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ABSTRACT
The recent surge in artificial intelligence (AI), characterized by

the prominence of large language models (LLMs), has ushered in

fundamental transformations across the globe. However, alongside

these advancements, concerns surrounding the legitimacy of LLMs

have grown, posing legal challenges to their extensive applications.

Compounding these concerns, the parameters of LLMs are often

treated as intellectual property, restricting direct investigations.

In this study, we address a fundamental challenge within the

realm of AI legislation: the need to establish the authenticity of

outputs generated by LLMs. To tackle this issue, we present zkLLM,

which stands as the inaugural specialized zero-knowledge proof

tailored for LLMs to the best of our knowledge. Addressing the

persistent challenge of non-arithmetic operations in deep learning,

we introduce tlookup, a parallelized lookup argument designed

for non-arithmetic tensor operations in deep learning, offering a

solution with no asymptotic overhead. Furthermore, leveraging

the foundation of tlookup, we introduce zkAttn, a specialized

zero-knowledge proof crafted for the attention mechanism, care-

fully balancing considerations of running time, memory usage, and

accuracy.

Empowered by our fully parallelized CUDA implementation,

zkLLM emerges as a significant stride towards achieving efficient

zero-knowledge verifiable computations over LLMs. Remarkably,

for LLMs boasting 13 billion parameters, our approach enables the

generation of a correctness proof for the entire inference process in

under 15 minutes. The resulting proof, compactly sized at less than

200 kB, is designed to uphold the privacy of the model parameters,

ensuring no inadvertent information leakage.

1 INTRODUCTION
The recent surge in artificial intelligence (AI), particularly with the

advent of Large Language Models (LLMs) [1, 8, 12, 41, 51, 52], has

profoundly transformed the world. However, these technological

advances have also raised concerns about the legitimacy of these

groundbreaking models, challenging the legal underpinnings of

their extensive applications. For instance, in December 2023, the

New York Times filed a lawsuit against OpenAI and Microsoft, ac-

cusing them of using copyrighted material from the newspaper to

train their chatbots. In October 2023, President Biden issued an ex-

ecutive order to address both the "myriad benefits" and "substantial

risks" posed by AI. As laws and regulations around LLMs evolve

and tighten, developing practical tools to verify the legitimacy of

these models has become crucial.

Consider the auditing process of a newly-released LLM, which

is hosted on a cloud service (e.g., Microsoft Azure) with API ac-

cess. Law enforcement queries the model using designated prompts

to test if the LLM generates illegal output (e.g., untrue, violence-

prompting, or racist). In the stringent legal context, the authentic-

ity of the output must be established to exclude the possibility of

cheating by manipulating the generated texts. On the other hand,

although the architectures are typically described in technical re-

ports, the trained parameters are concealed as the AI developers’

intellectual properties, making direct examination of the model

parameters impossible. This dilemma calls for the application of

zero-knowledge proofs (ZKPs), which allow for verifiable compu-

tations over the neural networks while disclosing no information

about the neural network parameters [18, 33, 35, 38, 55–57].

However, adapting existing ZKP techniques to modern LLMs,

characterized by their immense scale, presents significant chal-

lenges. These models require substantial computational resources,

which general-purpose ZKP frameworks [3–5, 7, 10, 24, 28, 36, 42],

often unaware of LLM structure and limited in parallel computation

support, struggle to provide.

While early research has explored specialized cryptographic

protocols for specific neural network architectures like convolu-

tional neural networks (CNNs) [35, 38, 57], LLMs’ complex internal

structures necessitate further innovation in ZKP protocol design.

This innovation is vital to avoid the excessive overhead typical of

general-purpose ZKPs. LLMs involve many non-arithmetic oper-

ations, such as GELU [31] and SwiGLU [47] activation functions,

which only partially align with current ZKP methods. Lookup argu-

ments, trading memory consumption for faster runtimes, have been

introduced [33] to handle these nonlinearities, but their straight-

forward application raises questions about manageable memory

overhead.

Moreover, the attention mechanism in LLMs [53], which is inher-

ently multivariate and often employs the Softmax function, requires

a tailored ZKP protocol design for effective management of proof

overhead. Tackling this mechanism within ZKPs is challenging,

particularly as its components are not typically found in previously

explored neural network architectures, such as MLPs and CNNs. In

these traditional models, Softmax functions are usually placed after

the output layer and are therefore not considered in prior works

on zero-knowledge verifiable deep learning. This setup is in stark

contrast with LLMs, where Softmax functions are used extensively

across multiple layers. This prevalent use in LLMs necessitates a

more refined approach in ZKP design to ensure both precise and

efficient zero-knowledge verification, especially given the unique

challenges presented by the attention mechanism.

In response to these challenges, we present zkLLM, the inaugu-

ral ZKP scheme specifically designed for LLMs. zkLLM empowers

LLM owners to validate the integrity of inference outcomes to

stakeholders, such as law enforcement agencies, thereby streamlin-

ing investigations involving LLMs while safeguarding intellectual

property. Our key contributions are:
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• We propose tlookup, a unique ZKP protocol for universal

non-arithmetic operations in deep learning, to tackle the

persistent challenge of verifying such operations (e.g., ac-

tivation functions). tlookup adeptly handles overhead in

two ways: analytically, it adds no asymptotic overhead in

memory complexity or running time; practically, its design

promotes a high level of parallelization, fully leveraging par-

allel computing resources (like GPUs) commonly used in

LLM computing environments.

• We introduce zkAttn, a ZKP specifically crafted for attention
mechanisms in LLMs. Building upon tlookup and enhancing
its capabilities, zkAttn mitigates the accuracy degradation

and high overheads linked with bit-decompositions and poly-

nomial approximations. It also removes the necessity to list

all multivariate input-output pairs, a prerequisite in lookup-

based methods, by harnessing the mathematical properties

of the attention mechanism. This strategy strikes a balance

between running time, memory usage, and accuracy, while

maintaining security and privacy standards.

• Our efficient CUDA implementation, in conjunction with the

aforementioned technical advancements, positions zkLLM

as the trailblazing ZKP for LLMs of sizes up to 13 billion

parameters. zkLLM achieves reasonable proving times of

1-15 minutes and produces compact proofs smaller than

200kB. These proofs can be verified within 1-3 seconds by

the verifier and guarantee no exposure of model parameters.

2 TECHNICAL OVERVIEW
Compared with general-purpose counterparts, an efficient zero-

knowledge proof system specialized for deep learning hinges criti-

cally upon two key requirements:

• The capability for extensive parallelization (for example, us-

ing CUDA), which allows for the handling of proofs for the

entire computational process in a reasonable timeframe.

• The adept handling of non-arithmetic operations, encom-

passing activation functions among others.

Although sumcheck-based protocols are known to be compatible

with tensor structures common in deep learning computations

[26, 38] , traditionally, they have depended on bit-decomposition

methods for non-arithmetic operations. This dependence leads to

an increase in prover overhead and restricts the variety of non-

arithmetic operations that can be supported. In response, we have

developed a novel sumcheck-based protocol for lookup arguments

over tensors.

Our design capitalizes on the following fact: for S ∈ F𝐷 and T ∈
F𝑁 , the set inclusion S ⊆ T holds if and only if there is an m such

that

∑
𝑖∈[𝐷 ] (𝑋 +S𝑖 )−1 ≡

∑
𝑖∈[𝑁 ] m𝑖 (𝑋 +T𝑖 )−1 as rational functions

over 𝑋 ∈ F [30]. This equivalence can be verified by evaluating

both expressions at a single point 𝑋 ← 𝛽 , randomly selected by

the verifier. Furthermore, m can be computed in 𝑂 (𝐷) time using

straightforward counting. Hence, by calculating the elementwise

multiplicative inversions A← (𝛽 + S)−1 and B← (𝛽 + T)−1, we
can parallelize the sumcheck protocol for the identity

(A.sum() = m⊤B) ∧ (A ⊙ (𝛽 + S) = 1) ∧ (B ⊙ (𝛽 + T) = 1) (1)

This approach stands in contrast to the sequential lookup arguments

[16, 22, 23, 44, 62, 63] that are based on univariate polynomials.

For the attention mechanism widely applied in modern LLMs,

represented by the equation

Attention(Q,K,V) := Softmax

(
QK⊤
√
𝑑

)
V, (2)

the direct application of lookup arguments, such as tlookup, presents
the impractical challenge of compiling all input-output pairs into a

lookup table due to the multivariate nature of the attention mecha-

nism. To achieve zero-knowledge verifiability with limited overhead

for the attention mechanism, we introduce zkAttn, as depicted in

Figure 1:

(1) Implement the matrix multiplication between the query Q
and keys K⊤, resulting in Z ← QK⊤. This process is ver-
ifiable through the dedicated sumcheck protocol designed

specifically for matrix multiplications.

(2) Exploit the shift-invariance property of Softmax to adjust

each row of Z by a constant, represented as a vector ẑ, so
that exp(Z − ẑ1⊤) sums to 1 row-wise. This transformation

renders the Softmax output equivalent to applying exp(·)
element-wise to Z′ := Z − ẑ1⊤. However, computing ẑ from
Z is highly intricate and not directly verifiable.

(3) Transform Z′ into negative 𝐾-digit base-𝑏 numbers, with

each Z′ = −∑𝐾−1
𝑘=0

𝑏𝑘Z(𝑘 ) . By utilizing the homomorphism

of exp (·), the Softmax output Y is then expressed as

Y = exp

(
−
𝐾−1∑︁
𝑘=0

𝑏𝑘Z(𝑘 )
)
=

𝐾−1∏
𝑘=0

exp

(
−𝑏𝑘Z(𝑘 )

)
, (3)

with a tlookup installed for each term of the𝐾 in the product

to handle the non-arithmetic operation.

(4) Rather than verifying the correctness of ẑ directly, which is

highly non-arithmetic, an additional check is introduced to

ensure the rowwise sums of Y equal 1.

(5) Implement another verifiable matrix multiplication between

the Softmax output Y and the values V.

Note that the above overview omits details about the handling

of scaling factors and quantization errors for clarity. The design

of zkAttn manages the overhead of verifiable computation for the

highly non-arithmetic operations within the attention mechanism

while preserving computational accuracy.

3 PRELIMINARIES
3.1 Notations
We represent vectors and tensors in bold font, such as v for vectors

and S for tensors. Consistent with the cryptographic frameworks we

utilize, we apply 0-based indexing to all mathematical structures.

For simple operations and indexing over tensors, we adhere to

the PyTorch conventions, using notations like v[𝑖 ] or the more

concise v𝑖 for elements, S[𝑖, 𝑗0:𝑗1,:] for slicing, and S.sum(axis=0) for

aggregation along a specified dimension. Moreover, we denote the

set of non-negative integers less than a positive integer 𝑁 using

the compact form [𝑁 ], which signifies {0, 1, . . . , 𝑁 − 1}.
2
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Figure 1: Overview of zkAttn for (2).

Q: As the developer of an LLM, law enforcement seeks to

verify the model’s authenticity by having me execute the

inference process using their designated prompts. I aim to

establish the authenticity of my output without revealing any

details about the model parameters. Can ZKP be utilized in

the inference process?

A: Yes, ZKP can be utilized in the inference process of an LLM
to establish the authenticity of the output without revealing

any details about the model parameters. This allows one party

to prove to another that a certain statement is true, without

conveying any additional information. In this case, it can

prove that the model’s output came from a specific model.

Q:What are some benefits of applying ZKPs in this scenario?

A: Utilizing ZKPs in the inference process of an LLM can

provide authenticity and privacy. It can confirm the output’s

origin from a specific model without revealing any model

details, protecting any sensitive or proprietary information.

The generated proofs are verifiable, allowing anyone to con-

firm the output’s authenticity. Some ZKP protocols are also

scalable, accommodating large models and complex compu-

tations, which is beneficial for LLMs.

Figure 2: An example dialogue with GPT-3.5 regarding zk-
LLM’s motivation

3.2 Large language models, transformers and
the attention mechanism

Large Language Models (LLMs), exemplified by the GPT series

[8, 41], PaLM [12], and LLaMa [51], are renowned for their excep-

tional performance in general-purpose language understanding and

generation tasks. These models are built upon the transformer archi-

tecture, which is fundamentally based on the attention mechanism

[53].

As depicted in Figure 3, LLMs typically consist of multiple layers

that transform the embeddings of an input sequence of tokens using

multi-head attention. In each attention head 𝑖 , parameterized by

linear weightsW𝑄

𝑖
,W𝐾

𝑖
, andW𝑉

𝑖
, the queries Q𝑖 ← XW𝑄

𝑖
, keys

K𝑖 ← XW𝐾
𝑖
, and values V𝑖 ← XW𝑉

𝑖
are computed. These compo-

nents are then processed by the Attention function, concatenated,
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Figure 3: Typical structure of LLMs

and projected using another linear weightW𝑂
:

O← Concat𝑖 (Attention (Q𝑖 ,K𝑖 ,V𝑖 ))W𝑂 , (4)

The output O is subsequently processed by a feed-forward multi-

layer perceptron (MLP). The activations from the final layer are then

transformed into a probability distribution over the output tokens,

from which the output sequence is autoregressively sampled. The

Attention function, as defined in (2), effectively mimics cognitive

attention and has significantly contributed to the success of LLMs.

The adaptation of the attention mechanism for zero-knowledge

verifiability is a primary focus of this study.

3.3 Sumcheck protocol, multilinear extensions
and tensor operations

The correctness of arithmetic tensor operations (e.g., matrix mul-

tiplication) is verified using the sumcheck protocol [13] over the
multilinear extensions [39] of the tensors involved.

Consider a tensor S ∈ F𝐷0×𝐷1×···×𝐷𝐾−1
discretized into a fi-

nite field F via scaling and rounding. Without loss of generality,

assume that 𝐷𝑘s are all powers of 2 for 0 ≤ 𝑘 ≤ 𝐾 − 1, or zero-

padding may be applied. Thus, writing indices in binary format, S
can also be considered as a function S(·) : {0, 1}

∑𝐾−1
𝑘=0

log
2
𝐷𝑘 → F.

Here, S (i0, i1, . . . , i𝐾−1) = S[𝑖0,𝑖1,...,𝑖𝐾−1 ] where i𝑘 is the binary rep-

resentation of any 0 ≤ 𝑖𝑘 ≤ 𝐷𝐾−1 − 1. A multivariate polynomial

S̃ (·) : F
∑𝐾−1
𝑘=0

log
2
𝐷𝑘 → F is a multilinear extension of S(·) such that

S̃ (·) ≡ S(·) on {0, 1}
∑𝐾−1
𝑘=0

log
2
𝐷𝑘

, practically implemented as

S̃ (u0, u1, . . . , u𝐾−1) =∑︁
i𝑘 ∈{0,1} log2 𝐷𝑘
0≤𝑘≤𝐾−1

ẽ

(
𝐾−1⊕
𝑘=0

u𝑘 ,
𝐾−1⊕
𝑘=0

i𝑘

)
S(i0, i1, . . . , i𝐾−1), (5)

where ẽ (u, v) := ∑𝑑−1
𝑖=0 u𝑖v𝑖 + (1−u𝑖 ) (1−v𝑖 ) for any 𝑑-dimensional

u, v ∈ F𝑑 , which reduces to the equality indicator 1{u=v} when
restricted to u, v ∈ {0, 1}𝑑 .

The correctness of a tensor operation can be expressed as equal-

ities over the tensors. For instance, for matrix multiplication C←
AB, where C ∈ F𝐷0×𝐷2

, A ∈ F𝐷0×𝐷1
, and B ∈ F𝐷1×𝐷2

, the correct-

ness is characterized by C[𝑖, 𝑗 ] =
∑𝐷1−1
𝑘=0

A[𝑖,𝑘 ]B[𝑘,𝑗 ] for each 𝑖, 𝑗 ,
or equivalently,

3



CCS ’24, October 14-18, 2024, Salt Lake City, U.S.A. Haochen Sun, Jason Li, and Hongyang Zhang

∑︁
k∈{0,1} log2 𝐷1

(
𝐷−1
1

C̃ (i, j) − Ã (i, k) B̃ (k, j)
)
= 0. (6)

By applying the Schwartz-Zippel Lemma [46, 69], with high

probability, (6) holds for all i, j if and only if the random linear

combination∑︁
i∈{0,1} log2 𝐷0

j∈{0,1} log2 𝐷2

k∈{0,1} log2 𝐷1

ẽ (u0 ⊕ u2, i ⊕ j)
(
𝐷−1
1

C̃ (i, j) − Ã (i, k) B̃ (k, j)
)

︸                                  ︷︷                                  ︸
varies for other tensor operations

= 0,

(7)

where ẽ (·). Thus, the prover and the verifier can execute the sum-

check protocol [13], which proves the statements in the form of∑︁
i∈{0,1}𝑑

𝑓 (i) = 0 (8)

for any 𝑑-variate polynomial (𝑑 = log
2
𝐷0 + log2 𝐷1 + log2 𝐷2 in the

case of (7)). The prover time, proof size, and verifier time are𝑂 (2𝑑 ),
𝑂 (𝑑), and 𝑂 (𝑑), respectively. At the end of the protocol, a claim

about the value of 𝑓 (v) is made by the prover (where v ∼ F𝑑 due

to the randomness over the protocol execution), which is further

reduced to the claimed evaluations of themultilinear extensions (i.e.,

C̃ (v0, v2), Ã (v0, v1), B̃ (v1, v2) in (7) with the indices decomposed

as v = v0 ⊕ v1 ⊕ v2 with the corresponding dimensionalities.)

These claims are further verified via the proof of evaluations on the

commitments of the tensors introduced in Section 3.4.

Optimized adaptations of the sumcheck protocol are designed

to align with standard operations in deep learning, such as matrix

multiplication [26, 49] (see Section 6.1.1) and convolution [38]. The

preservation of the tensor structure enables the parallelization of

the proof. Moreover, zero-knowledge adaptations of the sumcheck

protocol [11, 60, 61] have been developed to prevent any disclosure

of information related to the tensors, while adding a negligible

additional computational burden.

3.4 Polynomial Commitment
The binding and hiding requirements for the tensors, in the form

of multilinear extensions, which are considered the intellectual

properties of the prover, are achieved using polynomial commit-

ment schemes. Specifically, the following establishes the correct-

ness of S̃ (v) in zero-knowledge for any tensor S (assumed to be

one-dimensional for simplicity) and any v with matching dimen-

sionality:

• pp← KeyGen(1𝜆) generates the public parameters used in

the scheme, where 𝜆 is the security parameter of the scheme.

• ⟦S⟧ ← Commit(S, 𝑟 ; pp) generates a binding and hiding com-

mitment ⟦S⟧ of S, such that ⟦S⟧ leaks no information about

S, and no polynomial-time adversary can compute S′ ≠ S
and 𝑟 ′ such that ⟦S⟧ = Commit(S; pp, 𝑟 ).
• (𝑦, 𝜋) ← ProveEval(S, ⟦S⟧ , v, 𝑟 ; pp) allows the prover to

compute 𝑦 ← S̃ (v) for any v with matching dimensionality,

and creates a proof of evaluation that 𝑦 = S̃ (v) with respect

to the committed S.
• True/False← Verify(𝑦, 𝜋, ⟦S⟧ , v; pp) allows the verifier
to verify the correctness of 𝑦, such that

– (Completeness) if (𝑦, 𝜋) = ProveEval(S, ⟦S⟧ , v, 𝑟 ; pp),
then the output is True.

– (Soundness) if 𝑦 ≠ S̃ (v), then the output is False with
1 − negl (𝜆) probability.

– (Zero-knowledge) the verifier learns no information be-

yond 𝑦 = S̃ (v).
In the absence of ambiguity, we omit the randomness 𝑟 and public

parameters pp in the subsequent context.

In this study, Hyrax [54], a variant of the Pedersen commitment

[43] that does not require a trusted setup, is used as an instantiation

of the polynomial commitment scheme. It operates on a cyclic

group G (typically an elliptic curve), with the hardness assumption

of the discrete log problem, and is isomorphic to the addition of F.
Hyrax is homomorphic, such that Commit(S1, 𝑟1)+Commit(S2, 𝑟2) =
Commit(S1 + S2, 𝑟1 + 𝑟2) for any two tensors S1, S2 and randomness

𝑟1, 𝑟2. Hyrax achieves linear complexity in Commit and ProveEval
with respect to the dimensionality 𝐷 of the tensor S involved and

can be further parallelized by concurrently handling operations on

all dimensions. It also balances the commitment size, proof size,

and verifier’s proof evaluation time, all to sub-linear complexities

of𝑂 (
√
𝐷),𝑂 (log𝐷), and𝑂 (

√
𝐷) respectively. These improvements

are adeptly adopted in zkLLM to minimize both computation and

communication burdens.

3.5 Lookup arguments
The lookup argument is commonly used to address non-arithmetic

operations within the domain of zero-knowledge proofs [50]. In-

spired by recent advances [16, 22, 23, 44, 62, 63], the incorporation

of lookup arguments into zero-knowledge verifiable deep learning

inference [33] has been pursued. In such a setting, a lookup argu-

ment verifies that each element in a secret tensor S𝐷 , known only to
the prover, is contained within a predefined table T ∈ F𝑁 , mutually

acknowledged by both parties. However, the requisite computations

for lookup arguments are intrinsically sequential, which contra-

dicts the parallelism preferred in deep learning environments. Fur-

thermore, deploying lookup arguments entails a trade-off between

sacrificing precision and incurring excessive memory consump-

tion and trusted setup burdens due to the expansive size of the

lookup tables necessary to cover all possible values (with 𝑁 being

significantly large).

In response to these challenges, our proposed lookup arguments

for non-arithmetic tensor operations markedly enhance paralleliza-

tion compared to the largely sequential approaches traditionally

used in verifiable deep learning inference. Additionally, our novel

proof protocol, tailored for the Softmax function within the atten-

tionmechanisms of Transformermodels, is designed to optimize the

balance between setup and proving times, memory consumptions,

and precision.

3.6 Settings and security assumptions
We follow the widely recognized framework for zero-knowledge

verifiable inferences as outlined in prior research on zero-knowledge

machine learning [18, 33, 35, 38, 55–57]. In this framework, the

prover (such as an AI company) owns an LLM with a publicly

known structure (e.g., described in the technical report), while con-

sidering the model’s weights as its intellectual property. The prover

4
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provides API access to this model for a verifier (like an AI regu-

lation enforcer), who submits a prompt and requests formal proof

that the inference result returned by the API is accurate in relation

to the prompt and the confidential model.

A semi-honest assumption is applied to the verifier: the verifier

accurately reports the outcome of the proof verification (whether

it is accepted or rejected) but endeavors to glean additional infor-

mation about the LLM (like hidden parameters) beyond merely

confirming the correctness of the inference result.

In this study, we assume the use of a commitment scheme that

ensures 𝜆-bit security. Correspondingly, the computations are car-

ried out within a finite field F, characterized by a prime order of

at least Ω(22𝜆). Furthermore, we postulate that every aspect of

the transformer model and the data—including the number of lay-

ers, the dimensions of tensors, and the complexity of operations

between them—is polynomially bounded by 𝜆.

4 tlookup: VERIFIABLE NON-ARITHMETIC
OPERATIONS FOR DEEP LEARNING

In this section, we introduce tlookup, our novel approach to ad-

dressing general non-arithmetic operations in deep learning. The

tlookup design preserves the widely-used tensor-based structure,

guaranteeing seamless compatibility with the established computa-

tional frameworks in deep learning. tlookup acts as a foundational
component of zkAttn, our specialized ZKP protocol tailored for the

attention mechanism, detailed in Section 5. Furthermore, tlookup
is applicable to other non-arithmetic operations essential to the

inference mechanisms within LLMs.

We first reduce the non-arithmetic tensor operations to lookup

arguments over tensors. Specifically, for a tensor S ∈ F𝐷 , the prover
aims to convince the verifier that each element of S exists within
T ∈ F𝑁 , a table that both parties have full knowledge of. The

essence of our approach hinges on the subsequent lemma:

Lemma 4.1 ([30]). Given tensors S ∈ F𝐷 and T ∈ F𝑁 , S ⊂ T as
sets if and only if there existsm ∈ F𝑁 such that the following identity
of rational functions is satisfied:∑︁

𝑖∈[𝐷 ]

1

𝑋 + S𝑖
=

∑︁
𝑖∈[𝑁 ]

m𝑖
𝑋 + T𝑖

. (9)

When the condition S ⊂ T holds, the prover constructs m as:

m𝑖 ←
��{ 𝑗 : S𝑗 = T𝑖

}�� , for 0 ≤ 𝑖 ≤ 𝑁 − 1. (10)

The verifier can then confirm the equality presented in (9) by ran-

domly choosing 𝑋 ← 𝛽 ∼ F. By defining:

A :=

(
1

𝛽 + S𝑖

)𝐷−1
𝑖=0

,B :=

(
1

𝛽 + T𝑖

)𝑁−1
𝑖=0

, (11)

the aforementioned equality at the random point 𝛽 can be restated

as: ∑︁
𝑖∈[𝐷 ]

A𝑖 =
∑︁
𝑖∈[𝑁 ]

m𝑖B𝑖 . (12)

Therefore, with the randomness u ∼ Flog2 𝐷 and 𝛼 ∼ F, the sum-

check for the correctness of (11) and (12) can be formulated as

0 =
©­«

∑︁
i∈[𝐷 ]

Ã (i) −
∑︁

j∈[𝑁 ]
m̃ (j) B̃ (j)ª®¬

+ 𝛼 ©­«
∑︁

i∈[𝐷 ]
ẽ (u, i) Ã (i)

(̃
S (i) + 𝛽

)
− 1ª®¬

+ 𝛼2 ©­«
∑︁

j∈[𝑁 ]
ẽ
(
u[

log
2

𝐷
𝑁
:

] , j) B̃ (j) (T̃ (j) + 𝛽) − 1ª®¬ , (13)

or equivalently,

𝛼 + 𝛼2 =
∑︁

i∈
[
𝐷
𝑁

] ∑︁
j∈[𝑁 ]

(
Ã (i ⊕ j)

(
𝛼 ẽ (u, i ⊕ j)

(̃
S (i ⊕ j) + 𝛽

)
+ 1

)
+ 𝑁𝐷−1B̃ (j)

(
𝛼2ẽ

(
u[

log
2

𝐷
𝑁
:

] , j) (
T̃ (j) + 𝛽

)
− m̃ (j)

))
.

(14)

A comprehensive description of the procedure to validate S ⊂ T
is found in Protocol 1. In particular, in Line 1, tlookup-Setup(T)
generates a short witness ⟦T⟧ to a prescribed table T known to

both parties; in Line 4, the prover constructs m based on a tensor

S and table T and commit to S and m using tlookup-Prep(S,T);
finally, in Line 9, ⟨P,V⟩.tlookup-Prove(⟦S⟧ , ⟦m⟧ , ⟦T⟧) is the
interactive process of the prover P proving that a secret tensor S is
elementwisely in T, which has been committed as ⟦T⟧.

Protocol 1 tlookup

Require: The prover P knows S ∈ F𝐷 . 𝑁, 𝐷 are both powers of 2

such that 𝑁 divides 𝐷 .

1: procedure tlookup-Setup(T ∈ F𝑁 )
2: return ⟦T⟧ ← Commit(T; 0) ⊲ No hiding required

3: end procedure
4: procedure P.tlookup-Prep(S ∈ F𝐷 ,T ∈ F𝑁 )
5: Compute m = m(S,T) as (10)
6: P → V : ⟦S⟧ ← Commit(S)
7: P → V : ⟦m⟧ ← Commit(m)
8: end procedure
9: procedure ⟨P,V⟩.tlookup-Prove(⟦S⟧, ⟦m⟧ , ⟦T⟧)
10: V → P : 𝛽 ∼ F
11: P computes A,B as (11)

12: P → V : ⟦A⟧ ← Commit(A), ⟦B⟧ ← Commit(B)
13: P andV run the sumcheck on (14), followed by the proofs

of evaluation on ⟦A⟧ , ⟦B⟧ , ⟦S⟧ , ⟦m⟧ and ⟦T⟧.
14: end procedure

Meanwhile, for elementwise non-arithmetic operations 𝑓 : X →
Y over tensors where X,Y ⊂ F, two lookup tables can be con-

structed:TX := (𝑥)𝑥∈X andTY := (𝑓 (𝑥))𝑥∈X . To demonstrate that

Y = 𝑓 (X) for some X,Y ∈ F𝐷 (broadcasting 𝑓 over all dimensions),

one can apply the idea of random linear combination to reduce the

check to one instance of Protocol 1 where X + 𝛼Y ⊂ TX + 𝛼TY for

𝛼 ∼ F chosen by the verifier.

5
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Example 4.2 (ReLU with rescaling). We first consider the rec-
tified linear unit (ReLU), which is a common activation function in
contemporary deep learning models, including Transformers. ReLUs
are generally applied subsequent to linear layers (for instance, fully
connected layers) where products are involved. In the scenario of
fully quantized computation, it becomes necessary for the ReLU to
incorporate rescaling as well. This is denoted as follows:

A← ReLU(Z) =
⌊
Z
𝛾

⌉
⊙ 1

{⌊
Z
𝛾

⌉
≥ 0

}
, (15)

where𝛾 represents the scaling factor used in the system (assumed to be

even for simplicity). We assume that −𝐵
2
≤

⌊
Z
𝛾

⌉
< 𝐵

2
holds element-

wise for a positive even integer 𝐵. Considering that Z is decomposed as

Z′ :=
⌊
Z
𝛾

⌉
and R = Z−𝛾Z′, we establish a pair of input-output lookup

tables for Z′. These are defined as TX :=
[
−𝐵

2
, 𝐵
2
− 1

]
and TY := T+X

(i.e., taking the maximum with 0 element-wise), and an additional
lookup table for R as TR =

[
−𝛾
2
,
𝛾
2
− 1

]
. By requiring the prover to

demonstrate to the verifier that Z′ + 𝛼A ⊂ TX + 𝛼TY for a random
𝛼 , and that R ⊂ TR , both using Protocol 1, in addition to proving
the decomposition as Z = 𝛾Z′ + R, we can sufficiently validate the
correctness of inference through the ReLU function. Notably, unlike
the brute-force method that employs a single lookup table and incurs
an 𝑂 (𝐵𝛾) overhead in both running time and memory usage, the use
of two lookup tables effectively reduces this overhead to 𝑂 (𝐵 + 𝛾).
Similarly, if 𝛾 is too large to fit the table into memory, it can be further
divided into a 𝐾-digit 𝛾

1

𝐾 -ary number. In this scenario, each of the
𝐾 digits in the remainder corresponds to a separate tlookup, thus
adequately covering all possible values of the remainder.

However, resolving the long-standing problem of excessive mem-

ory consumption for lookup tables in the realm of deep learning

requires additional efforts. Specifically, in Section 5, tlookup is

further refined into zkAttn to address its multivariate and highly

non-arithmetic nature, optimizing the balance among running time,

memory consumption, and approximation error.

5 zkAttn: DEDICATED ZKP FOR THE
ATTENTION MECHANISM IN LLMS

The attention mechanism is a key component in modern transform-

ers, including state-of-the-art LLMs. However, incorporating these

mechanisms into ZKP backends has been challenging, primarily

due to their distinctive mathematical properties. Specifically, the

Softmax function, integral to the attention mechanism, involves

non-arithmetic operations like exponentiation, and its multivariate

aspect complicates the use of polynomial approximations for tra-

ditional ZKP backends. To address these challenges, we introduce

zkAttn, a specialized ZKP tailored for the attention mechanism,

designed to leverage its inherent mathematical characteristics ef-

fectively.

5.1 Formulation of zkAttn
The attention mechanism, in its discretized form, accepts as input

a value matrix V ∈ F𝑛×𝑑 , a key matrix K ∈ F𝑛×𝑑 , and a query

matrix Q ∈ F𝑚×𝑑 . It produces the output Softmax

(
QK⊤√
𝑑

)
V subject

to appropriate rescaling of the input and output due to quantization,

where Softmax is applied row-wise. In this discussion, we focus on

Attention(Q,K,V) = Softmax

(
Z√
𝑑

)
, where the input matrix Z =

QK⊤ is presumed to be scaled by the scaling factor 𝛾 from its actual

values. It is assumed that 𝑑 is a constant, known to both the prover

and verifier, stemming from the presumption of a known model

architecture. Equivalently, for each row z = (𝑧0, 𝑧1, . . . , 𝑧𝑛−1) ∈ F𝑛 ,
the objective is to devise an algorithm that computes

𝑠 (z) :=
©­­­­«

exp

(
𝑧𝑖

𝛾
√
𝑑

)
∑𝑛−1
𝑗=0 exp

(
𝑧 𝑗

𝛾
√
𝑑

) ª®®®®¬
𝑛−1

𝑖=0

(16)

in the real domain. Alternatively, it should compute its quantized

counterpart 𝜃𝑠 (z), ensuring limited numerical error and manage-

able proof generation overhead. Here, 𝜃 represents the scaling factor

of all Softmax outputs in the system. Notably, this factor differs

from the scaling factor 𝛾 used for other matrices, such as Q,K, and
V. For the sake of streamlined and verifiable rescaling in subsequent

computations, we posit that 𝜃 is a multiple of 𝛾 .

To circumvent the verification of real division operations—which

can lead to remainders after quantization—we observe the following.

By utilizing the shift-invariance property of Softmax and defining

𝑧 := 𝛾
√
𝑑 ln

©­«
𝑛−1∑︁
𝑗=0

exp

(
𝑧𝑖

𝛾
√
𝑑

)ª®¬ , (17)

we derive that

𝑠 (z) = 𝑠 (z − 𝑧) =
(
exp

(
𝑧𝑖 − 𝑧
𝛾
√
𝑑

))𝑛−1
𝑖=0

. (18)

It is imperative to understand that the computation of 𝑧 (⌊𝑧⌉ to be

specific, since 𝑧 is not an integer in general) in (17) is not directly

verified due to its highly non-arithmetic nature. Instead, the prover

ensures that the output of 𝑠 (z) adheres to proper normalization. In

its quantized representation, the sum of its dimensions must equal

𝜃 . A certain degree of deviation is acceptable owing to quantization,

and the precise bounds of this error will be elucidated in Section

7.1. Furthermore, beyond verifying normalization, there exists the

challenge of crafting a scheme to compute the quantized exponen-

tiation. This scheme should not only be accurate, approximating

𝜃 exp

(
·

𝛾
√
𝑑

)
with minimal error, but also be amenable to efficient

verification through the proof protocol that will be subsequently

introduced.

Observe that, given the definition of 𝑧, 𝑧𝑖 − 𝑧 ≤ 0 for all 𝑖s. On

the other hand, as 𝑧𝑖s are all real numbers involved in the matrix

multiplication scaled by 𝛾 , it is also reasonable to assume that each

𝑧𝑖 − 𝑧 is lower bounded by some integer −𝐵 such that 𝛾 ≪ 𝐵 ≪ |F|,
such that (−𝐵, 0] can accommodate the reasonable values of 𝑧𝑖 − 𝑧,
but sufficiently small so as not to cause wraparounds in F.

Without loss of generality, consider 𝐵 as a product of 𝐾 posi-

tive integers, denoted as 𝐵 =
∏𝐾−1
𝑘=0

𝑏 (𝑘 ) . A bijection can then be

established between [𝐵] and the product space

∏𝐾−1
𝑘=0

[
𝑏 (𝑘 )

]
. By

6
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defining 𝐵 (𝑘 ) as

𝐵 (𝑘 ) :=

{
1, if 𝑘 = 0;∏𝑘−1
𝑗=0 𝑏

( 𝑗 ) , 1 ≤ 𝑘 ≤ 𝐾 − 1,

our bijection 𝔟 :

∏𝐾−1
𝑘=0

[
𝑏 (𝑘 )

]
→ [𝐵] can be expressed as

𝔟

(
𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝐾−1)

)
=

𝐾−1∑︁
𝑘=0

𝑥 (𝑘 )𝐵 (𝑘 ) . (19)

Consequently, for each

(
𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝐾−1)

)
= 𝔟−1 (𝑥), the fol-

lowing holds:

exp

(
− 𝑥

𝛾
√
𝑑

)
= exp

(
−

∑𝐾−1
𝑘=0

𝑥 (𝑘 )𝐵 (𝑘 )

𝛾
√
𝑑

)
=

𝐾−1∏
𝑘=0

exp

(
−𝐵
(𝑘 )

𝛾
√
𝑑
𝑥 (𝑘 )

)
.

(20)

Our objective is to compute the quantized representation of equa-

tion (20), taking into account the scaling factor 𝛾 . If we further

decompose 𝛾 as 𝜃 =
∏𝐾−1
𝑘=0

𝜃 (𝑘 ) with non-negative values for 𝜃 (𝑘 ) ,
equation (20) gives rise to

𝜃 exp

(
− 𝑥

𝛾
√
𝑑

)
=

𝐾−1∏
𝑘=0

𝜃 (𝑘 ) exp

(
−𝐵
(𝑘 )

𝛾
√
𝑑
𝑥 (𝑘 )

)
. (21)

Following the decomposition in Equation (21), we can construct

𝐾 tlookup tables T(𝑘 ) =
(
T(𝑘 )X ,T(𝑘 )Y

)
. Each table T(𝑘 ) comprises

all potential input-output pairs corresponding to the 𝑘-th term in

the product of (21):

T(𝑘 )X :=

[
𝑏 (𝑘 )

]
, T(𝑘 )Y :=

(⌊
𝜃 (𝑘 ) exp

(
−𝐵
(𝑘 )

𝛾
√
𝑑
𝑥

)⌉)
𝑥∈ [𝑏 (𝑘 ) ]

. (22)

Given any input 𝑧 ∈ (−𝐵, 0], the prover first decomposes 𝔟(−𝑧) =(
𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝐾−1)

)
according to (19). Each component 𝑥 (𝑘 ) is

subsequently mapped to𝑦 (𝑘 ) based on T(𝑘 ) , resulting in the compu-

tation𝑦 ←∏𝐾−1
𝑘=0

𝑦 (𝑘 ) . Subsequently, the prover must demonstrate

to the verifier that:

𝑧 +
𝐾−1∑︁
𝑘=0

𝑥 (𝑘 )𝐵 (𝑘 ) = 0, (23)(
𝑥 (𝑘 ) , 𝑦 (𝑘 )

)
∈ T(𝑘 ) , ∀0 ≤ 𝑘 ≤ 𝐾 − 1, (24)

𝐾−1∏
𝑘=0

𝑦 (𝑘 ) = 𝑦. (25)

Equation (23) confirms that the decomposition of −𝑧 is valid.

Equation (24) ensures the correctness of the exponent in each com-

ponent concerning the pre-computed values inT(𝑘 ) , and (25) asserts
that the output 𝑦 is accurately derived using the homomorphism

of exponentiation from each factor 𝑦 (𝑘 ) . Together, these three con-
ditions guarantee the correct computation of the exponentiation

operation, up to the rounding errors. Specifically:

Lemma 5.1. Conditions (23), (24), and (25) imply:

𝑦 =

𝐾−1∏
𝑘=0

⌊
𝜃 (𝑘 ) exp

(
−𝐵
(𝑘 )

𝛾
√
𝑑
𝑥 (𝑘 )

)⌉
, (26)

where
(
𝑥 (𝑘 )

)𝐾−1
𝑘=0

= 𝔟(−𝑧) is the valid decomposition according to

(19).

The deviation between 𝑦 and the exact scaled exponent

𝜃 exp

(
𝑧

𝛾
√
𝑑

)
=

𝐾−1∏
𝑘=0

𝜃 (𝑘 ) exp

(
−𝐵
(𝑘 )

𝛾
√
𝑑
𝑥 (𝑘 )

)
arises only from the rounding of each factor. An in-depth analysis

of this will be covered in Section 7.1, where we will also provide

guidance on selecting the parameters 𝜃 (𝑘 ) and 𝐵 (𝑘 ) . In the sub-

sequent sections of this text, we delve into the protocol design,

facilitating the batched verification of (23), (24), and (25) for each

dimension of large tensors used in transformer computations.

5.1.1 Optimization for the most and least significant segments. For
the uppermost significant𝑀 segments, specifically 𝑥 (𝑘 ) with 𝐾 −
𝑀 ≤ 𝑘 ≤ 𝐾 − 1, consider a scenario where if any of these segments

𝑥 (𝑘 ) have non-zero values, the resulting exponent

exp

(
− 𝑥

𝛾
√
𝑑

)
≤ exp

(
−𝐵𝐾−𝑀
𝛾
√
𝑑

)
(27)

approximates 0 closely enough that the output 𝑦 from (25) can be

designated as 0. This outcome can be achieved by configuring each

table T(𝑘 ) that 𝐾 −𝑀 ≤ 𝑘 ≤ 𝐾 − 1 in (24), to yield 𝑦 (𝑘 ) = 0 for any

𝑥 (𝑘 ) > 0. Moreover, based on our initial design, instances where

𝑥 (𝑘 ) = 0, the value of 𝑦 (𝑘 ) defaults to
⌊
𝜃 (𝑘 )

⌉
. Clearly, assigning

any value other than 1 to these 𝜃 (𝑘 ) would only amplify the er-

rors in T(𝑘 ) and other tables, especially under the constraint that∏𝐾−1
𝑘=0

𝜃 (𝑘 ) = 𝜃 is constant. Therefore, for these most significant𝑀

segments, the lookup tables T(𝑘 ) can be reduced to the indicator

function 𝑦 (𝑘 ) = 1{𝑥 (𝑘 ) = 0}.
On the other hand, for the least significant 𝐿 segments 𝑥 (𝑘 ) ,

indexed by 0 ≤ 𝑘 ≤ 𝐿 − 1, the expression exp

(
−𝐵 (𝑘 )
𝛾
√
𝑑
𝑥 (𝑘 )

)
tends

to hover close to 1 for all possible values of 0 ≤ 𝑥 (𝑘 ) ≤ 𝑏 (𝑘 ) − 1.
Given this, approximating the exponentiation as a constant of 1

incurs a negligible error. Analogous to the strategy for the most

significant segments, it is efficient to set the scaling factors 𝜃 (𝑘 ) to
1, sidestepping larger alternatives. This approach frees up room for

allocating larger 𝜃 (𝑘 ) s for segments indexed by 𝐿 ≤ 𝑘 ≤ 𝐾 −𝑀 − 1,
thereby enhancing precision for these segments. As a result, the

constraint (24) for validating input-output pairs simplifies to 𝑥 (𝑘 ) ∈[
𝑏 (𝑘 )

]
, given that 𝑦 (𝑘 ) consistently equates to 1.

As delineated in Section 7.1, employing these optimizations for

both the most and least significant segments tightly upper bounds

the error in zkAttn, aligning closely with the computational logic

of the original neural networks.

5.2 zkAttn: the main protocol
In Protocol 2, we present the technical details of zkAttn built upon
tlookup, our protocol for general non-arithmetic operations in

deep learning. zkAttn is separated into three steps. First, zkAttn-

Setup(·) (in Line 1) completes the setup for zkAttn by generating

short witnesses of all tables involved. Then, in zkAttn-Compute(·),
the prover is responsible for computing the output of the attention

7
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mechanism and all necessary auxiliary tensors (e.g., the normal-

ization constants, the inputs and outputs of each segment, and the

recovered row-wise sum that should not excessively deviate from

1) for the zero-knowledge verifiability of the attention mechanism,

and sends the commitments of these tensors to the verifier. Finally,

the prover and verifier engage in the interactive protocol zkAttn-

Prove(·) in Line 14, which involves proving the correctness of each

segment and the normalization using the specialized lookup argu-

ments of tlookup, as well as all arithmetic relations connecting

the auxiliary tensors.

6 PUTTING EVERYTHING TOGETHER
6.1 Taxonomy of verifiable tensor operations
In this section, we present a taxonomy of the tensor operations

involved in modern LLMs and the customized handling of these

operations by zkLLM.

6.1.1 Matrix multiplications. Matrix multiplication plays a cru-

cial role in modern transformers, including all linear layers and

positional encoding (e.g., RoPE [48]) in LLMs.

Dedicated sumchecks [26] formatrixmultiplications have achieved

running times significantly lower than the computation itself. This

development has been a key driver in the creation of specialized

ZKPs for deep learning, a method also applied in this study to es-

tablish the correctness of all matrix products. To confirm C = AB,
with A ∈ F𝑚×𝑛 and B ∈ F𝑛×𝑝 , the prover and the verifier execute

a sumcheck on

C̃ (u, v) =
∑︁

i∈{0,1} ⌈ log2 𝑛⌉
Ã (u, i) B̃ (i, v) , (28)

where u ∈ F⌈log2𝑚⌉ and v ∈ F⌈log2 𝑝⌉ are selected at random by

the verifier. This specialized proof for matrix multiplication ensures

a prover time of 𝑂 (𝑚𝑛 + 𝑛𝑝), faster than the computation process.

6.1.2 Activation functions. To enhance performance, modern LLMs

have replaced traditional ReLU activation functions with smoother

alternatives like SwiGLU [47] and GELU [31]. This transition ne-

cessitates extra efforts to make these new activation functions veri-

fiable. The SwiGLU function, parameterized by 𝛽 , is defined as

SwiGLU𝛽 (𝑧, 𝑧′) := Swish𝛽 (𝑧) · 𝑧′, (29)

with the Swish function being Swish𝛽 (𝑧) := 𝑧·Sigmoid(𝛽𝑧). Though
the non-arithmetic Sigmoid function can be integrated into the

proof system via tLookup, optimizing setup costs and memory us-

age is crucial. This is achieved by reducing the Sigmoid function to

zkAttn, given Softmax

(
𝑧

0

)
=

(
Sigmoid(𝑧)
Sigmoid(−𝑧)

)
, thus circumventing

the bottleneck of iterating over extensive input-output pairs. The

GELU function, defined as GELU(𝑧) := 𝑧Φ(𝑧) ≈ 𝑧Sigmoid(1.702𝑧),
is handled similarly.

6.1.3 Normalization. LLMs employ LayerNorm [2] and its variants

(e.g., RMSNorm [64]) for training stability. Unlike batch normal-

ization, which can be merged into preceding layers for verifiable

inference, LayerNorm involves non-linear transformations within

each sample x, described as

𝑦 ← x − E[x]√︁
Var[𝑥] + 𝜖

. (30)

The compound non-arithmetic operations of square-root and in-

verse are managed through two sequential tlookup steps. These
steps are responsible for the verifiable downscaling of the input

and the quantized compound operation, respectively. Similar to the

ReLU example presented in Example 4.2, the implementation of the

first tlookup for downscaling is designed to reduce the overall sizes
of the lookup tables, thereby keeping memory usage at a reasonable

level.

6.2 Assembly of the proofs
Following the pioneering works [26, 38], zkLLM utilizes sumcheck-

based proofs for computations across various components of LLMs.

These proofs are assembled in reverse logical order of the arithmetic

circuits, methodically reducing the claimed multilinear extension

values of the output 𝑦 to those associated with the prompt X and

the model parametersW. These are then verified straightforwardly

and through proof of evaluations on the commitment ⟦W⟧. For
high-level clarity, zkLLM can be distilled into three main compo-

nents, with additional commitments caused by tlookups omitted

for simplicity:

• ⟦W⟧ ← zkLLM-Commit(W, pp, 𝑟 ): The prover commits to

the model parametersW using the public parameters (gen-

erators of the commitment scheme) pp and randomness 𝑟 .

• (𝑦, 𝜋) ← zkLLM-Prove(W,X, pp, 𝑟 ): The prover computes

the output𝑦 with the promptX and modelW, and assembles

the proof 𝜋 using the sumcheck protocols and proofs of

evaluations as previously described.

• 𝑏 ← zkLLM-Verify(X, 𝑦, ⟦W⟧): The verifier checks the cor-
rectness of each sumcheck and proof of evaluation within 𝜋 ,

outputting 𝑏 = 1 to accept the proof (if all components are

correctly verified), and 𝑏 = 0 otherwise.

7 ANALYSIS
7.1 Error analysis on zkAttn
In this section, we examine the error introduced by zkAttn, as dis-
cussed in Section 5. Our analysis serves three primary objectives:

first, to establish an upper bound on the error, thereby demon-

strating that our zkAttn design remains faithful to the original

neural network; second, to fine-tune the parameters integral to

zkAttn, aiming to minimize the error; and third, to determine an

acceptable upper bound on the error upon the verification of proper

normalization in zkAttn.
The overall error of zkAttn originates from two sources, the

rounding of the shifting factor 𝑧 in (17) thatmakes the normalization

no longer perfect, and the rounding of each segment encoded in the

lookup tables T(𝑘 ) s that introduces errors to the exponentiations.

The bound of the overall error is stated in Theorem 7.1 and analyzed

in details in Appendix C.1.
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Protocol 2 zkAttn (See Section 6.1.1 about the two matrix multiplications involved)

Require: Both the prover P and the verifierV know: the lower bound of input −𝐵, and the factorization 𝐵 =
∏𝐾−1
𝑘=0

𝑏 (𝑘 ) ; the number of the

most and least significant segments𝑀 and 𝐿 in Section 5.1.1; the scaling factor of the input 𝛾 , the output 𝜃 , and each segment 𝜃 (𝑘 ) for
each 𝐿 ≤ 𝑘 ≤ 𝐾 −𝑀 − 1; the parameters𝑚,𝑛,𝑑 related to the dimensions of the input; the tolerable error 𝐸 in row-wise normalization.

1: procedure zkAttn-Setup(𝐵, 𝐾,𝑀, 𝐿,
(
𝑏 (𝑘 )

)𝐾−1
𝑘=0

, 𝛾, 𝜃, (𝜃𝐾 )𝐾−𝑀−1𝑘=𝐿
,𝑚, 𝑛, 𝑑, 𝐸)

2: for 0 ≤ 𝑘 ≤ 𝐾 − 1 do
3:

�
T(𝑘 )X

�
← tlookup-Setup(T(𝑘 )X ) ⊲ T(𝑘 )X =

[
𝑏 (𝑘 )

]
, i.e., the input of the 𝑘-th segment

4: end for
5: for 𝐿 ≤ 𝑘 ≤ 𝐾 −𝑀 − 1 do
6:

�
T(𝑘 )Y

�
← tlookup-Setup(T(𝑘 )Y ) ⊲ T(𝑘 )Y as defined in (22), i.e., the output of the 𝑘-th segment

7: end for
8: for 𝐾 −𝑀 ≤ 𝑘 ≤ 𝐾 − 1 do
9:

�
T(𝑘 )Y

�
← tlookup-Setup(T(𝑘 )Y ) ⊲ T(𝑘 )Y = 1

{[
𝑏 (𝑘 )

]
= 0

}
, i.e., the optimized output of the 𝑘-th segment

10: end for
11: ⟦TR⟧ ← tlookup-Setup(TR ) ⊲ TR = [𝜃 − 𝐸, 𝜃 + 𝐸], i.e., all tolerable values of row-wise sum of the output

12: return
(�
T(𝑘 )X

�)𝐾−1
𝑘=0

,

(�
T(𝑘 )Y

�)𝐾−1
𝑘=𝐿

, ⟦TR⟧
13: end procedure

14: procedure P.zkAttn-Compute(Z ∈ F𝑚×𝑛 ,
(
T(𝑘 )X

)𝐾−1
𝑘=0

,

(
T(𝑘 )Y

)𝐾−1
𝑘=𝐿

) ⊲ Some implicit parameters included in Setup(·) omitted

15: Z′ ← Z − ⌊ẑ⌉ 1⊤, where ẑ ∈ R𝑚 is computed row-wise as (17)

16:

(
X(𝑘 )

)𝐾−1
𝑘=0
← 𝔟−1 (−Z′) ⊲ −Z is decomposed elementwisely

17: for 𝑘 ← 𝐿, 𝐿 + 1, . . . , 𝐾 − 1 do
18: Y(𝑘 ) ← 𝑓 (𝑘 ) (X(𝑘 ) ) elementwisely, where 𝑓 (𝑘 ) is defined by T(𝑘 )X ,T(𝑘 )Y
19: end for
20: Y←

⊙𝐾−1
𝑘=𝐿 Y(𝑘 ) ⊲ Compute the final output

21: ŷ← Y.sum(axis = 1) ⊲ For checking the normalization of each row

22: P → V : ⟦Z⟧ , ⟦⌊ẑ⌉⟧ ,
(�
X(𝑘 )

�)𝐾−1
𝑘=0

, ⟦Y⟧ ,
(�
Y(𝑘 )

�)𝐾−1
𝑘=𝐿

, ⟦ŷ⟧
23: end procedure

24: procedure ⟨P,V⟩.zkAttn-Prove(⟦Z⟧ , ⟦⌊ẑ⌉⟧ ,
(�
X(𝑘 )

�)𝐾−1
𝑘=0

, ⟦Y⟧ ,
(�
Y(𝑘 )

�)𝐾−1
𝑘=𝐿

, ⟦ŷ⟧)
25: for 𝑘 ← 0, 1, . . . , 𝐾 − 1 do
26: P.tlookup-Prep(X(𝑘 ) ,T(𝑘 )X ) ⊲

�
m(𝑘 ) := m

(
X(𝑘 ) ,T(𝑘 )X

)�
transmitted toV

27: ⟨P,V⟩.tlookup-Prove(
�
X(𝑘 )

�
,

�
m(𝑘 )

�
,

�
T(𝑘 )X

�
) ⊲ Prove the correctness on the 𝑘-th segment

28: end for
29: V → P : 𝛼 ∼ F
30: for 𝑘 ← 𝐿, 𝐿 + 1, . . . 𝐾 − 1 do
31: P.tlookup-Prep(X(𝑘 ) + 𝛼Y(𝑘 ) ,T(𝑘 )X + 𝛼T

(𝑘 )
Y ) ⊲

�
m(𝑘 ) := m

(
X(𝑘 ) + 𝛼Y(𝑘 ) ,T(𝑘 )X + 𝛼T

(𝑘 )
Y

)�
transmitted toV

32: ⟨P,V⟩.tlookup-Prove(
�
X(𝑘 )

�
+ 𝛼

�
Y(𝑘 )

�
,

�
m(𝑘 )

�
,

�
T(𝑘 )X

�
+ 𝛼

�
T(𝑘 )Y

�
) ⊲ Prove the correctness on the 𝑘-th segment

33: end for
34: P.tlookup-Prep(ŷ,TR ) ⊲ ⟦mR := m (Y,TR )⟧ transmitted toV
35: ⟨P,V⟩.tlookup-Prove(⟦ŷ⟧, ⟦mR⟧ , ⟦TR⟧) ⊲ Prove the correctness on the 𝑘-th segment

36: P andV run the sumcheck for 𝔟(X0,X1, . . . ,X𝐾−1) + Z′ = 0
∧

Z′ = Z − ⌊ẑ⌉ 1⊤∧
Y =

⊙𝐾−1
𝑘=𝐿 Y(𝑘 )

∧
ŷ = Y.sum(axis = 1), followed

by the proof of evaluations on ⟦Z⟧ , ⟦⌊ẑ⌉⟧ ,
(�
X(𝑘 )

�)𝐾−1
𝑘=0

, ⟦Y⟧ ,
(�
Y(𝑘 )

�)𝐾−1
𝑘=𝐿

, ⟦ŷ⟧
37: end procedure

Theorem 7.1 (Error bound). With the choice of

𝐵𝐾−𝑀 ←
𝛾
√
𝑑

𝐾 −𝑀 − 𝐿 + 1 ((𝐾 −𝑀 − 𝐿) ln (2𝑛) + ln𝜃 ) , (31)

𝜃 (𝑘 ) ← exp

(
𝐵 (𝑘 )

𝛾
√
𝑑
(𝑏 (𝑘 ) − 1)

) (
𝜃 exp

(
−𝐵𝐾−𝑀 − 𝐵𝐿

𝛾
√
𝑑

)) 1

𝐾−𝑀−𝐿

(32)

and irrelevant of the choice of other 𝐵𝑘 s, the error bound in (48) can
be minimized as

𝜀attn = 𝑂

(
(𝐾 −𝑀 − 𝐿)

(𝑛
𝜃

) 1

𝐾−𝑀−𝐿+1
)
. (33)
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Theorem 7.1 have multiple implications:

(1) Minimizing 𝐾 −𝑀 − 𝐿, (i.e., the number of segments that

are designated as neither the most significant nor the least

significant as in Section 5.1.1) and 𝐵𝐿 (i.e., the magnitude of

least significant segments) is in favour of reducing the error.

However, as will be discussed in Section 7.3, this incurs an

undue increase in the computational overhead due to the

sizes of the lookup tables.

(2) 𝜀attn has no dependence on the segmentation of the zkAttn
input except 𝐵𝐿 and 𝐵𝐾−𝑀 , leaving room for distributing

the sizes of lookup tables T(𝑘 ) evenly which compresses the

computational overhead associated.

(3) 𝜀attn defines the tolerable error row-wise sum upon checking

the normalization, i.e., the sum of each row must lie within

[(1 − 𝜀attn)𝜃, (1 + 𝜀attn)𝜃 ].

7.2 Security and privacy analysis
In this section, we formalize the security and privacy aspects of

zkLLM, focusing on the tlookup protocol which facilitates zero-

knowledge verifiable computations across all non-arithmetic com-

ponents. We first address the completeness error of tlookup:

Theorem 7.2 (Completeness of Protocol 1). Assuming the
verifier V is semi-honest, Protocol 1 incurs a completeness error of

𝑂

(
𝑁
|F |

)
.

Theorem 7.2 indicates that if the prover P follows the protocol,

the proof produced using Protocol 1 has a mere 𝑂

(
𝑁
|F |

)
chance of

being rejected. As detailed in Appendix C.2, this minor imperfection

stems from the probability that the random challenge 𝛽 , chosen by

the verifier in Line 10, might trigger a division-by-zero error in one

of the terms on either side of Equation (9). On the other hand, all

arithmetic tensor operations do not contribute any additional com-

pleteness error, thanks to the direct application of the sumcheck

protocol. Therefore, the overall probability of an honest prover

failing to convince a semi-honest verifier of the correctness of its

inference through the LLM is at most 𝑂

(
𝐶
|F |

)
, where 𝐶 represents

the total size of all tensors involved in non-arithmetic operations.

Given that the entire complexity of the inference is poly(𝜆) and
|F| = Ω

(
2
2𝜆

)
, this error remains negligible in 𝜆. Practically, as our

implementation employs the BLS12-381 curve with |F| ≈ 2
254

, far

exceeding the computational limits of current technology, verifica-

tion has never failed in any experiment conducted, as reported in

Section 8.

Similarly, the soundness error of tlookup is also negligible in

𝜆, as stated in Theorem 7.3. Coupled with the direct application

of the sumcheck protocol and the proof-of-opening for the com-

mitted tensors, which also incur negligible errors in 𝜆 due to the

polynomial 𝜆 assumption on the complexity of the entire inference

process, we theoretically establish that a valid proof can confirm

the correctness of the inference result except with only a negligible

probability.

Theorem 7.3 (Soundness of Protocol 1). For any probabilistic
polynomial-time (p.p.t.) prover P, if in Line 6, the message P sends to
V is ⟦S⟧ ← Commit(S) such that S ⊄ T, then except with probability

negl (𝜆), the execution of Protocol 1 is unsuccessful, resulting in the
semi-honest verifierV rejecting the proof.

Proof sketch of Theorem 7.3. By the binding property of the

commitment scheme, except with probability negl (𝜆), in Line 13,

the success of proofs of evaluations implies the correctness of all

claimed multilinear extension values on A,B, S,m, and T. Subse-
quently, the success of the sumchecks implies with 1−𝑂

(
𝐷
|F |

)
that

all equalities in Equations (11) and (12) hold, such that∑︁
𝑖∈[𝐷 ]

1

𝛽 + S𝑖
=

∑︁
𝑖∈[𝑁 ]

m𝑖
𝛽 + T𝑖

. (34)

Finally, given the randomness of 𝛽 , with probability 1 −𝑂
(
𝑁𝐷
|F |

)
,

Equation (34) implies Equation (9), leading to the conclusion that

S ⊂ T. □

It is noteworthy, as elaborated in Section 7.1, that the correctness

of zkAttn is quantified by an L1 error of 𝜀attn. This measure of

correctness similarly applies to other exponentiation-based acti-

vation functions. The correctness of all other non-arithmetic op-

erations must also consider the quantization errors. For example,

as highlighted in Example 4.2, a numerical error margin of
1

2𝛾 is

an inescapable consequence of the rescaling process. On the other

hand, this degree of tolerance is also sufficient, as numerical errors

exceeding
1

2𝛾 would be detectable as incorrect computations and

consequently rejected through the application of tlookup.
Finally, with the application of zero-knowledge variations of

sumcheck protocols [11, 38, 60, 61] and Pedersen commitment

schemes [43], the proof assembled by zkLLM does not disclose

any information about the protected model parameters. Formally,

Theorem 7.4 (Zero-knowledge, adapted from [38]). Assum-
ing the application of zero-knowledge variations of sumcheck protocols
[11, 38, 60, 61] and Pedersen commitment schemes [43], there exists a
simulator S = (S1,S2) such that the following two views are com-
putationally indistinguishable to any probabilistic polynomial-time
(PPT) algorithm A, given the public parameters pp (the generators
used in the commitment scheme within the context of zkLLM):

RealA,W (pp):
1: ⟦W⟧ ← zkLLM-Commit(W, pp, 𝑟 )
2: X← A(⟦W⟧ , pp)
3: (𝑦, 𝜋) ← zkLLM-Prove(W,X, pp, 𝑟 )
4: 𝑏 ← A(⟦W⟧ ,X, 𝑦, 𝜋, pp)
5: return 𝑏

IdealA,SA (pp):
1: com← S1 (1𝜆, pp, 𝑟 )
2: X← A(com, pp)
3: (𝑦, 𝜋) ← SA

2
(com,X, pp, 𝑟 ), given oracle access to 𝑦 =

zkLLM-compute(W,X)
4: 𝑏 ← A(com,X, 𝑦, 𝜋, pp)
5: return 𝑏

For any PPT algorithm A and all LLM (represented by the param-
eter)W, there exists a simulator S such that���P (

RealA,W (pp) = 1

)
− P

(
IdealA,SA (pp) = 1

)��� ≤ negl (𝜆) .
(35)
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7.3 Overhead analysis
In this section, we analyze the overhead of zkLLM, focusing on the

running times for both the prover and the verifier, as well as the

memory and communication costs.

7.3.1 Overhead of tlookup. In Protocol 1, we adhere to the as-

sumption that 𝑁 = 𝑂 (𝐷). This guideline is strictly followed in our

implementation due to the substantial sizes of tensors involved in

LLM computations. The linear time complexity for both commit-

ting and proving in the Pedersen commitments and the sumcheck

protocols results in a total computational complexity of 𝑂 (𝐷) for
the prover in Protocol 1. Similarly, memory requirements are main-

tained at 𝑂 (𝐷), since all involved tensors, including the addition-

ally computed m, A, and B, are of size 𝑂 (𝐷). The commitment and

proof sizes are reduced to square root and logarithmic complexities,

𝑂 (
√
𝐷) and 𝑂 (log𝐷) respectively, impacting the verifier’s time for

verifying the proof of opening and the sumcheck protocols.

7.3.2 Overhead of zkAttn. The overhead introduced by zkAttn
is parameterized by 𝐾 , the number of segments applied to the

input. For an input of size 𝑚𝑛 in zkAttn, the total prover over-

head, including both running time and memory consumption, is

𝑂 (𝐾𝑚𝑛) as per Section 7.3.1. The communication overhead and ver-

ifier time are𝑂 (𝐾
√
𝑚𝑛). In comparison with the bit-decomposition

method, which incurs anΩ(𝑚𝑛 log
2
𝐵) overhead, zkAttn built upon

tlookup achieves an𝑂
(

𝐾
log

2
𝐵

)
reduction in prover overhead. Prac-

tically, 𝐾 is chosen to be small enough to minimize both error and

overhead while avoiding overly large segments (for example, 𝐾 = 1,

which would require compiling all possible input-output pairs into

a table, leading to an impractical overhead of at least Ω(𝐵) for a
unrealistically large total number of possible inputs 𝐵 that exceeds

𝑚𝑛, where the previous analysis on overhead would not apply).

7.3.3 Overall overhead. zkLLM benefits from the linear prover

overhead of sumcheck protocols and the logarithmic and square-

root verifier overheads of sumchecks and Pedersen commitments,

respectively. Specialized sumchecks for tensor operations, like ma-

trix multiplications, achieve less complexity than the computation

process itself, further reducing proof overhead for each layer. As-

suming prover overhead, communication cost, and verifier over-

head per layer of an 𝐿-layer LLM are 𝑡P , 𝑐 , and 𝑡V respectively,

the total overheads of zkLLM scale naturally to𝑂 (𝐿𝑡P ),𝑂 (𝐿𝑐), and
𝑂 (𝐿𝑡V ). Where the latter two can be further reduced to 𝑂 (

√
𝐿𝐶)

and 𝑂 (
√
𝐿𝑡V ) by leveraging the repetitive structure across lay-

ers and batching up the commitments [38]. Additionally, unlike

univariate polynomial-based ZKP systems that must be serialized,

the use of sumcheck protocols over multilinear extensions and

the compatible Pedersen commitment scheme in zkLLM allows

for highly parallelized proof generation, thereby enabling efficient

proof generation in a reasonable time.

8 EXPERIMENTS
We developed zkLLM using CUDA, basing it on the CUDA code

for the BLS12-381 curve [6] produced by the ec-gpu package [19].

The implementation of sequential verifier tasks, which cannot effi-

ciently utilize CUDA, was adapted from the zkCNN implementation

[38] that relies on the mcl package [40]. We evaluated zkLLM for

inferences on two classes of open-source LLMs, namely OPT [67]

and LLaMa-2 [52], supporting sizes up to 13 billion parameters.

For both types of models, our focus was on performing verifiable

inferences using the designated models, applying samples with

the default sequence length of 2048 from the C4 dataset [45]. Our

experiments were conducted with resources including 124.5GB of

memory, 12 CPU cores of an AMD EPYC 7413 (2.65 GHz with 128M

cache L3), and an NVIDIA A100SMX4 GPU with 40GB of memory,

all allocated from a computing node.

Throughout our experiments, we consistently set the scaling

factor for both data embedding and model parameters at 2
16
. All

rescaling operations were integrated with the subsequent activation

functions. As detailed in Section 4.2, this integration necessitated

the use of multiple tlookups. Specifically, the number of tlookups
corresponds to the number of times the input to the activation

function requires rescaling, with each tlookup having a size of 216,
to avoid excessive memory usage.

Additionally, since the input to the Softmax function in zkAttn of
each layer undergoes two multiplication operations, the cumulative

scaling factor reaches 2
64
. To manage this, we deployed 𝐾 = 5

tlookups, each of size 216. This setup includes𝐿 = 3 least significant

segments, with the remaining two segments accommodating all

potential inputs within a scale of 2
16

and a precision of 2
−16

when

reverted to the real domain.

The tolerable error margins were selected in accordance with

Section 7.1. This approach resulted in an approximate totalL1 error

of 10
−2

on the output, a level comparable to the rounding error

induced by half-precision floating points used in state-of-the-art

LLMs. Notably, all proofs involved in the results of this section have

been successfully validated by the semi-honest verifier.

In Table 1, we present detailed information regarding the over-

head associated with zkLLM for models of various sizes. The data

includes the time required for the prover to commit and hide the

model (committing time and commitment sizes), as well as the

prover’s time, proof size, and the verifier’s time in response to an

input prompt from the latter.

As the first endeavor to apply zero-knowledge proofs to LLMs

with up to 13 billion parameters, to the best of our knowledge, zk-

LLM has achieved significant results toward practical and industrial

applicability. Once the model is trained, the prover requires up to

20 minutes to commit to the model and subsequently publish a

commitment of approximately 10MB for public scrutiny via zkLLM.

When prompted by the verifier, the prover is able to generate a

proof for the correctness of the entire inference process in less

than 15 minutes. Additionally, as the design of zkAttn effectively
resolves the inherent bottleneck of listing all input-output pairs,

the memory consumption is effectively controlled under 23.1GB,

which fits zkLLM into commonly used GPUs in machine learning,

like Tesla V100 and A100.

It is important to note that while the time for committing gener-

ally scales with the size of the parameters, the time for generating

proofs scales more slowly. This slower scaling is attributed to the

less significant differences in the complexities of intermediate com-

putations and more efficient use of parallel computing resources

as the size of the tensors increases. Ultimately, the succinct proof,

which is only about 100kB in size, can be verified by the verifier in

a matter of seconds. Despite this efficiency, the verifier is provably

11
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Table 1: The overhead of zkLLM on OPT and LLaMa-2.

Model OPT-125M OPT-350M OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B LLaMa-2-7B LLaMa-2-13B

Committing time (s) 11.8 33.1 127 273 654 1.27 × 103 531 986

Commitment size (MB) 0.996 1.67 3.32 4.58 7.22 10.1 7.97 11.0

Prover time (s) 73.9 111 221 352 548 713 620 803

Proof size (kB) 141 144 147 152 157 160 183 188

Verifier time (s) 0.342 0.593 0.899 1.41 2.08 3.71 2.36 3.95

Memory usage (GB) 1.88 2.38 3.71 6.60 15.0 22.9 15.5 23.1

C4 Perplexity (orig) 26.56 22.59 16.07 14.34 12.71 12.06 7.036 6.520

C4 Perplexity (quant) 26.65 22.66 16.12 14.37 12.73 12.07 7.049 6.528
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Figure 4: Comparison between zkLLM and zkML. Results of
test cases with OOM errors are estimated and marked in red.

unable to glean any additional information about the model or the

inference result, ensuring the correctness of the inference while

maintaining the confidentiality of the model parameters.

Moreover, the numerical error due to the unavoidable discretiza-

tion of the entire process for the application of the cryptographic

tools does not cause significant accuracy drops: on the C4 dataset

[45], the increase of perplexity is less than 0.1, and the impact

diminishes to less than 0.01 as the sizes of the models scale to 13B.

In Figure 4, we further compare zkLLM with zkML [33], the

first zero-knowledge proof to have achieved verifiable inference

for GPT-2 under identical hardware conditions. Beyond the size of

GPT-2 (1.5B parameters), where zkML results in an out-of-memory

(OOM) error, we provide an estimation of the required proving time.

Thanks to the design tailored for non-arithmetic tensor operations

and the attentionmechanism prevalent in LLMs, as well as its CUDA

implementation, zkLLM extends the zero-knowledge verifiability to

LLMs with 10x larger sizes, achieving an approximate 50x speedup.

8.1 Additional experimental results on tlookup
and zkAttn

To further demonstrate the efficiency of tlookup in addressing non-
arithmetic tensor operations in deep learning, as well as zkAttn,
which is pivotal for verifiable computations in LLMs, we isolated

an instance of zkAttn from the first layer of variously sized OPT

models on input sequences of different lengths. We then measured

the overhead incurred by zkAttn, including the multiple tlookups
it encompasses. The results are presented in Figure 5.

It is evident that, in contrast to the overall overhead, the over-

head specific to zkAttn is less influenced by the size of the model,

particularly regarding proving time. However, the length of the

input sequence significantly impacts various aspects of the over-

head. This observation can be attributed to the fact that the Atten-

tion mechanism, while involving LLM parameters, is more signifi-

cantly affected by the interactions between intermediate values (e.g.,

Q,K,V), where their dimensions play a crucial role in determining

the overhead.

Notably, the largest tested sequence length, 4096, exceeds the

original design specifications of OPT models and was primarily

included as a reference to assess the impact of sequence length on

overhead. In contrast, in Table 1, which documents overall results

for zkLLM, we set the sequence length to 2048—the maximum

feasible value—to maintain experimental consistency and fairness.

9 RELATEDWORKS
Starting with Zhang et al. in 2020 [65], the field of zero-knowledge

machine learning inference has seen active development. Initial

research, parallel to the surge in computer vision studies, primar-

ily concentrated on authenticating inference results for computer

vision tasks over convolutional neural networks (CNNs). Key con-

tributions include zkCNN [38], ZEN [18], vCNN [35], pvCNN [57],

zkML [33], Mystique [56], and ezDPS [55]. These works aimed

to optimize the adaptation of the entire training process to zero-

knowledge proof (ZKP) backends, such as zkSNARKS [3–5, 7, 10,

24, 28, 36, 42], by leveraging the special structures of computa-

tions within CNNs. Notably, zkCNN [38] introduced a specialized

interactive proof protocol for convolutional layers based on the

GKR protocol [27] and its refinements [60, 61, 66]. This protocol

achieved efficient proofs (less than 2 minutes) on VGG-scale CNNs,

highlighting the necessity of specialized protocols for realistic zero-

knowledge machine learning inference. However, as of our current

knowledge, there exists a gap in zero-knowledge inferences over

LLMs. The intricate structures and enormous sizes of LLMs present

challenges not addressed by previous studies focused on CNNs,

necessitating novel theoretical and experimental developments.

Conversely, while pioneering studies have addressed ZKPs for

machine learning training, with works such as VeriML [68], proof

of unlearning [17, 58], and zkPoT [25] focusing on elementary al-

gorithms like Support Vector Machines (SVM), logistic regression,

and small neural networks (up to several thousand parameters),
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Figure 5: Overhead of zkAttn.

extending zero-knowledge proofs to training LLMs may pose in-

surmountable challenges. The vast complexity inherent in training

LLMs could render the zero-knowledge proofs for their training

impractical.

10 CONCLUSION
This paper introduces zkLLM, marking the inaugural specialized

zero-knowledge proof tailored for large language models, as far

as our current knowledge extends. zkLLM pioneers zero-knowledge

verifiable computations for general non-arithmetic operationswithin

neural networks, ensuring full parallelizability and zero additional

overhead through the implementation of tlookup. Building on this

foundation, we further present zkAttn, a novel zero-knowledge

proof specifically designed for the attention mechanism—a pivotal

component underpinning the exceptional performance of modern

LLMs. With a CUDA implementation optimized for parallel comput-

ing resources in deep learning, zkLLM achieves a groundbreaking

milestone as the first study to provide zero-knowledge verifiability

for LLMs with 13 billion parameters. This endeavor stands as a

significant contribution towards fortifying the legitimacy of LLMs

in light of their transformative impact on various domains.
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A CODE
Our open-source implementation is available at https://github.com/

jvhs0706/zkllm-ccs2024.

B ADDITIONAL RELATEDWORKS
In this appendix, we overview of two classes of related studies, and

explain their relatedness and distinction with this study.

LLM quantization. To facilitate the deployment of cryptographic

tools, this study employs quantization to map the entire computa-

tion over LLMs into finite fields. Despite state-of-the-art quantiza-

tion methods (e.g., LLM.int8()[14], SmoothQuant [59], GPTQ[21],

AWQ[37], QuIP [9], QMoE[20], QLoRA[15]) already achieving low-

bit compression of model parameters and activations in LLMs, in-

termediate computations between these values still involve floating-

point numbers to maintain accuracy under low-bit settings. Conse-

quently, these quantization methods are not directly applicable to

our study, where computations are strictly confined to finite fields.

In our experiments, we utilize a larger bit size (16 bits) to ensure

the preservation of accuracy within the finite field constraints.

LLM watermark. Watermarks in LLMs [29, 32, 34] serve as an

additional mechanism to indicate that an output is generated by a

specific model. However, it is crucial to note that watermarks in

LLMs have vastly different application domains compared to zkLLM.

The primary distinction lies in the nature of the assurances they

provide. Watermarks offer a form of model identification, while

zkLLM, in contrast, asserts a much stronger statement by proving

the correctness of the output concerning the committed parameters

and the prescribed computational process within the LLM. Unlike
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watermarks, zkLLM provides a guarantee that the computational

process has not been tampered with, offering a more robust and

verifiable assurance of the authenticity of the output.

C APPENDIX OF SECTION 7
C.1 Appendix on Error Analysis
In this appendix, we analyze the numerical of zkAttn, by giving a

detailed proof of Theorem 7.1.

Proof of Theorem 7.1. We first consider the errors introduced

in the exponentiation operation, with the input of −𝐵 < 𝑧 ≤ 0, such

that −𝑧 is decomposed as

(
𝑥 (0) , 𝑥 (1) , . . . , 𝑥 (𝐾−1)

)
following (20).

The error incurred in the estimation of exp
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𝛾
√
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)
can be expressed
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where each (𝑥 (𝑘 ) , 𝑦 (𝑘 ) ) ∈ T(𝑘 ) is encoded in the lookup tables

T(𝑘 ) s after the optimization for the most and least significant seg-

ments in Section 5.1.1.

For 𝑧 ≤ −𝐵𝐾−𝑀 , (36) becomes exp

(
𝑧
𝛾𝑑

)
as at least one of the
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Summarizing above, the approximation error of exp
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Therefore, consider a row z = (𝑧0, 𝑧1, . . . , 𝑧𝑛−1) where the Soft-
max is applied, due to the additional error incurred by the rounding

of 𝑧 defined by (17), the 𝐿1-error of approximation is upper-bounded
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by

𝑛−1∑︁
𝑖=0

(�����exp
(
𝑧𝑖 − 𝑧
𝛾
√
𝑑

)
− exp

(
𝑧𝑖 − ⌊𝑧⌉
𝛾
√
𝑑

)����� + 𝜀exp (𝑧𝑖 − ⌊𝑧⌉)
)

(47)

≤ exp
(

1

2𝛾
√
𝑑

)
+
𝑛−1∑︁
𝑖=0

𝜀exp (𝑧𝑖 − ⌊𝑧⌉)

≤
(
exp

(
1

2𝛾
√
𝑑

)
− 1

)
𝑛−1∑︁
𝑖=0

exp

(
𝑧𝑖 − 𝑧
𝛾
√
𝑑

)
+

∑︁
𝑧𝑖−⌊𝑧 ⌉≤−𝐵𝐾−𝑀

𝜀exp (𝑧𝑖 − ⌊𝑧⌉) +
∑︁

𝑧𝑖−⌊𝑧 ⌉>−𝐵𝐾−𝑀
𝜀exp (𝑧𝑖 − ⌊𝑧⌉)

≤𝐶 exp

(
1

2𝛾
√
𝑑

)
+ (𝑛 − 1) exp

(
−𝐵𝐾−𝑀
𝛾
√
𝑑

)
=: 𝜀attn, (48)

such that with other variables fixed, 𝜀attn should be minimized as a

function 𝐵𝐾−𝑀 which gives an optimal 𝐵∗
𝐾−𝑀 .

Subsequently, with the choice of

𝐵∗𝐾−𝑀 ←
𝛾
√
𝑑

𝐾 −𝑀 − 𝐿 + 1 ((𝐾 −𝑀 − 𝐿) ln (2𝑛) + ln𝜃 ) , (49)

the error bound in (48) can be minimized as

𝜀attn = 𝑂

(
(𝐾 −𝑀 − 𝐿)

(𝑛
𝜃

) 1

𝐾−𝑀−𝐿+1
)
. (50)

□

C.2 Appendix on Security and Privacy Analysis
In this appendix, we present the details of the security and privacy

analysis omitted in Section. 7.2, giving the proofs of Theorems 7.2

and 7.3.

Proof of Theorem 7.2. If S ⊂ T as sets, where T ∈ F𝑁 , then in

Line 10 of Protocol 1, the random challengeV sent to P, namely

𝛽 , is excluded from the set 𝐸 := {𝑥 ∈ F : −𝑥 ∈ S ∨ −𝑥 ∈ T} with
probability 1 − 𝑁

|F | since |𝐸 | ≤ 𝑁 . Therefore, with probability at

least 1− 𝑁
|F | , all 𝛽 + S𝑖s (𝑖 ∈ [𝐷]) and 𝛽 + T𝑖 (𝑖 ∈ [𝑁 ]) are invertible,

and (12) holds with the definitions of m and A,B as in (10) and (11).

Therefore, by denoting the RHS of (13) as a quadratic formula of

𝛼 , i.e., 𝑐0 + 𝑐1𝛼 + 𝑐2𝛼2, we have 𝑐0 = 0. Moreover, the definitions

of A and B automatically guarantee that 𝑐1 = 𝑐2 = 0. Therefore,

with probability 1 − 𝑁
|F | , the equality of (13) (and therefore (14))

holds, such that the semi-honest verifier accepts the proof due to

the perfect completeness of the sumcheck protocol. □

Proof of Theorem 7.3. Assume the acceptance of the proof by

the semi-honest verifierV . Therefore:

• In Line 13 of Protocol 1, by the soundness of the Pedersen

commitment scheme [43] (instantiated by Hyrax [54]), with

probability 1−negl(𝜆), the prover P has computed the trans-

mitted ⟦A⟧, ⟦B⟧, ⟦S⟧, and ⟦m⟧ with correct multilinear

extension values Ã (v), B̃
(
v[

log
2

𝐷
𝑁
:

] )
, S̃ (v), m̃

(
v[

log
2

𝐷
𝑁
:

] )
subject to the random challenges v chosen by the verifierV
during the execution of the sumcheck protocol. Also, with

probability 1 − negl(𝜆), the claimed value of T̃
(
v[

log
2

𝐷
𝑁
:

] )

is correct with respect to the committed T which P andV
agree upon.

• By the soundness of the sumcheck protocol, with probability

1 − 𝑂
(
𝐷
|F |

)
, the correctness of Ã (v), B̃

(
v[

log
2

𝐷
𝑁
:

] )
, S̃ (v),

m̃
(
v[

log
2

𝐷
𝑁
:

] )
, and T̃

(
v[

log
2

𝐷
𝑁
:

] )
implies the equality of (14),

and therefore the equality of (13).

• By the Schwartz-Zippel Lemma [46, 69], the equality of (13)

implies that each term on the RHS of (13) is 0 with 1 − 2

|F |
probability. Therefore, the equality of (9) holds for 𝑋 ← 𝛽 .

• Upon applying the Schwartz-Zippel Lemma oncemore, given

the randomness of 𝛽 , if the equality in (9) is valid for 𝑋 ← 𝛽 ,

then the equality as rational functions is also valid with a

probability of 1 − 1

𝐷𝑁
. This, in turn, implies the inclusion

relation S ⊂ T.
Combining the arguments above, under our assumption that

both
𝐷
|F | and

𝑁
|F | are both negligible in 𝜆, the acceptance of the

proof implies S ⊂ T with probability 1 − negl (𝜆). □
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