
Improved Algorithms for Adaptive Compressed
Sensing*

Vasileios Nakos1, Xiaofei Shi2, David P. Woodruff3, and Hongyang Zhang4

1 Harvard University, Cambridge, USA
vasileiosnakos@g.harvard.edu

2 Carnegie Mellon University, Pittsburgh, USA
xiaofeis@andrew.cmu.edu

3 Carnegie Mellon University, Pittsburgh, USA
dwoodruf@cs.cmu.edu

4 Carnegie Mellon University, Pittsburgh, USA
hongyanz@cs.cmu.edu

Abstract
In the problem of adaptive compressed sensing, one wants to estimate an approximately k-sparse vec-
tor x ∈ Rn from m linear measurements A1x,A2x, . . . , Amx, where Ai can be chosen based on the
outcomes A1x, . . . , Ai−1x of previous measurements. The goal is to output a vector x̂ for which

‖x− x̂‖p ≤ C · min
k-sparse x′

‖x− x′‖q,

with probability at least 2/3, where C > 0 is an approximation factor. Indyk, Price and Woodruff
(FOCS’11) gave an algorithm for p = q = 2 for C = 1 + ε with O((k/ε)loglog(n/k)) measurements
and O(log∗(k)loglog(n)) rounds of adaptivity. We first improve their bounds, obtaining a scheme with
O(k · loglog(n/k) + (k/ε) · loglog(1/ε)) measurements and O(log∗(k)loglog(n)) rounds, as well as a
scheme withO((k/ε) · loglog(n log(n/k))) measurements and an optimalO(loglog(n)) rounds. We then
provide novel adaptive compressed sensing schemes with improved bounds for (p, p) for every 0 < p < 2.
We show that the improvement from O(k log(n/k)) measurements to O(k log log(n/k)) measurements
in the adaptive setting can persist with a better ε-dependence for other values of p and q. For example,
when (p, q) = (1, 1), we obtain O(k√

ε
· log logn log3(1

ε)) measurements. We obtain nearly matching
lower bounds, showing our algorithms are close to optimal. Along the way, we also obtain the first
nearly-optimal bounds for (p, p) schemes for every 0 < p < 2 even in the non-adaptive setting.

1998 ACM Subject Classification F.2: Analysis of Algorithms and Problem Complexity

Keywords and phrases Compressed Sensing, Adaptivity, High-Dimensional Vectors

Digital Object Identifier 10.4230/LIPIcs.ICALP.2018.

1 Introduction

Compressed sensing, also known as sparse recovery, is a central object of study in data stream
algorithms, with applications to monitoring network traffic [7], analysis of genetic data [19, 12], and
many other domains [16]. The problem can be stated as recovering an underlying signal x ∈ Rn from
measurements A1 · x, ..., Am · x with the C-approximate `p/`q recovery guarantee being

‖x− x̂‖p ≤ C min
k-sparse x′

‖x− x′‖q, (1)

* This work was partially supported by NSF grant IIS-144741.

EA
T

C
S

© Vasileios Nakos, Xiaofei Shi, David P. Woodruff and Hongyang Zhang;
licensed under Creative Commons License CC-BY

45th International Colloquium on Automata, Languages, and Programming (ICALP 2018).
Editors: Ioannis Chatzigiannakis, Christos Kaklamanis, Daniel Marx, and Don Sannella; Article No. ; pp. :1–:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Improved Algorithms for Adaptive Compressed Sensing

Table 1 The sample complexity of adaptive compressed sensing. Results without any citation given
correspond to our new results.

C, Guarantees Upper Bounds Rounds Lower Bounds

1 + ε, `1/`1 O(k√
ε
loglog(n) log 5

2 (1
ε
)) O(loglog(n)) Ω(k√

ε log(k/
√
ε))) [18]

1 + ε, `p/`p O(k

εp/2 loglog(n) poly(log(1
ε
))) O(loglog(n)) Ω(k

εp/2
1

log2(k/ε))√
1
k

, `∞/`2 O(kloglog(n) + k log(k)) O(loglog(n)) -

1 + ε, `2/`2

O(k
ε
loglog(nε

k
)) [10] O(log∗(k)loglog(nε

k
)) [10]

Ω(k
ε

+ loglog(n)) [18]O(kloglog(n
k

) + k
ε
loglog(1

ε
)) O(log∗(k)loglog(n

k
))

O(k
ε
loglog(n log(nε)

k
)) O(loglog(n log(nε

k
))

where the Ai are drawn from a distribution and m � n. The focus of this work is on adaptive
compressed sensing, in which the measurements are chosen in rounds, and the choice of measurement
in each round depends on the outcome of the measurements in previous rounds.

Adaptive compressed sensing has been studied in a number of different works [11, 4, 8, 9, 14,
1, 10, 18] in theoretical computer science, machine learning, image processing, and many other
domains [10, 18, 2]. In theoretical computer science and machine learning, adaptive compressed
sensing serves as an important tool to obtain sublinear algorithms for active learning in both time
and space [10, 5, 18, 2]. In image processing, the study of adaptive compressed sensing has led to
compressed acquisition of sequential images with various applications in celestial navigation and
attitude determination [6].

Despite a large amount of works on adaptive compressed sensing, the power of adaptivity
remains a long-standing open problem. Indyk, Price, and Woodruff [10] were the first to show that
without any assumptions on the signal x, one can obtain a number m of measurements which is a
log(n)/ log log(n) factor smaller than what can be achieved in the non-adaptive setting. Specifically,
for p = q = 2 and C = 1 + ε, they show that m = O(kε log log(n)) measurements suffice to
achieve guarantee (1), whereas it is known that any non-adaptive scheme requires k = Ω(kε log(nk))

measurements, provided ε >
√

k logn
n (Theorem 4.4 of [17], see also [3]). Improving the sample

complexity as much as possible is desired, as it might correspond to, e.g., the amount of radiation a
hospital patient is exposed to, or the amont of time a patient must be present for diagnosis.

The `1/`1 problem was studied in [17], for which perhaps surprisingly, a better dependence
on ε was obtained than is possible for `2/`2 schemes. Still, the power of adaptivity for the `1/`1
recovery problem over its non-adaptive counterpart has remained unclear. An O(k√

ε
logn log3(1

ε))
non-adaptive bound was shown in [17], while an adaptive lower bound of Ω(k√

ε
/ log k√

ε
) was shown

in [18]. Recently several works [20, 15] have looked at other values of p and q, even those for which
0 < p, q < 1, which do not correspond to normed spaces. The power of adaptivity for such error
measures is also unknown.

1.1 Our Results

Our work studies the problem of adaptive compressed sensing by providing affirmative answers to
the above-mentioned open questions. We improve over the best known results for p = q = 2, and
then provide novel adaptive compressed sensing guarantees for 0 < p = q < 2 for every p and q. See
Table 1 for a comparison of results.

For `1/`1, we design an adaptive algorithm which requires only O(k√
ε
loglog(n) log

5
2 (1
ε)) meas-

urements for the `1/`1 problem. More generally, we study the `p/`p problem for 0 < p < 2. One of

V. Nakos, X. Shi, D. P. Woodruff and H. Zhang XX:3

our main theorems is the following.

I Theorem 1 (`p/`p Recovery Upper Bound). Let x ∈ Rn and 0 < p < 2. There exists
a randomized algorithm that performs O(k

εp/2 loglog(n) poly(log(1
ε))) adaptive linear measure-

ments on x in O(loglog(n)) rounds, and with probability 2/3, returns a vector x̂ ∈ Rn such that
‖x− x̂‖p ≤ (1 + ε)‖x−k‖p.

Theorem 1 improves the previous sample complexity upper bound for the case of C = 1 + ε

and p = q = 1 from O(k√
ε

log(n) log3(1
ε)) to O(k√

ε
loglog(n) log

5
2 (1
ε)). Compared with the non-

adaptive (1 + ε)-approximate `1/`1 upper bound of O(k√
ε

log(n) log3(1
ε)), we show that adaptivity

exponentially improves the sample complexity w.r.t. the dependence on n over non-adaptive al-
gorithms while retaining the improved dependence on ε of non-adaptive algorithms. Furthermore,
Theorem 1 extends the working range of adaptive compressed sensing from p = 1 to general values
of p ∈ (0, 2).

We also state a complementary lower bound to formalize the hardness of the above problem.

I Theorem 2 (`p/`p Recovery Lower Bound). Fix 0 < p < 2, any (1 + ε)-approximate `p/`p
recovery scheme with sufficiently small constant failure probability must make Ω(k

εp/2 / log2(kε))
measurements.

Theorem 2 shows that our upper bound in Theorem 1 is tight up to the log(k/ε) factor.
We also study the case when p 6= q. In particular, we focus on the case when p =∞, q = 2 and

C =
√

1
k , as in the following theorem.

I Theorem 3 (`∞/`2 Recovery Upper Bound). Let x ∈ Rn. There exists a randomized algorithm
that performsO(k log(k)+kloglog(n)) linear measurements on x inO(loglog(n)) rounds, and with
probability 1− 1/poly(k) returns a vector x̂ such that ‖x− x̂‖2∞ ≤ 1

k‖x−k‖
2
2, where x−k ∈ Rn is

the vector with the largest n− k coordinates (in the sense of absolute value) being zeroed out.

We also provide an improved result for (1 + ε)-approximate `2/`2 problems.

I Theorem 4 (`2/`2 Sparse Recovery Upper Bounds). Let x ∈ Rn. There exists a randomized
algorithm that

uses O(kε loglog(1
ε) + kloglog(nk)) linear measurements on x in O(loglog(nk) · log∗(k)) rounds;

uses O(kε loglog(n log(nε)
k)) linear measurements on x in O(loglog(εn log(nk))) rounds;

and with constant probability returns a vector x̂ such that ‖x− x̂‖2 ≤ (1 + ε)‖x−k‖2.

Previously the best known tradeoff was O(kε loglog(nεk)) samples and O(log∗(k)loglog(nεk)) rounds
for (1+ε)-approximation for the `2/`2 problem [10]. Our result improves both the sample complexity
(the first result) and the number of rounds (the second result). We summarize our results in Table 1.

1.2 Our Techniques

`∞/`2 Sparse Recovery. Our `∞/`2 sparse recovery scheme hashes every i ∈ [n] to poly(k)
buckets, and then proceeds by finding all the buckets that have `2 mass at least Ω(1√

k
‖x−Ω(k)‖2).

We then find a set of buckets that contain all heavy coordinates, which are isolated from each other
due to hashing. Then, we run a 1-sparse recovery in each bucket in parallel in order to find all
the heavy coordinate. However, since we have O(k) buckets, we cannot afford to take a union
bound over all one-sparse recovery routines called. Instead, we show that most buckets succeed
and hence we can substract from x the elements returned, and then run a standard COUNTSKETCH

algorithm to recover everything else. This algorithm obtains an optimal O(loglog(n)) number of

ICALP 2018

XX:4 Improved Algorithms for Adaptive Compressed Sensing

rounds and O(k log(k) + kloglog(n)) number of measurements, while succeeding with probability
at least 1− 1/poly(k).

We proceed by showing an algorithm for `2/`2 sparse recovery with O(kε loglog(n)) measure-
ments and O(loglog(n)) rounds. This will be important for our more general `p/`p scheme, saving a
log∗(k) factor from the number of rounds, achieving optimality with respect to this quantity. For this
scheme, we utilize the `∞/`2 scheme we just developed, observing that for small k < O(log(n)),
the measurement complexity is O(kloglog(n)). The algorithm hashes to k/(ε log(n)) buckets, and
in each bucket runs `∞/`2 with sparsity k/ε. The `∞/`2 algorithm in each bucket succeeds with
probability 1 − 1/polylog(n)); this fact allows us to argue that all but a 1/polylog(n) fraction of
the buckets will succeed, and hence we can recover all but a k/polylog(n)) fraction of the heavy
coordinates. The next step is to subtract these coordinates from our initial vector, and then run a
standard `2/`2 algorithm with decreased sparsity.

`p/`p Sparse Recovery. Our `p/`p scheme, 0 < p < 2, is based on carefully invoking several `2/`2
schemes with different parameters. We focus our discussion on p = 1, then mention extensions to
general p. A main difficulty of adapting the `1/`1 scheme of [17] is that it relies upon an `∞/`2
scheme, and all known schemes, including ours, have at least a k log k dependence on the number of
measurements, which is too large for our overall goal.

A key insight in [17] for `1/`1 is that since the output does not need to be exactly k-sparse,
one can compensate for mistakes on approximating the top k entries of x by accurately outputting
enough smaller entries. For example, if k = 1, consider two possible signals x = (1, ε, . . . , ε) and
x′ = (1 + ε, ε, . . . , ε), where ε occurs 1/ε times in both x and x′. One can show, using known
lower bound techniques, that distinguishing x from x′ requires Ω(1/ε) measurements. Moreover,
x1 = (1, 0, . . . , 0) and x′1 = (1 + ε, 0, . . . , 0), and any 1-sparse approximation to x or x′ must
therefore distinguish x from x′, and so requires Ω(1/ε) measurements. An important insight though,
is that if one does not require the output signal y to be 1-sparse, then one can output (1, ε, 0, . . . , 0) in
both cases, without actually distinguishing which case one is in!

As another example, suppose that x = (1, ε, . . . , ε) and x′ = (1+εc, ε, . . . , ε) for some 0 < c < 1.
In this case, one can show that one needs Ω(1/εc) measurements to distinguish x and x′, and as
before, to output an exactly 1-sparse signal providing a (1 + ε)-approximation requires Θ̃(1/εc)
measurements. In this case if one outputs a signal y with y1 = 1, one cannot simply find a single
other coordinate ε to “make up” for the poor approximation on the first coordinate. However, if one
were to output 1/ε1−c coordinates each of value ε, then the εc “mass" lost by poorly approximating
the first coordinate would be compensated for by outputting ε · 1/ε1−c = εc mass on these remaining
coordinates. It is not clear how to find such remaining coordinates though, since they are much
smaller; however, if one randomly subsamples an εc fraction of coordinates, then roughly 1/ε1−c
of the coordinates of value ε survive and these could all be found with a number of measurements
proportional to 1/ε1−c. Balancing the two measurement complexities of 1/εc and 1/ε1−c at c = 1/2
gives roughly the optimal 1/ε1/2 dependence on ε in the number of measurements.

To extend this to the adaptive case, a recurring theme of the above examples is that the top k,
while they need to be found, they do not need to be approximated very accurately. Indeed, they
do need to be found, if, e.g., the top k entries of x were equal to an arbitrarily large value and
the remaining entries were much smaller. We accomplish this by running an `2/`2 scheme with
parameters k′ = Θ(k) and ε′ = Θ(

√
ε), as well as an `2/`2 scheme with parameters k′ = Θ(k/

√
ε)

and ε′ = Θ(1) (up to logarithmic factors in 1/ε). Another theme is that the mass in the smaller
coordinates we find to compensate for our poor approximation in the larger coordinates also does not
need to be approximated very well, and we find this mass by subsampling many times and running
an `2/`2 scheme with parameters k′ = Θ(1) and ε′ = Θ(1). This technique is surprisingly general,
and does not require the underlying error measure we are approximating to be a norm. It just uses

V. Nakos, X. Shi, D. P. Woodruff and H. Zhang XX:5

scale-invariance and how its rate of growth compares to that of the `2-norm.

`2/`2 Sparse Recovery. Our last algorithm, which concerns `2/`2 sparse recovery, achieves
O(kloglog(n) + k

ε loglog(1/ε)) measurements, showing that ε does not need to multiply loglog(n).
The key insight lies in first solving the 1-sparse recovery task with O(loglog(n) + 1

ε loglog(1/ε))
measurements, and then extending this to the general case. To achieve this, we hash to polylog(1/ε)
buckets, then solve `2/`2 with constant sparsity on a new vector, where coordinate j equals the `2
norm of the jth bucket; this steps requires only O(1

ε loglog(1/ε)) measurements. Now, we can run
standard 1-sparse recovery in each of these buckets returned. Extending this idea to the general
case follows by plugging this sub-routine in the iterative algorithm of [10], while ensuring that
sub-sampling does not increase the number of measurements. For that we also need to sub-sample at
a slower rate, slower roughly by a factor of ε.

Notation: For a vector x ∈ Rn, we define Hk(x) to be the set of its largest k coordinates in absolute
value. For a set S, denote by xS the vector with every coordinate i /∈ S being zeroed out. We also
define x−k = x[n]\Hk(x) and Hk,ε(x) = {i ∈ [n] : |xi| ≥ ε

k‖x−k‖
2
2}, where [n] represents the set

{1, 2, ..., n}. For a set S, let |S| be the cardinality of S.
Due to space constraints, we defer the proof of Theorem 2 to the full version1.

2 Adaptive `p/`p Recovery

This section is devoted to proving Theorem 1. Our algorithm for `p/`p recovery is in Algorithm 1.
Let f = εp/2, r = 2/(p log(1/f)) and q = max{p − 1

2 , 0} = (p − 1
2)+. We will invoke the

following `2/`2 oracle frequently throughout the paper.

I Oracle 1 (ADAPTIVESPARSERECOVERY`p/`q (x, k, ε)). The oracle is fed with (x, k, ε) as input
parameters, and outputs a set of coordinates i ∈ [n] of size O(k) which corresponds to the support of
vector x̂, where x̂ can be any vector for which ‖x− x̂‖p ≤ (1 + ε) minO(k)-sparse x′ ‖x− x′‖q .

Existing algorithms can be applied to construct Oracle 1 for the `2/`2 case, such as [10]. Without
loss of generality, we assume that the coordinates of x are ranked in decreasing value, i.e., x1 ≥ x2 ≥
· · · ≥ xn.

Algorithm 1 Adaptive `p/`p Recovery

1. A← ADAPTIVESPARSERECOVERY`2/`2(x, 2k/f, 1/10).
2. B ← ADAPTIVESPARSERECOVERY`2/`2(x, 4k, f/r2).
3. S ← A ∪B.
4. For j = 1 : r
5. Uniformly sample the entries of x with probability 2−jf/k for k/(2f(r + 1)q) times.
6. Run the adaptive ADAPTIVESPARSERECOVERY`2/`2(x, 2, 1/(4(r + 1))

2
p) algorithm on

each of the k/(2f(r + 1)q) subsamples to obtain sets Aj,1, Aj,2, . . . , Aj,k/(2f(r+1)q).
7. Let Sj ← ∪k/(2f(r+1)q)

t=1 Aj,t \ ∪j−1
t=0St.

8. End For
9. Request the entries of x with coordinates S0, ..., Sr.
Output: x̂ = xS0∪···∪Sr .

I Lemma 5. Suppose we subsample x with probability p and let y be the subsampled vector formed
from x. Then with failure probability e−Ω(k), ‖y−2k‖2 ≤

√
2p
∥∥x−k/p∥∥2 .

1 see https://arxiv.org/pdf/1804.09673.pdf

ICALP 2018

XX:6 Improved Algorithms for Adaptive Compressed Sensing

Proof. Let T be the set of coordinates in the subsample. Then E
[∣∣∣T ∩ [3k

2p

]∣∣∣] = 3k
2 . So by the

Chernoff bound, Pr
[∣∣∣T ∩ [3k

2p

]∣∣∣ > 2k
]
≤ e−Ω(k). Thus

∣∣∣T ∩ [3k
2p

]∣∣∣ ≤ 2k holds with high probability.

Let Yi = x2
i if i ∈ T Yi = 0 if i ∈ [n]\T . Then E

[∑
i> 3k

2p
Yi

]
= p

∥∥∥x− 3k
2p

∥∥∥2

2
≤ p

∥∥x−k/p∥∥2
2 .Notice

that there are at least k
2p elements in x−k/p with absolute value larger than

∣∣∣x 3k
2p

∣∣∣. Thus for i > 3k
2p ,

Yi ≤
∣∣∣x 3k

2p

∣∣∣2 ≤ 2p
k

∥∥x−k/p∥∥2
2 . Again by a Chernoff bound, Pr

[∑
i> 3k

2p
Yi ≥ 4p

3
∥∥x−k/p∥∥2

2

]
≤

e−Ω(k). Conditioned on the latter event not happening, ‖y−2k‖22 ≤
∑
i> 3k

2p
Yi ≤ 4p

3
∥∥x−k/p∥∥2

2 ≤

2p
∥∥x−k/p∥∥2

2 .By a union bound, with failure probability e−Ω(k), we have ‖y−2k‖2 ≤
√

2p
∥∥x−k/p∥∥2 .

J

I Lemma 6. Let x̂ be the output of the `2/`2 scheme on x with parameters (k, ε/2). Then with
small constant failure probability,

∥∥x[k]
∥∥p
p
− ‖x̂‖pp ≤ k1− p2 ε

p
2 ‖x−k‖p2 .

Proof. Notice that with small constant failure probability, the `2/`2 guarantee holds and we have∥∥x[k]
∥∥2

2 − ‖x̂‖
2
2 = ‖x− x̂‖22 − ‖x−k‖

2
2 ≤ (1 + ε) ‖x−k‖22 − ‖x−k‖

2
2 = ε ‖x−k‖22 .

Let S ⊂ [n] be such that xS = x̂, and define y = x[k]\S , z = xS\[k]. Then if ‖y‖pp ≤ k1− p2 ε
p
2 ‖x−k‖p2

we are done. Otherwise, let 1 ≤ k′ ≤ k denote the size of [k] \ S, and define c = ‖y‖2 /
√
k′.

∥∥x[k]
∥∥p
p
− ‖x̂‖pp = ‖y‖pp − ‖z‖

p
p ≤ k

′1− p2 ‖y‖p2 − ‖z‖
p
p =
‖y‖22
c2−p

− ‖z‖pp

≤
‖y‖22 − ‖z‖

2
2

c2−p
=
∥∥x[k]

∥∥2
2 − ‖x̂‖

2
2

c2−p
≤
ε ‖x−k‖22
c2−p

.

Since c ≥ ‖y‖p
k
′ 1
p
≥ ‖y‖p

k
1
p
≥
√

ε
k ‖x−k‖2 , we have

∥∥x[k]
∥∥p
p
− ‖x̂‖pp ≤ k

2−p
2 ε1−

2−p
2 ‖x−k‖2−(2−p)

2 =

k1− p2 ε
p
2 ‖x−k‖p2 . J

I Theorem 7. Fix 0 < p < 2. For x ∈ Rn, there exists a (1 + ε)-approximation algorithm
that performs O(k

εp/2 loglog(n) log
2
p+1−(p− 1

2)+
(1
ε)) adaptive linear measurements in O(loglog(n))

rounds, and with probability at least 2/3, we can find a vector x̂ ∈ Rn such that

‖x− x̂‖p ≤ (1 + ε) ‖x−k‖p . (2)

Proof. The algorithm is stated in Algorithm 1. We first consider the difference
∥∥x[k]

∥∥p
p
− ‖xS0‖

p
p.

Let i∗(0) be the smallest integer such that for any l > i∗(0), |xl| ≤ ‖x−2k/f‖2/
√
k.

Case 1. i∗(0) > 4k
Then for all k < j ≤ 4k, we have |xj | > ‖x−2k/f‖2/

√
k. Hence xS0 must contain at least 1/2 of

these indices; if not, the total squared loss is at least 1/2 · 3k‖x−2k/f‖22/k ≥ (3/2)‖x−2k/f‖22, a con-

tradiction to ε′ = 1/10. It follows that ‖xS0∩{k+1,...,4k}‖pp ≥ 3
2k
[
‖x−2k/f‖2√

k

]p
= 3

2k
1− p2 ‖x−2k/f‖p2.

On the other hand,
∥∥x[k]

∥∥p
p
− ‖xS0‖

p
p is at most 1.1k1− p2 ‖x−2k/f‖p2, since by the `2/`2 guarantee

‖x[k]‖pp − ‖xS0∩[k]‖pp ≤ k1− p2 ‖x[k] − xS0∩[k]‖p2 ≤ k1− p2 ‖x− xS0‖
p
2 ≤

11
10k

1− p2 ‖x−2k/f‖p2.

It follows that ‖x[k]‖pp−‖xS0‖pp = ‖x[k]‖pp−‖xS0∩[k]‖pp−‖xS0∩{k+1,...,4k}‖pp ≤ 11
10k

1− p2 ‖x−2k/f‖p2−
3
2k

1− p2 ‖x−2k/f‖p2 ≤ 0.
Case 2. i∗(0) ≤ 4k, and

∑2k/f
j=i∗(0)+1 x

2
j ≥ 4‖x−2k/f‖22.

We claim that xS0 must contain at least a 5/8 fraction of coordinates in {i∗(0) + 1, ..., 2k/f}; if not,

V. Nakos, X. Shi, D. P. Woodruff and H. Zhang XX:7

then the cost for missing at least a 3/8 fraction of the `2-norm of x{i∗(0)+1,...,2k/f} will be at least
(3/2)‖x−2k/f‖22, contradicting the `2/`2 guarantee. Since all coordinates xj’s for j > i∗(0) have
value at most ‖x−2k/f‖2/

√
k, it follows that the p-norm of coordinates corresponding to {i∗(0) +

1, ..., 2k/f} ∩ S0 is at least
∥∥x{i∗(0)+1,...,2k/f}∩S0

∥∥p
p
≥ 5

2k
2−p

2
‖x−2k/f‖2

2
‖x−2k/f‖2−p

2
= 5

2k
1− p2 ‖x−2k/f‖p2.

Then

‖x[k]‖pp − ‖xS0‖pp ≤
11
10k

1− p2 ‖x−2k/f‖p2 + k

(‖x−2k/f‖2√
k

)p
− ‖x{i∗(0)+1,...,2k/f}∩S0‖

p
p

≤ 21
10k

1− p2 ‖x−2k/f‖p2 −
5
2k

1− p2 ‖x−2k/f‖p2 ≤ 0.

Case 3. i∗(0) ≤ 4k, and
∑2k/f
j=i∗(0)+1 x

2
j ≤ 4‖x−2k/f‖22.

With a little abuse of notation, let xS0 denote the output of the `2/`2 with parameters (4k, f/r2). No-
tice that there are at most 8k non-zero elements in xS0 , and ‖x−4k‖22 ≤ ‖x−i∗(0)‖22 =

∑2k/f
j=i∗(0)+1 x

2
j+

‖x−2k/f‖22 ≤ 5‖x−2k/f‖22. By Lemma 6, we have
∥∥x[k]

∥∥p
p
− ‖xS0‖

p
p ≤

∥∥x[4k]
∥∥p
p
− ‖xS0‖

p
p ≤

(4k)1− p2 f
p
2

rp ‖x−4k‖p2 ≤ O
(1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2. According to the above three cases, we con-

clude that ‖x[k]‖pp − ‖xS0‖pp ≤ O
(1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2. Thus with failure probability at most

1/6,

‖x− x̂‖pp−‖x−k‖pp = ‖x[k]‖pp−
r∑
j=0
‖xSj‖pp ≤ O

(
1
rp

)
k1− p2 f

p
2 ‖x−2k/f‖p2−

r∑
j=1

∥∥xSj∥∥pp . (3)

In order to convert the first term on the right hand side of (3) to a term related to the `p norm (which
is a semi-norm if 0 < p < 1), we need the following inequalities: for every u and s, by splitting into
chunks of size s, we have

s1− p2 ‖u−2s‖p2 ≤ ‖u−s‖
p
p , and

∥∥∥u[s]∩[2s]

∥∥∥
2
≤
√
s |us| .

Define c = (r + 1)min{p,1}. This gives us that, for 0 < p < 2 1
(r+1)p k

1− p2 f
p
2
∥∥x−2k/f

∥∥p
2 ≤

k1− p2 f
p
2

c

∥∥∥∥x−2k/f1+ 2
p

∥∥∥∥p
2

+ k1− p2 f
p
2

c

∑r
j=1

∥∥∥x[2jk/f]∩[2j+1k/f]

∥∥∥p
2
≤ f

(1− p2)(1+ 2
p

)+ p
2

c

∥∥∥∥x−k/f1+ 2
p

∥∥∥∥p
p

+

1
c

∑r
j=1 k2pj/2

∣∣x2jk/f
∣∣p . Therefore,

‖x̂− x‖pp − ‖x−k‖pp ≤ O
(

1
c

)
f

2
p

∥∥∥∥x−k/f1+ 2
p

∥∥∥∥p
p

+
r∑
j=1
O
(

1
c

)
k2pj/2|x2jk/f |p −

r∑
j=1
‖xSj‖pp

≤ O
(

1
c

)
f

2
p

∥∥x−k/f∥∥pp +
r∑
j=1
O
(

1
c

)
k2pj/2|x2jk/f |p −

r∑
j=1
‖xSj‖pp.

(4)

Let y = xT denote an independent subsample of x with probability f/(2jk), and ŷ be the output
of the `2/`2 algorithm with parameter s(2, 1/(4(r + 1))

2
p). Notice that |Sj | ≤ 2k/(r + 1)f by the

adaptive `2/`2 guarantee. Define Q = [2jk/f] \ (S0 ∪ · · · ∪ Sj−1). There are at least 2jk/(2f)
elements in Q, and every element in Q has absolute value at least

∣∣x2jk/f
∣∣. In each subsample, notice

that E[|T ∩Q|] = 1
2 . Thus with sufficiently small constant failure probability there exists at least 1

element in y with absolute value at least |x2jk/f |. On the other hand, by Lemma 6 and Lemma 5,

∥∥y[1]
∥∥p
p
− ‖ŷ‖pp ≤

∥∥y[2]
∥∥p
p
− ‖ŷ‖pp ≤

21− p2

4(r + 1) ‖y−2‖p2 ≤
1

2(r + 1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2 , (5)

ICALP 2018

XX:8 Improved Algorithms for Adaptive Compressed Sensing

with sufficiently small constant failure probability given by the union bound. For the k/(2f(r + 1)q)
independent copies of subsamples, by a Chernoff bound, a 1/4 fraction of them will have the largest
absolute value in Q and (5) will also hold, with the overall failure probability being e−Ω(k/(frq)).

Therefore, since k/f > 2pj/2k,
∥∥xSj∥∥pp ≥ 2pj/2k

8(r+1)q

[∣∣x2jk/f
∣∣p − 1

2(r+1)

(
f

2jk

) p
2 ∥∥x−2jk/f

∥∥p
2

]
≥

2pj/2k
8(r+1)q

∣∣x2jk/f
∣∣p − k1− p2 f

p
2

16(r+1)q+1

∥∥x−2k/f
∥∥p

2 , and by the fact that 0 < q < p < 2,

‖x− x̂‖pp − ‖x−k‖pp ≤ O(1
rp

)k1− p2 f
p
2 ‖x−2k/f‖p2 −

r∑
j=1

∥∥xSj∥∥pp
≤
[
O
(

1
rp

)
+ r

16(r + 1)q+1

]
k1− p2 f

p
2 ‖x−2k/f‖p2 −

r∑
j=1

2pj/2k
8(r + 1)q

∣∣x2jk/f
∣∣p

≤ O
(

1
c

)
f

2
p

∥∥x−k/f∥∥pp +
[
O
(

1
c

)
+ 1

16(r + 1)q −
1

8(r + 1)q

] r∑
j=1

k2pj/2
∣∣x2jk/f

∣∣p
≤ f

2
p

∥∥x−k/f∥∥pp ≤ ε ‖x−k‖pp .
The total number of measurements will be at most

O
(
k

f
loglog(n)+4kr2

f
loglog(n)+ kr

2frq r
2
p loglog(n)

)
= O

(
k

ε
p
2

loglog(n) log
2
p+1−(p− 1

2)+
(

1
ε

))
,

while the total failure probability given by the union bound is 1/6 + e−Ω(k/(frq)) < 1/3, which
completes the proof. J

3 `∞/`2 Adaptive Sparse Recovery

In this section, we will prove Theorem 3. Our algorithm first approximates ‖x−k‖2. The goal is
to compute a value V which is not much smaller than 1

k‖x−k‖
2
2, and also at least Ω(1

k)‖x−Ω(k)‖22.
This value will be used to filter out coordinates that are not large enough, while ensuring that heavy
coordinates are included. We need the following lemma, which for example can be found in Section
4 of [13].

I Lemma 8. Using log(1/δ) non-adaptive measurements we can find with probability 1− δ a value
V such that 1

C1k
‖x−C2k‖22 ≤ V ≤ 1

k‖x−k‖
2
2, where C1, C2 are absolute constants larger than 1.

We use the aforementioned lemma with Θ(log k) measuremenents to obtain such a value V with
probability 1− 1/poly(k). Now let c be an absolute constant and let g : [n]→ [kc] be a random hash
function. Then, with probability at least 1− 1

poly(k) we have that for every i, j ∈ Hk(x), g(i) 6= g(j).
By running PARTITIONCOUNTSKETCH(x, 2C1k, {g−1(1), g−1(2), . . . g−1(kc)}, we get back an
estimate wj for every j ∈ [kc]; here C1 is an absolute constant. Let γ′ be an absolute constant to be
chosen later. We set S = {j ∈ [kc] : w2

j ≥ γ′V } and T =
⋃
j∈S g

−1(j). We prove the following
lemma.

I Lemma 9. Let C ′ be an absolute constant. With probability at least 1− 1/poly(k) the following
holds.

1. |S| = O(k).
2. Every j ∈ [kc] such that there exists i ∈ Hk(x) ∩ g−1(j), will be present in S.
3. For every j ∈ S, there exists exactly one coordinate i ∈ g−1(j) with x2

i ≥ 1
C′k‖x−C2k‖22.

4. For every j ∈ S, ‖xg−1(j)\Hk(x)‖22 ≤ 1
k2 ‖x−k‖22.

V. Nakos, X. Shi, D. P. Woodruff and H. Zhang XX:9

Proof. Let C0 be an absolute constant larger than 1. Note that with probability 1− C2
0 · k6−c, all

i ∈ HC0k3(x) (and, hence, also in HC0k3,1/k3(x)) are isolated under g. Fix j ∈ [kc] and, for i ∈ [n],
define the random variable Yi = 1g(xi)=jx2

i . Now observe that

E

 ∑
i∈g−1(j)\HC0k3,1/k3 (x)

Yi

 = 1
kc
‖x−C0k3‖22.

Applying Bernstein’s inequality to the variables Yi with

K = 1
C0k3 ‖x−C0k3‖22, and σ2 <

1
kc+3 ‖x−C0k3‖42,

we have that

Pr

 ∑
i∈g−1(j)\HC0k3,1/k3 (x)

x2
i ≥ 1/k2‖x−C0k2‖22

 ≤ e−k,
where c is an absolute constant. This allows us to conclude that the above statement holds for all
different kc possible values j, by a union-bound. We now prove the bullets one by one. We remind the
reader that PARTITIONCOUNTSKETCH aproximates the value of every ‖xg−1(j)‖22 with a multiplicate
error in [1− γ, 1 + γ] and additive error 1

C0k
‖x−k‖22.

1. Since there are at most 1
γ′(1+γ)C2k + C2k indices j with (1 + γ)‖xg−1(j)‖22 ≥

γ′

k ‖x−k‖
2
2 ≥

γ′V , the algorithm can output at most O(k) indices.

2. The estimate for such a j will be at least (1− γ) 1
k‖x−k‖

2
2 − 1

2C1k
‖x−C2k‖22 ≥ γ′V , for some

suitable choice of γ′. This implies that j will be included in S.

3. Because of the guarantee for V and the guarantee of PARTITIONCOUNTSKETCH, we have that
all j that are in S satisfy (1 + γ)‖xg−1(j)‖22 + 1

k‖x−2C1k‖22 ≥
γ′

k ‖x−C2k‖22, and since∑
i∈g−1(j)\HC0k3 (x)

x2
i ≤

1
k2 ‖x−k‖

2
2,

this implies that there exists i ∈ HC0k3(x)∩ g−1(j). But since all i ∈ HC0k3(x) are perfectly hashed
under g, this implies that this i should satisfy x2

i ≥ 1
C′k‖x−C2k‖22, from which the claim follows.

4. Because elements in HC0k3(x) are perfectly hashed, we have that

‖xg−1(j)\Hk(x)‖22 = ‖xg−1(j)\HC0k3 (x)‖22 ≤
1
k2 ‖x−k‖

2
2

for C0 large enough. J

Given S, we proceed in the following way. For every j ∈ S, we run the algorithm guaranteed by
Lemma 15 from the full version 2 to obtain an index ij , using O(kloglogn) measurements. Then we
observe directly xij using another O(k) measurements, and form vector z = x− x{ij}j∈S . We need
the following lemma.

2 see https://arxiv.org/pdf/1804.09673.pdf

ICALP 2018

XX:10 Improved Algorithms for Adaptive Compressed Sensing

I Lemma 10. With probability 1− 1/poly(k), |Hk(x) \ {ij}j∈S | ≤ k
log2 n

.

Proof. Let us consider the calls to the 1-sparse recovery routine in j for which there exists i ∈
Hk(x) ∩ g−1(j). Since the 1-sparse recovery routine succeeds with probability 1− 1/poly(logn),
then the probability that we have more than k

log2 n
calls that fail, is(

k
k

log2 n

)(
1

poly(logn)

)k/ log2 n

≤ 1
poly(k) .

This gives the proof of the lemma. J

For the last step of our algorithm, we run PARTITIONCOUNTSKETCH(zT , k/ log(n), [n]) to
estimate the entries of z. We then find the coordinates with the largest 2k estimates, and observe them
directly. Since

logn
k
‖(zT)−k/ logn‖22 ≤

logn
k
· 1
k2 ‖x−k‖

2
2 = logn

k3 ‖x−k‖
2
2,

every coordinate will be estimated up to additive error logn
k3 ‖x−k‖22, which shows that every coordinate

in T ∩Hk,1/k(x) will be included in the top 2k coordinates. Putting everything together, we obtain
the desired result.

4 `2/`2 Adaptive Sparse Recovery in Optimal Rounds

In this section, we give an algorithm for `2/`2 compressed sensing using O(loglogn) rounds, instead
of O(log∗ k · loglogn) rounds. Specifically, we prove the first bullet of Theorem 4. We call this
algorithm ADAPTIVESPARSERECOVERY`∞/`2 .

We proceed with the design and the analysis of the algorithm. We note that for k/ε = O(log5 n)3,
`∞/`2 gives already the desired result. So, we focus on the case of k/ε = Ω(log5 n). We pick a hash
function h : [n] → [B], where B = ck/(ε logn) for some constant c large enough. The following
follows by an application of Bernstein’s Inequality and the Chernoff Bound, similarly to `∞/`2.

I Lemma 11. With probability 1− 1/poly(n), the following holds:

∀j ∈ [B] : |Hk/ε(x) ∩ h−1(j)| ≤ logn, and

∣∣∣∣∣∣
∑

i∈h−1(j)\Hk/ε(x)

x2
i

∣∣∣∣∣∣ ≤ ε

k
‖x−k‖22.

We now run the `∞/`2 algorithm for the previous section on vectors xh−1(1), xh−1(2), . . . , xh−1(B)
with sparsity parameter O(logn), to obtain vectors x̂1, x̂2, . . . , x̂B . The number of rounds is
O(loglog(n)), since we can run the algorithm in every bucket in parallel. By the definition of
the `∞/`2 algorithm, one can see that |supp(x̂j)| ≤ O(logn). We set S = ∪j∈B |supp(xj)|,
and observe that |S| = ck/(ε logn) · O(logn) = O(k/ε). The number of measurements equals
ck/(ε logn) · O(logn · loglog(n log(n/k))) = O((k/ε) · loglog(n log(n/k))).

I Lemma 12. With probability 1− 1/poly(n), we have that |S \Hk/ε(x)| ≤ k
ε log2 n

.

Proof. Since every call to `∞/`2 fails with probability 1/poly(logn), the probability that we have
more than a 1

logn fraction of the calls that fail is at most(
B

B/ log2 n

)(
1

logn

)B/ logn
≤ (e log2 n)logn(logn)−B/ logn ≤ 1

poly(n) .

3 the constant 5 is arbitrary

V. Nakos, X. Shi, D. P. Woodruff and H. Zhang XX:11

This implies that S will contain all but at mostB/ log2 n·logn = k/(ε log2 n) coordinates i ∈ Hk(x).
J

We now observe xS directly and form the vector z = x − xS , for which ‖z−k/(ε log2 n)‖2 ≤
‖x−k/ε‖2. We now run a standard `2/`2 algorithm that fails with probability 1/poly(n) to obtain a
vector ẑ that approximates z (for example PARTITIONCOUNTSKETCH(z, k/(ε log2 n), [n]) suffices).
We then output ẑ+xS , for which ‖ẑ+xS−x‖2 = ‖ẑ−z‖ ≤ (1+ε)‖z−k/(ε logn)‖2 ≤ (1+ε)‖x−k‖2.
The number of measurements of this step is O(1

ε
k

log2 n
· logn) = o(kε). The total number of rounds

is clearly O(loglog(n log(nεk))).

5 `2/`2 with Improved Dependence on ε

In this section, we prove the second part of Theorem 4. We first need an improved algorithm for the
1-sparse recovery problem.

I Lemma 13. Let x ∈ Rn. There exists an algorithm IMPROVEDONESPARSERECOVERY, that
uses O(loglogn + 1

ε loglog(1
ε)) measurements in O(loglog(n)) rounds, and finds with sufficiently

small constant probability an O(1)-sparse vector x̂ such that ‖x̂− x‖2 ≤ (1 + ε)‖x−1‖2.

Proof. We pick a hash function h : [n]→ [B], where B = d1/εhe for a sufficiently large constant h.
Observe that all elements ofH√B(x) are perfectly hashed under hwith constant probability, and, ∀j ∈
[B], E

[∥∥∥xh−1(j)\H√B (x)
∥∥∥

2

]
≤ 1/B‖x−√B‖2. As in the previous sections, invoking Bernstein’s

inequality we can get that with probability 1 − 1/poly(B), ∀j ∈ [B],
∥∥∥xh−1(j)\H√B(x)‖2

∥∥∥2

2
≤

c logB
B ‖x−√B‖

2
2, where c is some absolute constant, and the exponent in the failure probability is a

function of c.
We now define the vector z ∈ RB , the j-th coordinate of which equals zj =

∑
i∈h−1(j) σi,jxi.We

shall invoke Khintchine inequality to obtain ∀j, Pr
[∣∣∣∑i∈h−1(j)\H√B(x) σi,jxi

∣∣∣2 > c′

ε

∥∥∥xh−1(j)\H√B(x)

∥∥∥2

2

]
≤

e−Ω(1/ε2), for some absolute constant c′. This allows us to take a union-bound over all B =
d1/εhe entries of z to conclude that there exists an absolute constant ζ such that ∀j ∈ [B],∣∣∣∑i∈h−1(j)\H√B(x) σi,jxi

∣∣∣2 ≤ c′

ε ‖xh−1(j)\H√B(x)‖22 < ζε‖x−1‖22, by setting h large enough. Now,

for every coordinate j ∈ [B] for which h−1(j) ∩ H1,ε(x) = i∗ or some i∗ ∈ [n], we have that

|zj | ≥
∣∣∣∣|xi∗ | −√ c logB

B · c′ε ‖x−√B‖2
∣∣∣∣ ≥ (1 − ζ)

√
ε‖x−1‖2, whereas for every j ∈ [B] such that

h−1(j) ∩ H1,εζ(x) = ∅ it holds that |zj | ≤ 2ζ
√
ε‖x−1‖2. We note that H1,ε(x) ⊂ H√B(x),

and hence all elements of H1,ε(x) are also perfectly hashed under h. Moreover, observe that
E‖z−1‖22 ≤ ‖x−1‖22, and hence by Markov’s inequality, we have that ‖z−1‖22 ≤ 10‖x−1‖22 holds
with probability 9/10. We run the `2/`2 algorithm of Theorem 4 for vector z with the sparsity being
set to 1, and obtain vector ẑ. We then set S = supp(ẑ). We now define w = (|z1|, |z2|, . . .), for
which ‖w−1‖2 = ‖z−1‖2. Clearly, ‖z − zS‖22 ≤ ‖z − ẑ‖22 ≤ (1 + ε)‖z−1‖22 = (1 + ε)‖w−1‖22.
So ‖w − wS‖22 = ‖z − zS‖22 ≤ (1 + ε)‖w−1‖22. We now prove that

∥∥x− x∪j∈Sh−1(j)
∥∥

2 ≤
(1 +O(ε))‖x−1‖2. Let i∗ be the largest coordinate in magnitude of x, and j∗ = h(i∗). If j∗ ∈ S,
then it follows easily that ‖x− x∪j∈Sh−1(j)‖2 ≤ ‖x−1‖2. Otherwise, since

∑
j 6=j∗ w

2
j = ‖w−1‖22,

and
∑
j /∈S w

2
j ≤ (1 + ε)‖w−1‖22, it must be the case that

∣∣w2
j∗ − ‖wS‖22

∣∣ ≤ ε‖w−1‖22 ≤ 10ε‖x−1‖22.
The above inequality, translates to

∑
i∈h−1(j∗) x

2
i ≤ |S|ζε‖x−1‖22 + ζε‖x−1‖22 + 10ε‖x−1‖22 +∑

j∈S
∑
i∈h−1(j) x

2
j = O(ε)‖x−1‖22 +

∑
j∈S

∑
i∈h−1(j) x

2
j . This gives

∥∥x− x∪j∈Sh−1(j)
∥∥

2 =∑
i∈h−1(j∗) x

2
i+
∑
j /∈S∪{j∗}

∑
i∈h−1(j) x

2
i ≤ O(ε)‖x−1‖22+O(1)ζε‖x−1‖22+

∑
j∈S

∑
i∈h−1(j) x

2
j+∑

j /∈S∪{j∗}
∑
i∈h−1(j) x

2
i+ ≤ (1 +O(ε))‖x−1‖22.

ICALP 2018

XX:12 Improved Algorithms for Adaptive Compressed Sensing

Given S, we run the 1-sparse recovery routine on vectors xj for j ∈ S, with a total ofO(loglogn)
measurements and O(loglogn) rounds. We then output {xij}j∈S . Let ij be the index returned for
j ∈ S by the 1-sparse recovery routine. Since we have a constant number of calls to the 1-sparse
recovery routine (because S is of constant size), all our 1-sparse recovery routines will succeed.
We now have that ‖x − x∪j∈Sij‖2 ≤ ‖xS̄‖2 +

∑
j∈S ‖xh−1(j) − xij‖2 ≤ ‖xS̄‖2 +

∑
j∈S(1 +

ε)‖xh−1(j)\H1(x)‖1 ≤ (1 +O(ε))‖x−1‖2. Rescaling ε, we get the desired result. J

The algorithm for general k is similar to [10], apart from the fact that we subsample at a slower
rate, and also use our new 1-sparse recovery algorithm as a building block. In the algorithm below,
Rr is the universe we are restricting our attention on at the rth round. Moreover, J is the set of
coordinates that we have detected so far. We are now ready to prove Theorem 4.

Algorithm 2 Adaptive `2/`2 Sparse Recovery

1. R0 ← [n].
2. x0 ← ~0.
3. δ0 ← δ/2, ε0 ← ε/e, f0 ← 1/32, k0 ← k.
4. J ← ∅.
5. For r = 0 to O(log∗ k) do
6. For t = 0 to Θ(kr log(1/(δrfr))) do
7. St ← SUBSAMPLE(x− x(r), Rr, 1/(C0kr)).
8. J ← J ∪ IMPROVEDONESPARSERECOVERY((x− x(r))St).
9. End For
10. Rr+1 ← [n] \ J .
11. δr+1 ← δr/8.
12. εr+1 ← εr/2.
13. fr+1 ← 1/21/(4i+rfr).
14. kr+1 ← frkr.
15. Rr+1 ← [n] \ J .
16. End For
17. x̂← x(r+1).
18. Return x̂.

Proof. The number of measurements is bounded in the exact same way as in Theorem 3.7 from [10].
We fix a round r and i ∈ Hkr,εr (x(r)). Then the call to SUBSAMPLE(Rr, 1/(C0kr)) yields

Pr
[
|Hkr,εr (x− x(r)) ∩ St| = {i}

]
≥ 1
C0kr

, E
[
‖xSt\Hkr,εi (x(r))‖22

]
= 1
C0kr

‖x−kr‖22.

Setting C0 to be large enough and combining Markov’s inequality with the guarantee of Lemma
13, we get that the probability that the call to IMPROVEDONESPARSERECOVERY(xSt) returns i is
Θ(1/kr). Because we repeat kr log(1/(frδr)), the probability that i or a set Si of size O(1) such
that ‖x{i} − xSi‖2 ≤ εi‖x−kr‖22, is not added in J is at most (1− 1/kr)kr log(1/(frδr)) = frδr.

Given the above claim, the number of measurements isO((kloglogn+ k/εloglog(1/ε) log(1/δ))
and the analysis of the iterative loop proceeds almost identically to Theorem 3.7 of [10].

J

References

1 Akram Aldroubi, Haichao Wang, and Kourosh Zarringhalam. Sequential adaptive compressed
sampling via Huffman codes. arXiv preprint arXiv:0810.4916, 2008.

V. Nakos, X. Shi, D. P. Woodruff and H. Zhang XX:13

2 Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learning and 1-bit
compressed sensing under asymmetric noise. In Annual Conference on Learning Theory, pages
152–192, 2016.

3 Khanh Do Ba, Piotr Indyk, Eric Price, and David P. Woodruff. Lower bounds for sparse recovery.
In ACM-SIAM Symposium on Discrete Algorithms, pages 1190–1197, 2010.

4 Rui M. Castro, Jarvis Haupt, Robert Nowak, and Gil M. Raz. Finding needles in noisy haystacks.
In International Conference on Acoustics, Speech and Signal Processing, pages 5133–5136, 2008.

5 Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery: optimizing
time and measurements. SIAM Journal on Computing, 41(2):436–453, 2012.

6 Rishi Gupta, Piotr Indyk, Eric Price, and Yaron Rachlin. Compressive sensing with local geometric
features. International Journal of Computational Geometry & Applications, 22(04):365–390, 2012.

7 Jarvis Haupt, Waheed U Bajwa, Michael Rabbat, and Robert Nowak. Compressed sensing for
networked data. IEEE Signal Processing Magazine, 25(2):92–101, 2008.

8 Jarvis Haupt, Robert Nowak, and Rui Castro. Adaptive sensing for sparse signal recovery. In
Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, pages 702–
707, 2009.

9 Jarvis D. Haupt, Richard G. Baraniuk, Rui M. Castro, and Robert D. Nowak. Compressive distilled
sensing: Sparse recovery using adaptivity in compressive measurements. In Asilomar Conference
on Signals, Systems and Computers, pages 1551–1555, 2009.

10 Piotr Indyk, Eric Price, and David P. Woodruff. On the power of adaptivity in sparse recovery. In
Annual IEEE Symposium on Foundations of Computer Science, pages 285–294, 2011.

11 Shihao Ji, Ya Xue, and Lawrence Carin. Bayesian compressive sensing. IEEE Transactions on
Signal Processing, 56(6):2346–2356, 2008.

12 Raghunandan M. Kainkaryam, Angela Bruex, Anna C. Gilbert, John Schiefelbein, and Peter J.
Woolf. poolmc: Smart pooling of mrna samples in microarray experiments. BMC Bioinformatics,
11:299, 2010.

13 Yi Li and Vasileios Nakos. Sublinear-time algorithms for compressive phase retrieval. arXiv pre-
print arXiv:1709.02917, 2017.

14 Dmitry M. Malioutov, Sujay Sanghavi, and Alan S. Willsky. Compressed sensing with sequential
observations. In International Conference on Acoustics, Speech and Signal Processing, pages 3357–
3360, 2008.

15 Tom Morgan and Jelani Nelson. A note on reductions between compressed sensing guarantees.
CoRR, abs/1606.00757, 2016.

16 Shanmugavelayutham Muthukrishnan. Data streams: Algorithms and applications. Foundations
and Trends in Theoretical Computer Science, 1(2):117–236, 2005.

17 Eric Price and David P. Woodruff. (1+eps)-approximate sparse recovery. In IEEE Symposium on
Foundations of Computer Science, pages 295–304, 2011.

18 Eric Price and David P. Woodruff. Lower bounds for adaptive sparse recovery. In ACM-SIAM
Symposium on Discrete Algorithms, pages 652–663, 2013.

19 Noam Shental, Amnon Amir, and Or Zuk. Rare-allele detection using compressed se(que)nsing.
CoRR, abs/0909.0400, 2009.

20 Tasuku Soma and Yuichi Yoshida. Non-convex compressed sensing with the sum-of-squares
method. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 570–579, 2016.

ICALP 2018

	Introduction
	Our Results
	Our Techniques

	Adaptive p/p Recovery
	/2 Adaptive Sparse Recovery
	2/2 Adaptive Sparse Recovery in Optimal Rounds
	2/2 with Improved Dependence on

