\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5150 0.5050 0.5815 0.6697 0.7080 0.6976 0.7261 0.7324 0.7372

6 0.5350 0.5463 0.6719 0.7138 0.7146 0.7194 0.7308 0.7381 0.7414

8 0.5150 0.5988 0.7129 0.7203 0.7133 0.7251 0.7318 0.7392 0.7421

10 0.5587 0.6506 0.7314 0.7244 0.7194 0.7252 0.7369 0.7399 0.7432

12 0.5913 0.6625 0.7202 0.7284 0.7241 0.7264 0.7379 0.7417 0.7447

14 0.5387 0.6944 0.7211 0.7291 0.7237 0.7296 0.7405 0.7435 0.7468

16 0.5637 0.6969 0.7329 0.7274 0.7237 0.7296 0.7391 0.7434 0.7465

18 0.6300 0.6981 0.7375 0.7314 0.7261 0.7264 0.7416 0.7447 0.7469

20 0.5913 0.6850 0.7229 0.7311 0.7267 0.7319 0.7409 0.7449 0.7477

22 0.5150 0.7150 0.7396 0.7323 0.7271 0.7314 0.7418 0.7455 0.7478

24 0.6713 0.6969 0.7335 0.7357 0.7294 0.7320 0.7413 0.7463 0.7486

26 0.6425 0.6956 0.7366 0.7351 0.7281 0.7335 0.7435 0.7463 0.7486

28 0.6800 0.7044 0.7405 0.7341 0.7300 0.7348 0.7432 0.7465 0.7486

30 0.6300 0.7144 0.7372 0.7333 0.7270 0.7334 0.7426 0.7464 0.7489

48 0.6950 0.7231 0.7436 0.7390 0.7347 0.7370 0.7459 0.7477 0.7501

96 0.6725 0.7331 0.7414 0.7432 0.7376 0.7408 0.7492 0.7499 0.7518

192 0.6650 0.7306 0.7514 0.7439 0.7419 0.7439 0.7505 0.7512 0.7525

Table 15: The experimental results on ColoredMNIST with ERM w.r.t the number of training domains using the test-domain
validation set (oracle) model selection method with changing the number of training images from each domain.



\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5675 0.5519 0.5760 0.5517 0.6206 0.5889 0.6425 0.6562 0.6598

6 0.5513 0.5363 0.6382 0.5915 0.6253 0.6354 0.6535 0.6793 0.6974

8 0.5150 0.5587 0.6452 0.6278 0.6647 0.6663 0.6578 0.6976 0.7031

10 0.5275 0.6225 0.6625 0.6685 0.6684 0.6915 0.6876 0.6987 0.7093

12 0.5200 0.6106 0.6859 0.6968 0.7020 0.6846 0.7006 0.7049 0.7144

14 0.5150 0.6444 0.6989 0.6709 0.6864 0.6687 0.6976 0.7089 0.7136

16 0.5387 0.6312 0.7077 0.6777 0.6961 0.6994 0.6966 0.7086 0.7200

18 0.6462 0.6825 0.7083 0.7031 0.6737 0.6860 0.7019 0.7146 0.7175

20 0.5737 0.6400 0.6938 0.6958 0.7000 0.6935 0.7064 0.7148 0.7212

22 0.6200 0.6706 0.6980 0.6935 0.6964 0.7004 0.7144 0.7101 0.7203

24 0.6138 0.6550 0.7241 0.6908 0.7024 0.7007 0.7063 0.7183 0.7238

26 0.6100 0.6625 0.6917 0.6995 0.7121 0.7034 0.7128 0.7177 0.7239

28 0.6375 0.6787 0.7190 0.6997 0.7067 0.7200 0.7086 0.7224 0.7224

30 0.5787 0.5844 0.7284 0.7113 0.7063 0.7063 0.7134 0.7190 0.7244

48 0.6488 0.6825 0.7153 0.7219 0.7016 0.7081 0.7161 0.7221 0.7249

96 0.6488 0.7019 0.7308 0.7182 0.7157 0.7163 0.7211 0.7286 0.7334

192 0.6475 0.7031 0.7196 0.7287 0.7213 0.7271 0.7265 0.7310 0.7345

Table 16: The experimental results on ColoredMNIST with IRM w.r.t the number of training domains using the test-domain
validation set (oracle) model selection method with changing the number of training images from each domain.



\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5150 0.5050 0.5815 0.6697 0.7080 0.6916 0.7258 0.7323 0.7372

6 0.4850 0.5463 0.6719 0.7135 0.7146 0.7165 0.7303 0.7381 0.7409

8 0.4888 0.5988 0.7129 0.7183 0.7081 0.7251 0.7311 0.7383 0.7417

10 0.5587 0.6506 0.7314 0.7226 0.7194 0.7250 0.7369 0.7399 0.7430

12 0.5913 0.6625 0.7202 0.7280 0.7241 0.7264 0.7379 0.7417 0.7441

14 0.5212 0.6944 0.7208 0.7289 0.7169 0.7296 0.7405 0.7431 0.7468

16 0.5637 0.6969 0.7329 0.7268 0.7237 0.7276 0.7391 0.7434 0.7462

18 0.6300 0.6981 0.7375 0.7304 0.7261 0.7264 0.7409 0.7447 0.7467

20 0.5913 0.6850 0.7229 0.7305 0.7254 0.7306 0.7409 0.7449 0.7477

22 0.5000 0.7150 0.7387 0.7323 0.7259 0.7309 0.7418 0.7450 0.7478

24 0.6713 0.6969 0.7335 0.7330 0.7277 0.7304 0.7413 0.7463 0.7483

26 0.6425 0.6956 0.7360 0.7350 0.7281 0.7335 0.7435 0.7463 0.7486

28 0.6800 0.7044 0.7405 0.7336 0.7257 0.7348 0.7432 0.7465 0.7480

30 0.6300 0.7144 0.7372 0.7331 0.7266 0.7316 0.7426 0.7456 0.7487

48 0.6950 0.7231 0.7436 0.7386 0.7347 0.7370 0.7459 0.7477 0.7501

96 0.6725 0.7331 0.7399 0.7427 0.7363 0.7394 0.7492 0.7499 0.7518

192 0.6650 0.7306 0.7514 0.7437 0.7419 0.7438 0.7505 0.7512 0.7525

Table 17: The experimental results on ColoredMNIST with ERM w.r.t the number of training domains using the training-domain
validation set model selection method with changing the number of training images from each domain.



\# 1000 2000 4000 7000 (ori) 8000 10000 20000 40000 70000

4 0.5675 0.5281 0.5760 0.5500 0.6126 0.5889 0.6425 0.6562 0.6598

6 0.5513 0.5363 0.6382 0.5910 0.6253 0.6354 0.6535 0.6793 0.6974

8 0.4913 0.5587 0.6452 0.6278 0.6647 0.6663 0.6576 0.6976 0.7031

10 0.5200 0.6225 0.6625 0.6685 0.6684 0.6915 0.6876 0.6987 0.7093

12 0.4750 0.6106 0.6859 0.6968 0.7004 0.6846 0.7006 0.7049 0.7144

14 0.4963 0.6444 0.6989 0.6709 0.6864 0.6687 0.6976 0.7089 0.7134

16 0.4850 0.6312 0.7077 0.6777 0.6961 0.6994 0.6966 0.7086 0.7200

18 0.6462 0.6825 0.7083 0.7031 0.6724 0.6830 0.7010 0.7146 0.7167

20 0.5737 0.6400 0.6938 0.6957 0.7000 0.6904 0.7064 0.7148 0.7212

22 0.5825 0.6706 0.6944 0.6935 0.6964 0.7004 0.7143 0.7101 0.7203

24 0.6138 0.6550 0.7241 0.6908 0.7024 0.7007 0.7063 0.7183 0.7238

26 0.6100 0.6625 0.6917 0.6995 0.7121 0.7034 0.7128 0.7177 0.7239

28 0.6375 0.6787 0.7190 0.6997 0.7067 0.7200 0.7086 0.7224 0.7224

30 0.5625 0.5844 0.7284 0.7113 0.7063 0.7063 0.7134 0.7190 0.7226

48 0.6488 0.6825 0.7153 0.7219 0.6959 0.7081 0.7160 0.7221 0.7249

96 0.6488 0.7019 0.7308 0.7182 0.7157 0.7133 0.7211 0.7285 0.7334

192 0.6475 0.7031 0.7196 0.7287 0.7213 0.7271 0.7265 0.7306 0.7335

Table 18: The experimental results on ColoredMNIST with IRM w.r.t the number of training domains using the training-domain
validation set model selection method with changing the number of training images from each domain.


