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Abstract

We study the problem of recovering an incomplete m× n matrix of rank r with
columns arriving online over time. This is known as the problem of life-long
matrix completion, and is widely applied to recommendation system, computer
vision, system identification, etc. The challenge is to design provable algorithms
tolerant to a large amount of noises, with small sample complexity. In this work,
we give algorithms achieving strong guarantee under two realistic noise models. In
bounded deterministic noise, an adversary can add any bounded yet unstructured
noise to each column. For this problem, we present an algorithm that returns a
matrix of a small error, with sample complexity almost as small as the best prior
results in the noiseless case. For sparse random noise, where the corrupted columns
are sparse and drawn randomly, we give an algorithm that exactly recovers an
µ0-incoherent matrix by probability at least 1− δ with sample complexity as small
as O (µ0rn log(r/δ)). This result advances the state-of-the-art work and matches
the lower bound in a worst case. We also study the scenario where the hidden
matrix lies on a mixture of subspaces and show that the sample complexity can
be even smaller. Our proposed algorithms perform well experimentally in both
synthetic and real-world datasets.

1 Introduction
Life-long learning is an emerging object of study in machine learning, statistics, and many other
domains [2, 11]. In machine learning, study of such a framework has led to significant advances
in learning systems that continually learn many tasks over time and improve their ability to learn
as they do so, like humans [15]. A natural approach to achieve this goal is to exploit information
from previously-learned tasks under the belief that some commonalities exist across the tasks [2,
24]. The focus of this work is to apply this idea of life-long learning to the matrix completion
problem. That is, given columns of a matrix that arrive online over time with missing entries, how to
approximately/exactly recover the underlying matrix by exploiting the low-rank commonality across
each column.

Our study is motivated by several promising applications where life-long matrix completion is
applicable. In recommendation systems, the column of the hidden matrix consists of ratings by
multiple users to a specific movie/news; The news or movies are updated online over time but usually
only a few ratings are submitted by those users. In computer vision, inferring camera motion from a
sequence of online arriving images with missing pixels has received significant attention in recent
years, known as the structure-from-motion problem; Recovering those missing pixels from those
partial measurements is an important preprocessing step. Other examples where our technique is
applicable include system identification, multi-class learning, global positioning of sensors, etc.

Despite a large amount of applications of life-long matrix completion, many fundamental ques-
tions remain unresolved. One of the long-standing challenges is designing noise-tolerant, life-long
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algorithms that can recover the unknown target matrix with small error. In the absence of noise,
this problem is not easy because the overall structure of the low rankness is unavailable in each
round. This problem is even more challenging in the context of noise, where an adversary can add
any bounded yet unstructured noise to those observations and the error propagates as the algorithm
proceeds. This is known as bounded deterministic noise. Another type of noise model that receives
great attention is sparse random noise, where the noise is sparse compared to the number of columns
and is drawn i.i.d. from a non-degenerate distribution.

Our Contributions: This paper tackles the problem of noise-tolerant, life-long matrix completion
and advances the state-of-the-art results under the two realistic noise models.

• Under bounded deterministic noise, we design and analyze an algorithm that is robust to
noise, with only a small output error (See Figure 3). The sample complexity is almost as
small as the best prior results in the noiseless case, provided that the noise level is small.

• Under sparse random noise, we give sample complexity that guarantees an exact recovery of
the hidden matrix with high probability. The sample complexity advances the state-of-the-art
results (See Figure 3) and matches the lower bound in the worst case of this scenario.

• We extend our result of sparse random noise to the setting where the columns of the hidden
matrix lie on a mixture of subspaces, and show that smaller sample complexity suffices to
exactly recover the hidden matrix in this more benign setting.

• We also show that our proposed algorithms perform well experimentally in both synthetic
and real-world datasets.

2 Preliminaries
Before proceeding, we define some notations and clarify problem setup in this section.

Notations: We will use bold capital letter to represent matrix, bold lower-case letter to represent
vector, and lower-case letter to represent scalar. Specifically, we denote by M ∈ Rm×n the noisy
observation matrix in hindsight. We denote by L the underlying clean matrix, and by E the noise. We
will frequently use M:t ∈ Rm×1 to indicate the t-th column of matrix M, and similarly Mt: ∈ R1×n

the t-th row. For any set of indices Ω, MΩ: ∈ R|Ω|×n represents subsampling the rows of M at
coordinates Ω. Without confusion, denote by U the column space spanned by the matrix L. Denote by
Ũ the noisy version of U, i.e., the subspace corrupted by the noise, and by Û our estimated subspace.
The superscript k of Ũk means that Ũk has k columns in the current round. PU is frequently used to
represent the orthogonal projection operator onto subspace U. We use θ(a,b) to denote the angle
between vectors a and b. For a vector u and a subspace V, define θ(u,V) = minv∈V θ(u,v). We
define the angle between two subspaces U and V as θ(U,V) = maxu∈U θ(u,V). For norms, denote
by ‖v‖2 the vector `2 norm of v. For matrix, ‖M‖2F =

∑
ijM

2
ij and ‖M‖∞,2 = maxi ‖Mi:‖2, i.e.,

the maximum vector `2 norm across rows. The operator norm is induced by the matrix Frobenius
norm, which is defined as ‖P‖ = max‖M‖F≤1 ‖PM‖F . If P can be represented as a matrix, ‖P‖
also denotes the maximum singular value.

2.1 Problem Setup

In the setting of life-long matrix completion, we assume that each column of the underlying matrix
L is normalized1 and arrives online over time. We are not allowed to get access to the next column
until we perform the completion for the current one. This is in sharp contrast to the offline setting
where all columns come at one time and so we are able to immediately exploit the low-rank structure
to do the completion. In hindsight, we assume the underlying matrix is of rank r. This assumption
enables us to represent L as L = US, where U is the dictionary (a.k.a. basis matrix) of size m× r
with each column representing a latent metafeature, and S is a matrix of size r × n containing the
weights of linear combination for each column L:t. The overall subspace structure is captured by U
and the finer grouping structure, e.g., the mixture of multiple subspaces, is captured by the sparsity
of S. Our goal is to approximately/exactly recover the subspace U and the matrix L from a small
fraction of the entries, possibly corrupted by noise, although these entries can be selected sequentially
in a feedback-driven way.

Noise Models: We study two types of realistic noise models, one of which is the deterministic noise.
In this setting, we assume that the `2 norm of noise on each column is bounded by εnoise. Beyond

1Without loss of generality, we assume ‖L:t‖2 = 1 for all t, although our result can be easily extended to the
general case.
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that, no other assumptions are made on the nature of noise. The challenge under this noise model is to
design an online algorithm limiting the possible error propagation during the completion procedure.
Another noise model we study is the sparse random noise, where we assume that the noise vectors
are drawn i.i.d. from any non-degenerate distribution. Additionally, we assume the noise is sparse,
i.e., only a few columns of L are corrupted by noise. Our goal is to exactly recover the underlying
matrix L with sample complexity as small as possible.

Incoherence: Apart from the sample budget and noise level, another quantity governing the difficulty
of the completion problem is the coherence parameter on the row/column space. Intuitively, the
completion should perform better when the information spreads evenly throughout the matrix. To
quantify this term, for subspace U of dimension r in Rm, we define

µ(U) =
m

r
max
i∈[m]

‖PUei‖22, (1)

where ei is the i-th column of the identity matrix. Indeed, without (1) there is an identifiability issue
in the matrix completion problem [7, 8, 27]. As an extreme example, let L be a matrix with only one
non-zero entry. Such a matrix cannot be exactly recovered unless we see the non-zero element. As in
[19], to mitigate the issue, in this paper we assume incoherence µ0 = µ(U) on the column space of
the underlying matrix. This is in contrast to the classical results of Candès et al. [7, 8], in which one
requires incoherence µ0 = max{µ(U), µ(V)} on both the column and the row subspaces.

Sampling Model: Instead of sampling the entries passively by uniform distribution, our sampling
oracle allows adaptively measuring entries in each round. Specifically, for any arriving column we
are allowed to have two types of sampling phases: we can either uniformly take the samples of the
entries, as the passive sampling oracle, or choose to request all entries of the column in an adaptive
manner. This is a natural extension of the classical passive sampling scheme with wide applications.
For example, in network tomography, a network operator is interested in inferring latencies between
hosts while injecting few packets into the network. The operator is in control of the network, thus
can adaptively sample the matrix of pair-wise latencies. In particular, the operator can request full
columns of the matrix by measuring one host to all others. In gene expression analysis, we are
interested in recovering a matrix of expression levels for various genes across a number of conditions.
The high-throughput microarrays provide expression levels of all genes of interest across operating
conditions, corresponding to revealing entire columns of the matrix.

3 Main Results
In this section, we formalize our life-long matrix completion algorithm, develop our main theoretical
contributions, and compare our results with the prior work.

3.1 Bounded Deterministic Noise

To proceed, our algorithm streams the columns of noisy M into memory and iteratively updates the
estimate for the column space of L. In particular, the algorithm maintains an estimate Û of subspace
U, and when processing an arriving column M:t, requests only a few entries of M:t and a few rows
of Û to estimate the distance between L:t and U. If the value of the estimator is greater than a given
threshold ηk, the algorithm requests the remaining entries of M:t and adds the new direction M:t

to the subspace estimate; Otherwise, finds a best approximation of M:t by a linear combination of
columns of Û. The pseudocode of the procedure is displayed in Algorithm 1. We note that our
algorithm is similar to the algorithm of [19] for the problem of offline matrix completion without
noise. However, our setting, with the presence of noise (which might conceivably propagate through
the course of the algorithm), makes our analysis significantly more subtle.

The key ingredient of the algorithm is to estimate the distance between the noiseless column L:t

and the clean subspace Uk with only a few measurements with noise. To estimate this quantity,
we downsample both M:t and Ûk to MΩt and Ûk

Ω:, respectively. We then project MΩt onto
subspace Ûk

Ω: and use the projection residual ‖MΩt −PÛk
Ω:
MΩt‖2 as our estimator. A subtle and

critical aspect of the algorithm is the choice of the threshold ηk for this estimator. In the noiseless
setting, we can simply set ηk = 0 if the sampling number |Ω| is large enough — in the order of
O(µ0r log2 r), because O(µ0r log2 r) noiseless measurements already contain enough information
for testing whether a specific column lies in a given subspace [19]. In the noisy setting, however, the
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Algorithm 1 Noise-Tolerant Life-Long Matrix Completion under Bounded Deterministic Noise
Input: Columns of matrices arriving over time.
Initialize: Let the basis matrix Û0 = ∅. Randomly draw entries Ω ⊂ [m] of size d uniformly with
replacement.
1: For t from 1 to n, do
2: (a) If ‖MΩt − PÛk

Ω:
MΩt‖2 > ηk

3: i. Fully measure M:t and add it to the basis matrix Ûk. Orthogonalize Ûk.
4: ii. Randomly draw entries Ω ⊂ [m] of size d uniformly with replacement.
5: iii. k := k + 1.
6: (b) Otherwise M̂:t := ÛkÛk†

Ω:MΩt.
7: End For
Output: Estimated range space ÛK and the underlying matrix M̂ with column M̂:t.

challenge is that both M:t and Ûk are corrupted by noise, and the error propagates as the algorithm
proceeds. Thus instead of setting the threshold as 0 always, our theory suggests setting ηk proportional
to the noise level

√
εnoise. Indeed, the threshold ηk balances the trade-off between the estimation

error and the sample complexity: a) if ηk is too large, most of the columns are represented by the
noisy dictionary and therefore the error propagates too quickly; b) In contrast, if ηk is too small, we
observe too many columns in full and so the sample complexity increases. Our goal in this paper
is to capture this trade-off, providing a global upper bound on the estimation error of the life-long
arriving columns while keeping the sample complexity as small as possible.

3.1.1 Recovery Guarantee

Our analysis leads to the following guarantee on the performance of Algorithm 1.
Theorem 1 (Robust Recovery under Deterministic Noise). Let r be the rank of the underlying
matrix L with µ0-incoherent column space. Suppose that the `2 norm of noise in each column
is upper bounded by εnoise. Set the parameters d ≥ c(µ0r + mkεnoise) log2(2n/δ)) and ηk =

C
√
dkεnoise/m for global constants c and C. Then with probability at least 1 − δ, Algorithm 1

outputs ÛK with K ≤ r and outputs M̂ with `2 error ‖M̂:t − L:t‖2 ≤ O
(
m
d

√
kεnoise

)
2 uniformly

for all t, where k ≤ r is the number of base vectors when processing the t-th column.

Proof Sketch. We firstly show that our estimated subspace in each round is accurate. The key
ingredient of our proof is a result pertaining the angle between the underlying subspace and the noisy
one. Ideally, the column space spanned by the noisy dictionary cannot be too far to the underlying
subspace if the noise level is small. This is true only if the angle between the newly added vector and
the column space of the current dictionary is large, as shown by the following lemma.
Lemma 2. Let Uk = span{u1,u2, ...,uk} and Ũk = span{ũ1, ũ2, ..., ũk} be two subspaces
such that θ(ui, ũi) ≤ εnoise for all i ∈ [k]. Let γk =

√
20kεnoise and θ(ũi, Ũi−1) ≥ γi for

i = 2, ..., k. Then θ(Uk, Ũk) ≤ γk/2.
We then prove the correctness of our test in Step 2. Lemma 2 guarantees that the underlying subspace
Uk and our estimated one Ũk cannot be too distinct. So by algorithm, projecting any vector on
the subspace spanned by Ũk does not make too many mistakes, i.e., θ(M:t, Ũ

k) ≈ θ(M:t,U
k).

On the other hand, by standard concentration argument our test statistic ‖MΩt − PŨk
Ω:
MΩt‖2 is

close to d
m‖M:t − PŨkM:t‖2. Note that the latter term is determined by the angle of θ(M:t, Ũ

k).
Therefore, our test statistic in Step 2 is indeed an effective measure of θ(M:t, Ũ

k), or θ(L:t, Ũ
k)

since L:t ≈M:t, as proven by the following novel result.

Lemma 3. Let εk = 2γk, γk =
√

20kεnoise, and k ≤ r. Suppose that we observe a set of coordinates
Ω ⊂ [m] of size d uniformly at random with replacement, where d ≥ c0(µ0r +mkεnoise) log2(2/δ).
If θ(L:t, Ũ

k) ≤ εk, then with probability at least 1 − 4δ, we have ‖MΩt − PŨk
Ω:
MΩt‖2 ≤

C
√
dkεnoise/m. Inversely, if θ(L:t, Ũ

k) ≥ cεk, then with probability at least 1 − 4δ, we have
‖MΩt − PŨk

Ω:
MΩt‖2 ≥ C

√
dkεnoise/m, where c0, c and C are absolute constants.

2By our proof, the constant factor is 9.

4



Finally, as both our dictionary and our statistic are accurate, the output error cannot be too large. A
simple deduction on the union bound over all columns leads to Theorem 1.

Theorem 1 implies a result in the noiseless setting when εnoise goes to zero. Indeed, with the sample
size growing in the order of O(µ0nr log2 n), Algorithm 1 outputs a solution that is exact with
probability at least 1− 1

n10 . To the best of our knowledge, this is the best sample complexity in the
existing literature for noiseless matrix completion without additional side information [19, 22]. For
the noisy setting, Algorithm 1 enjoys the same sample complexity O(µ0nr log2 n) as the noiseless
case, if εnoise ≤ Θ(µ0r/(mk)). In addition, Algorithm 1 inherits the benefits of adaptive sampling
scheme. The vast majority results in the passive sampling scenarios require both the row and column
incoherence for exact/robust recovery [22]. In contrast, via adaptive sampling we can relax the
incoherence assumption on the row space of the underlying matrix and are therefore more applicable.

We compare our result with several related lines of research in the prior work. While lots of online
matrix completion algorithms have been proposed recently, they either lack of solid theoretical
guarantee [17], or require strong assumptions for the streaming data [19, 21, 13, 18]. Specifically,
Krishnamurthy et al. [18] proposed an algorithm that requires column subset selection in the noisy
case, which might be impractical in the online setting as we cannot measure columns that do not
arrive. Focusing on a similar online matrix completion problem, Lois et al. [21] assumed that a)
there is a good initial estimate for the column space; b) the column space changes slowly; c) the
base vectors of the column space are dense; d) the support of the measurements changes by at least a
certain amount. In contrast, our assumptions are much simpler and more realistic.

We mention another related line of research — matched subspace detection. The goal of matched
subspace detection is to decide whether an incomplete signal/vector lies within a given subspace [5, 4].
It is highly related to the procedure of our algorithm in each round, where we aim at determining
whether an arriving vector belongs to a given subspace based on partial and noisy observations. Prior
work targeting on this problem formalizes the task as a hypothesis testing problem. So they assume
a specific random distribution on the noise, e.g., Gaussian, and choose ηk by fixing the probability
of false alarm in the hypothesis testing [5, 23]. Compared with this, our result does not have any
assumption on the noise structure/distribution.

3.2 Sparse Random Noise
In this section, we discuss life-long matrix completion on a simpler noise model but with a stronger
recovery guarantee. We assume that noise is sparse, meaning that the total number of noisy columns
is small compared to the total number of columns n. The noisy columns may arrive at any time, and
each noisy column is assumed to be drawn i.i.d. from a non-degenerate distribution. Our goal is to
exactly recover the underlying matrix and identify the noise with high probability.

We use an algorithm similar to Algorithm 1 to attack the problem, with ηk = 0. The challenge is that
here we frequently add noise vectors to the dictionary and so we need to distinguish the noise from the
clean column and remove them out of the dictionary at the end of the algorithm. To resolve the issue,
we additionally record the support of the representation coefficients in each round when we represent
the arriving vector by the linear combinations of the columns in the dictionary matrix. On one hand,
the noise vectors in the dictionary fail to represent any column, because they are random. So if the
representation coefficient corresponding to a column in the dictionary is 0 always, it is convincing to
identify the column as a noise. On the other hand, to avoid recognizing a true base vector as a noise,
we make a mild assumption that the underlying column space is identifiable. Typically, that means
for each direction in the underlying subspace, there are at least two clean data points having non-zero
projection on that direction. We argue that the assumption is indispensable, since without it there
is an identifiability issue between the clean data and the noise. As an extreme example, we cannot
identify the black point in Figures 1 as the clean data or as noise if we make no assumption on the
underlying subspace. To mitigate the problem, we assume that for each i ∈ [r] and a subspace Ur

with orthonormal basis, there are at least two columns L:ai and L:bi of L such that [Ur]T:iL:ai 6= 0
and [Ur]T:iL:bi 6= 0. The detailed algorithm can be found in the supplementary material.

3.2.1 Upper Bound

We now provide upper and lower bound on the sample complexity of above algorithm for the exact
recovery of underlying matrix. Our upper bound matches the lower bound up to a constant factor. We
then analyze a more benign setting, namely, the data lie on a mixture of low-rank subspaces with
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Table 1: Comparisons of our sample complexity with the best prior results in the noise-free setting.

Passive Sampling Adaptive Sampling
Complexity O

(
µ0nr log2(n/δ)

)
[22] O

(
µ0nr log2(r/δ)

)
[19] O (µ0nr log(r/δ)) (Ours)

Lower bound O (µ0nr log(n/δ))[10] O (µ0nr log(r/δ)) (Ours)

dimensionality τ � r. Our analysis leads to the following guarantee on the performance of above
algorithm. The proof is in the supplementary material.
Theorem 4 (Exact Recovery under Random Noise). Let r be the rank of the underlying matrix L
with µ0-incoherent column space. Suppose that the noise Es0 of size m × s0 are drawn from any
non-degenerate distribution, and that the underlying subspace Ur is identifiable. Then our algorithm
exactly recovers the underlying matrix L, the column space Ur, and the outlier Es0 with probability
at least 1− δ, provided that d ≥ cµ0r log (r/δ) and s0 ≤ d− r − 1. The total sample complexity is
thus cµ0rn log (r/δ), where c is a universal constant. 	

Underlying	Subspace	

(a) Identifiable Subspace

	

	

Underlying	Subspace	

(b) Unidentifiable Subspace

Figure 1: Identifiability.

Theorem 4 implies an immediate result in the noise-free setting
as εnoise goes to zero. In particular, O (µ0nr log(r/δ)) mea-
surements are sufficient so that our algorithm outputs a solution
that is exact with probability at least 1 − δ. This sample com-
plexity improves over existing results of O

(
µ0nr log2(n/δ)

)
[22]

and O
(
µ0nr

3/2 log(r/δ)
)

[18], and over O
(
µ0nr log2(r/δ)

)
of

Theorem 1 when εnoise = 0. Indeed, our sample complexity
O (µ0nr log(r/δ)) matches the lower bound, as shown by Theorem
5 (See Table 1 for comparisons of sample complexity). We notice
another paper of Gittens [14] which showed that Nsytröm method
recovers a positive-semidefinite matrix of rank r from uniformly sam-
pling O(µ0r log(r/δ)) columns. While this result matches our sam-
ple complexity, the assumptions of positive-semidefiniteness and of
subsampling the columns are impractical in the online setting.

We compare Theorem 4 with prior methods on decomposing an in-
complete matrix as the sum of a low-rank term and a column-sparse
term. Probably one of the best known algorithms is Robust PCA via
Outlier Pursuit [25, 28, 27, 26]. Outlier Pursuit converts this problem
to a convex program:

min
L,E
‖L‖∗ + λ‖E‖2,1, s.t. PΩM = PΩ(L + E), (2)

where ‖ · ‖∗ captures the low-rankness of the underlying subspace and ‖ · ‖2,1 captures the column-
sparsity of the noise. Recent papers on Outlier Pursuit [26] prove that the solution to (2) exactly
recovers the underlying subspace, provided that d ≥ c1µ2

0r
2 log3 n and s0 ≤ c2d4n/(µ5

0r
5m3 log6 n)

for constants c1 and c2. Our result definitely outperforms the existing result in term of the sample
complexity d, while our dependence of s0 is not always better (although in some cases better) when
n is large. Note that while Outlier Pursuit loads all columns simultaneously and so can exploit the
global low-rank structure, our algorithm is online and therefore cannot tolerate too much noise.

3.2.2 Lower Bound
We now establish a lower bound on the sample complexity. Our lower bound shows that in our
adaptive sampling setting, one needs at least Ω (µ0rn log (r/δ)) many samples in order to uniquely
identify a certain matrix in the worst case. This lower bound matches our analysis of upper bound in
Section 3.2.1.
Theorem 5 (Lower Bound on Sample Complexity). Let 0 < δ < 1/2, and Ω ∼ Uniform(d) be the
index of the row sampling ⊆ [m]. Suppose that Ur is µ0-incoherent. If the total sampling number
dn < cµ0rn log (r/δ) for a constant c, then with probability at least 1− δ, there is an example of M
such that under the sampling model of Section 2.1 (i.e., when a column arrives the choices are either
(a) randomly sample or (b) view the entire column), there exist infinitely many matrices L′ of rank r
obeying µ0-incoherent condition on column space such that L′Ω: = LΩ:.

The proof can be found in the supplementary material. We mention several lower bounds on the
sample complexity for passive matrix completion. The first is the paper of Candès and Tao [10], that
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gives a lower bound of Ω(µ0nr log(n/δ)) if the matrix has both incoherent rows and columns. Taking
a weaker assumption, Krishnamurthy and Singh [18, 19] showed that if the row space is coherent,
any passive sampling scheme followed by any recovery algorithm must have Ω(mn) measurements.
In contrast, Theorem 5 demonstrates that in the absence of row-space incoherence, exact recovery of
the matrix is possible with only Ω(µ0nr log(r/δ)) samples, if the sampling scheme is adaptive.

3.2.3 Extension to Mixture of Subspaces

	

Hidden	Layer	

Output	Layer	

Underlying	Space	

(a) Single Subspace
	

Subspace	1	 Subspace	2	

Hidden	Layer	

Output	Layer	

(b) Mixture of Subspaces

Figure 2: Subspace structure.

Theorem 5 gives a lower bound on sample complexity in the worst
case. In this section, we explore the possibility of further reducing
the sample complexity with more complex common structure. We
assume that the underlying subspace is a mixture of h independent
subspaces3 [20], each of which is of dimension at most τ � r. Such
an assumption naturally models settings in which there are really h
different categories of movies/news while they share a certain com-
monality across categories. We can view this setting as a network
with two layers: The first layer captures the overall subspace with
r metafeatures; The second layer is an output layer, consisting of
metafeatures each of which is a linear combination of only τ metafea-
tures in the first layer. See Figures 2 for visualization. Our argument
shows that the sparse connections between the two layers significantly
improve the sample complexity.
Algorithmically, given a new column, we uniformly sample Õ(τ log r)
entries as our observations. We try to represent those elements by
a sparse linear combination of only τ columns in the basis matrix,
whose rows are truncated to those sampled indices; If we fail, we measure the column in full, add that
column into the dictionary, and repeat the procedure for the next arriving column. See supplementary
material for the detailed algorithm.
Regarding computational considerations, learning a τ -sparse representation of a given vector w.r.t.
a known dictionary can be done in polynomial time if the dictionary matrix satisfies the restricted
isometry property [9], or trivially if τ is a constant [2]. This can be done by applying `1 minimization
or brute-force algorithm, respectively. Indeed, many real datasets match the constant-τ assumption,
e.g., face image [6] (each person lies on a subspace of dimension τ = 9), 3D motion trajectory [12]
(each object lies on a subspace of dimension τ = 4), handwritten digits [16] (each script lies on a
subspace of dimension τ = 12), etc. So our algorithm is applicable for all these settings.
Theoretically, the following theorem provides a strong guarantee for our algorithm. The proof can be
found in the supplementary material.
Theorem 6 (Mixture of Subspaces). Let r be the rank of the underlying matrix L. Suppose that the
columns of L lie on a mixture of identifiable and independent subspaces, each of which is of dimension
at most τ . Denote by µτ the maximal incoherence over all τ -combinations of L. Let the noise model
be that of Theorem 4. Then our algorithm exactly recovers the underlying matrix L, the column space
Ur, and the outlier Es0 with probability at least 1− δ, provided that d ≥ cµττ2 log (r/δ) for some
global constant c and s0 ≤ d− τ − 1. The total sample complexity is thus cµττ2n log (r/δ).
As a concrete example, if the incoherence parameter µτ is a global constant and the dimension τ of
each subspace is far less than r, the sample complexity of O(µτnτ

2 log(r/δ)) is significantly better
than the complexity of O(µ0nr log(r/δ)) for the structure of a single subspace in Theorem 4. This
argument shows that the sparse connections between the two layers improve the sample complexity.

4 Experimental Results
Bounded Deterministic Noise: We verify the estimated error of our algorithm in Theorem 1 under
bounded deterministic noise. Our synthetic data are generated as follows. We construct 5 base
vectors {ui}5i=1 by sampling their entries from N (0, 1). The underlying matrix L is then generated

by L =
[
u11

T
200,

∑2
i=1 ui1

T
200,

∑3
i=1 ui1

T
200,

∑4
i=1 ui1

T
200,

∑5
i=1 ui1

T
1,200

]
∈ R100×2,000, each

column of which is normalized to the unit `2 norm. Finally, we add bounded yet unstructured noise
to each column, with noise level εnoise = 0.6. We randomly pick 20% entries to be unobserved. The
left figure in Figure 3 shows the comparison between our estimated error4 and the true error by our

3h linear subspaces are independent if the dimensionality of their sum is equal to the sum of their dimensions.
4The estimated error is up to a constant factor.
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Figure 3: Left Figure: Approximate recovery under bounded deterministic noise with estimated error.
Right Two Figures: Exact recovery under sparse random noise with varying rank and sample size.
White Region: Nuclear norm minimization (passive sampling) succeeds. White and Gray Regions:
Our algorithm (adaptive sampling) succeeds. Black Region: Our algorithm fails. It shows that the
success region of our algorithm strictly contains that of the passive sampling method.
algorithm. The result demonstrates that empirically, our estimated error successfully predicts the
trend of the true algorithmic error.
Sparse Random Noise: We then verify the exact recoverability of our algorithm under sparse random
noise. The synthetic data are generated as follows. We construct the underlying matrix L = XY
as a product of m × r and r × n i.i.d. N (0, 1) matrices. The sparse random noise is drawn from
standard Gaussian distribution such that s0 ≤ d− r − 1. For each size of problem (50× 500 and
100×1, 000), we test with different rank ratios r/m and measurement ratios d/m. The experiment is
run by 10 times. We define that the algorithm succeeds if ‖L̂− L‖F ≤ 10−6, rank(L̂) = r, and the
recovered support of the noise is exact for at least one experiment. The right two figures in Figure 3
plots the fraction of correct recoveries: white denotes perfect recovery by nuclear norm minimization
approach (2); white+gray represents perfect recovery by our algorithm; black indicates failure for
both methods. It shows that the success region of our algorithm strictly contains that of the prior
approach. Moreover, the phase transition of our algorithm is nearly a linear function w.r.t r and d.
This is consistent with our prediction d = Ω(µ0r log(r/δ)) when δ is small, e.g., poly(1/n).
Mixture of Subspaces: To test the performance of our algorithm for the mixture of subspaces, we
conduct an experiment on the Hopkins 155 dataset. The Hopkins 155 database is composed of 155
matrices/tasks, each of which consists of multiple data points drawn from two or three motion objects.
The trajectory of each object lie in a subspace. We input the data matrix to our algorithm with varying
sample sizes. Table 2 records the average relative error ‖L̂− L‖F /‖L‖F of 10 trials for the first five
tasks in the dataset. It shows that our algorithm is able to recover the target matrix with high accuracy.
Another experiment comparing the sample complexity of single subspace v.s. mixture of subspaces
can be found in the supplementary material.

Table 2: Life-long Matrix Completion on the first 5 tasks in Hopkins 155 database.
#Task Motion Number d = 0.8m d = 0.85m d = 0.9m d = 0.95m

#1 2 9.4× 10−3 6.0× 10−3 3.4× 10−3 2.6× 10−3

#2 3 5.9× 10−3 4.4× 10−3 2.4× 10−3 1.9× 10−3

#3 2 6.3× 10−3 4.8× 10−3 2.8× 10−3 7.2× 10−4

#4 2 7.1× 10−3 6.8× 10−3 6.1× 10−3 1.5× 10−3

#5 2 8.7× 10−3 5.8× 10−3 3.1× 10−3 1.2× 10−3

5 Conclusions
In this paper, we study life-long matrix completion that aims at online recovering an m× n matrix of
rank r under two realistic noise models — bounded deterministic noise and sparse random noise. Our
result advances the state-of-the-art work and matches the lower bound under sparse random noise. In
a more benign setting where the columns of the underlying matrix lie on a mixture of subspaces, we
show that a smaller sample complexity is possible to exactly recover the target matrix. It would be
interesting to extend our results to other realistic noise models, including random classification noise
or malicious noise previously studied in the context of supervised classification [1, 3]
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1422910, NSF CCF-1451177, a Sloan Fellowship, and a Microsoft Research Fellowship.
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