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Abstract
Quantized data is the norm in many energy
constrained problems, a concrete example be-
ing brain signals recorded by distributed sensors
placed around the head in Brain-Computer In-
terface (BCI) applications. However, machine
learning algorithms typically ignore the quan-
tized nature of such data. In this paper, we under-
take a principled study of efficient quantization
methods for linear classification. We propose and
analyze a customized quantization scheme for di-
agonal linear discriminant analysis classifier in-
cluding both learning and prediction steps. Ex-
periments on synthetic and real dataset show the
effectiveness of our proposed strategies.

1. Introduction
In this work, we investigate the problem of doing central-
ized prediction using quantized data obtained from dis-
tributed sensors. As an example, in Brain-Computer In-
terface (BCI) applications, hundreds or even thousands of
electrodes placed around or inside the head are used to
sense brain signals (Lebedev & Nicolelis, 2006). These
quantized signals are then used for a specific prediction task
such as classification. For example, a neuroprosthetic goal
might involve predicting whether an individual is trying to
move his hand towards left or right purely based on the
quantized brain data to decode the patient’s desired move-
ment. Other applications include wireless sensors networks
for the Internet of Things (Zhou et al., 2013) and electric
power grid (Nabaee & Labeau, 2012). In these settings,
sensors need to communicate data at high rates, and con-
sequently consume large amounts of energy (Won et al.,
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2014). To avoid large energy consumption, data is quan-
tized for both training and prediction. One key observa-
tion for prediction task is that all features (readings of dif-
ferent sensors) do not have the same relevance to the pre-
diction goal. Thus, if we compress each feature in accor-
dance to its relevance, we can reduce communication cost
and keep prediction error low simultaneously. Formally,
given communication constraints (or equivalently, energy
constraints), our aim is to devise a data quantization tech-
nique that supports our prespecified task.

Traditional information-theoretic quantization techniques
as those proposed by (Berger, 1979; Slepian & Wolf, 1973;
Cover, 1975; Wyner & Ziv, 1976) are difficult to apply to
these problems because these methods require either mov-
ing unquantized data to a central node prior to compression,
which is not applicable in aforementioned settings, or stor-
ing and estimating parameters at each sensor, which needs
complex hardware that already consumes high energy. Re-
cently, Mahzoon et al. (Mahzoon et al., 2014) proposed
rate allocation and deterministic quantization strategies for
quantizing signals from m sensors and then directly used
these quantized data for linear regression and linear classi-
fication, but their method needs already trained model.

In this work, we propose a two-stage active quanitization
strategy for training Diagonal Linear Discriminant Anal-
ysis (DLDA) classifier. We first use initial codes based
on our prior knowledge about the underlying distribution.
Then after the first round sampling, we change our codes
based on these data and sample again. Our final estima-
tion of parameters of the DLDA classifier is based on the
second round quantized data. Once the classifier is trained,
we use a randomized dithering-noise based quantization for
the testing data on which prediction is desired. Finally,
Theorem 2 in Sec. 3 reveals how the number of training
samples and total bits used for quantization affect the pre-
diction accuracy. To the best of our knowledge, our pro-



Novel Quantization Strategies for Linear Prediction with Guarantees

posed strategy is the first one that quantizes features in both
learning and prediction steps with provable bounds. Exper-
iments on simulated and real data demonstrate the effec-
tiveness of our method.

1.1. Related Works
The study of quantization starts from traditional informa-
tion theory, where one needs to estimate the joint distri-
bution across all the sensors (Wyner & Ziv, 1976; Cover,
1975; Slepian & Wolf, 1973; Berger, 1979), which is
hard to realize (Mahzoon et al., 2014). Recently, Zhu et
al. (Zhu & Lafferty, 2014) focused on quantized estimation
of Gaussian sequence models in Euclidean balls. However,
there are significant differences between our work and ex-
isting ones: we search for the optimal allocated bits for the
quantized data, rather than for quantizing the predictors,
and conduct solid theoretical analysis for the behaviour of
the quantized data as the input to the linear predictor.

2. Notation and Problem Statement
In the distributed sensor network setting, suppose we have
m sensors and a sum rate of R bits that needs to be al-
located across different sensors for quantization. We use
bold X to represent a sample and Xi is the feature from i-
th sensor. If there are n samples, we denote these samples
by {X (j)}nj=1. Ri is the number of bits we assign to i-th
sensor. Thus,

∑m
i=1Ri ≤ R.

For each feature Xi, its quantized representation using Ri
bits is denoted by X̂i. More precisely, the i-th sensor uses
an encoder function Ei : R → {0, · · · , 2Ri − 1} and
sends Ei (Xi) to the fusion center. We assume that the
communication channel is noiseless. Also, we do not use
vector quantization since despite the simplicity afforded
by asymptotic vector quantization analysis, we use scalar
quantization strategies because we aim for designing tech-
niques that are applicable to sensors with very small mem-
ory. The decision center uses a corresponding decoding
function Di : {0, 1, · · · , 2Ri − 1} → R. Since both train-
ing and prediction are done at the fusion center, we can only
use quantized data for both tasks. Our goal is to minimize
prediction error.

In this paper, we consider the problem of training a lin-
ear classifier from quantized samples then doing predic-
tion based on quantized features. We focus on a simple
but widely used linear classifier, Diagonal Linear Discrim-
inant Analysis (DLDA). DLDA is a classical classification
method for continuous valued features and has been widely
used in various domains (Venables & Ripley, 2013). We
assume each sample X belongs to one of the two existing
classes with equal probability, i.e., Pr [class(X) = 1] =
Pr [class(X) = 2] = 1/2. DLDA makes the assump-
tions that given the class, class (X) = c, each feature
is distributed independently according to a Gaussian dis-

tribution: Xi ∼ N
(
µic, σ

2
ic

)
, and σi1 = σi2 = σi for

i = 1, · · · ,m. Without loss of generality, we also assume
−µi1 = µi2 = µi. Under these assumptions, DLDA is
a linear classifier with wi = µi/σ

2
i , for i = 1, · · · ,m.

Under quantization constraints, we can only use the quan-
tized observations for both training and prediction. Here
we want to design a training algorithm together with quan-
tization strategies that minimize the classification error:
Pr
[
Ĉ
(
X̂
)
6= class (X)

]
, where Ĉ (·), denotes the linear

classifier trained by quantized samples. While the problem
of finding the optimal strategies that minimize classifica-
tion error is hard, we instead relax the problem to estimat-
ing the decision variable w>X, and use it to obtain upper
bounds on classification error.

3. Active Learning for Quantized DLDA
3.1. Quantized Training for DLDA
For DLDA, in the training phase, we need to estimate
{µi}mi=1 and {σi}mi=1 using quantized features and labeled
data. Notice that since the two classes have symmetric
means around 0 and same variance, whenever we have a
sample with label 1, we can negate it and obtain a sample
from class 2. Thus, equivalently, in the training phase, we
are just estimating parameters of a Gaussian distribution.

Our technique has two rounds. In the first round, we use
our prior knowledge about the underlying parameters to
construct initial quantizers. Then we use these quantized
observations to obtain a rough estimate of the underlying
distributions. Based on estimated parameters from the first
round, we construct new codes to quantize data from the
next round. Finally, we use the quantized samples from the
second round to learn parameters of underlying distribution
and weight vector for DLDA classification.

Formally, we assignRiniti bits to the i-th sensor and use the
following code in the first round:

E initi (Xi) (1)

= arg min
k=0,··· ,2R

init
i −1

∣∣−µiniti − ciniti σiniti + kdiniti −Xi

∣∣
where µiniti and σiniti are our initial guess on mean and
variance. ciniti = 2 max

(
log
(
σiniti /µiniti

)
Riniti , 1

)
con-

trols the range of quantization region and diniti = 2(µiniti +

ciniti σiniti )/(2R
init
i − 1) is the quantization unit. The cor-

responding decoder is, for k = 0, · · · , 2Rinit
i − 1

Diniti (k) = −µiniti − ciniti σiniti + kdiniti . (2)

Let n1 be the number of samples in the first round. We
estimate mean and variance by

µ̃i =

∑n1

j=1 X̂i(j)

n1
, σ̃2

i =

∑n1

j=1

(
X̂i(j)− µ̃i

)2
n1

.
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Figure 1. Classification accuracy of proposed quantization scheme on synthesized data. Optimal is the optimal Bayes classification rule
applied to unquantized samples.

where X̂i(j) = Diniti

(
E initi (Xi (j))

)
is the quantized rep-

resentation of Xi(j).

In the second round, we assign R̃i bits to the i-th sensor
and we sample another set of data points using uniform
quantization scheme informed by the first round estimation
on mean and variance:

Ẽi (Xi) = arg min
k=0,··· ,2R̃i−1

∣∣∣−µ̃i − c̃iσ̃i + kd̃i −Xi

∣∣∣ , (3)

D̃i (k) = −µ̃i − c̃iσ̃i + kd̃i. (4)

where c̃i = 2 log
(
m
ε

)
max

(
log σ̃i

µ̃i
, 1
)

and d̃i =

2 (µ̃i + c̃iσ̃i) /(2
R̃i−1). Let n2 be the number of observa-

tions from the second round we use to estimate the mean,
the variance and the weight vector for DLDA:

µ̂i =

∑n2

j=1 X̂i(j)

n2
, σ̂2
i =

∑n2

j=1

(
X̂i(j)− µ̂i

)2
n2

, ŵi =
µ̂i
σ̂2
i

,

where X̂i(j) = D̃i
(
Ẽi (Xi (j))

)
is the quantized repre-

sentation of Xi(j) in the second round.

3.2. Quantized Prediction for DLDA
In the previous section, we have good estimations on un-
derlying distribution of features ({µ̂i}mi=1 and {σ̂i}mi=1) and
weight vector ŵ for DLDA. In this section, we discuss how
to use these estimations for prediction. First, we assign bits
to each sensor according to (9).

As the first step of our quantization, we pick bi for each
sensor such that |Xi| ≤ bi holds with high probabil-
ity. Then for the i-th sensor, we place 2Ri quantization
points uniformly in the region [−bi, bi], i.e., the quantiza-
tion points are {−bi + kdi|k = 0, · · · , 2Ri − 1} where
di = 2bi/(2

Ri − 1) is a unit quantization region. For the
feature from the i-th sensor,Xi, we first add dithering noise
γi uniformly distributed within [−di/2, di/2], then we map
this value to the nearest quantization point. Formally, our

−bi bi− bi3
bi
3

0

Xi Xi + γ X̂i

Figure 2. An illustration of dithering based quantization strategy.
We use Ri = 2 bits for quantizing Xi, so di = 2bi/(2

2Ri−1) =
bi/3. In this scenario, featureXi is quantized to − 1

3
bi because af-

ter adding dithering noise, the nearest quantization point is − 1
3
bi.

encoding and decoding functions are

Ei(x) = arg min
k∈{0,··· ,2Ri−1}

| − bi + kdi − x− γ|, (5)

Di(k) = −bi + kdi. (6)

Fig. 2 provides an example of such a quantization strategy.
By adding dithering noise, we now show that the correla-
tion between quantization error from different sensors is re-
moved (consistent with (Schuchman, 1964)). Specifically,
with we derived the following result:

Theorem 1. Suppose for i = 1, · · · ,m, |Xi| ≤ bi, with
dithering noise quantization strategy, we have

E

[(
w>X−w>X̂

)2]
≤ 4

m∑
i=1

w2
i b

2
i · 2−2Ri . (7)

Now we can optimize bits assignment for the test data to
minimize Eqn. (7):

min
Ri,i=1,··· ,m

m∑
i=1

w2
i b

2
i · 2−2Ri (8)

s.t
m∑
i=1

Ri = R,Ri ≥ 1 for i = 1, · · · ,m

Routine algebra shows that the optimal bits assignment for
the i-th sensor is:

Ri =

[
1

2
log

8 ln 2 · w2
i b

2
i

λ
− 1

]
+

+ 1, (9)
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where [x]+ = max{x, 0} and λ is selected such that∑
Ri = R. The rates of each source are then rounded

to the nearest integer to ensure feasibility of quantization.

The next theorem reveals how the number of training sam-
ples and the number of bits for quantization affect the pre-
diction accuracy:

Theorem 2. Assume for i = 1, · · · ,m,
µi ≤ µiniti , σi ≤ σiniti , in the first stage
1Riniti = Ω̃

(
log
(
µinit
i

µi
+

σinit
i

µi

))
, and 2n1 =

Ω̃

(
log
(
m
δ

) [(µinit
i

µi

)2
+
(
σinit
i

µi

)2
+
(
µinit
i

σi

)4
+
(
σinit
i

σi

)4])
and in the second stage R̃i = Ω̃

(
log
(

1
ε

(
µi

σi
+ σi

µi

)))
,

n2 = Ω̃
(

1
ε2 log2

(
m
ε

)
log
(
m
δ

) (µ4
i

σ4
i

+
σ4
i

µ4
i

))
then with

probability at least 1− δ, for all i = 1, · · · ,m,

Pr
(
Ĉ
(
X̂
)
6= class (X)

)
= opt+O (ε) ,

where opt denotes the classification error of the best possi-
ble classifier.

Theorem 2 shows the prediction error comes from two
sources: one from quantization, the other from the sta-
tistical inference. For a given target accuracy parame-
ter ε, the number of bits required for each sensor R̃i de-
pends logarithmically on 1/ε. Therefor, totally we need
O (m log (1/ε)) bits to make error induced by quantization
be at the order of ε. The number of samples required de-
pends quadratically on 1/ε up to logarithm factor. Thus,
if we have infinite bits (no quantization error), we recover
the same sample complexity for parametric model for in-
ference and prediction (Wasserman, 2013).

4. Experiments
4.1. Simulated Data

We first test our quantization strategies on synthesized data.
Data is generated according to DLDA assumptions: for
i = 1, · · · ,m, µi is set to 1 and σi is set to be i, i1.2 and
i2 respectively for left, middle and right plots of Fig. 1. We
use m = 100 sensors and number of total bits R varies
from 100 to 200. We use n1 = 1000 samples in the first
round and n2 = 10000 samples in the second round for
training and 10000 samples for testing. The initial guesses
of parameters are set to be 10 to 50 times of the true val-
ues. Fig. 1 shows that the more accurate initial guesses are,
the fewer bits needed to achieve certain classification ac-
curacy. Also notice that if signal-to-noise ratio (µi/σi) of
some sensors are much larger than that of others, we need
fewer bits to reach optimal classification accuracy.

1We omit log(log(·)) terms.
2We omit log(·) dependencies on µi and σi.

4.2. Real Data
In this section, we test our quantization scheme on EEG
data. We use the brain signals of the first subject in exper-
iment of data set 1 from BCI Competition IV (Blankertz
et al., 2007). In the experiment, there are total 200 tri-
als. Each trial corresponds to a motor imagery of either
left hand or foot and lasts 8s. There total m = 59 sen-
sors and signals were sampled at 100Hz. See (Blankertz
et al., 2007) for the details. For each trial, raw EEG time
series are band-pass filtered with a butterworth IIR filter
of order 5. Then variance is calculated for each channel
(band power) and the logaithm is applied to the normal-
ized variance to yield a feature vector for that trial. Thus,
we generate 200 instances each with 59 features. Then we
randomly select 40 samples for testing and the remaining
for training. For training, 40 samples are used in the first
round and 120 samples are used in the second round. We
use 10 times of true mean and variance of training samples
as initial guesses.

Fig. 3 shows the classification accuracy on testing sam-
ples with different bits used. The unquantized classifier is
trained directly using 160 training samples without quanti-
zation and then is applied to unquantized testing samples.
Notice that even with just an average of 3 bits per sensor,
full (infinite number of bits) quantization accuracy can be
achieved. Another observation is that as we increase total
bits, the result becomes more stable.
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Figure 3. Classification accuracy of proposed quantization
scheme on EEG data.

5. Conclusion
In this paper, we propose and analyze an active learning
based quantization algorithm together with a prediction al-
gorithm that only require quantized samples for diagonal
linear discriminant analysis. Experiments on synthetic and
real world data show that with a few bits, we can achieve
near optimal accuracy as using un-quantized samples. In
this work, we only consider DLDA classifier. How to effi-
ciently assign bits among sensors and quantize features for
nonlinear classifiers is an important problem that has both
theoretical and practical implications.
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