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1 Supplementary Experiments

1.1 Single Subspace v.s. Mixture of Subspaces

We compare the sample complexity of Algorithm 2 (Single Subspace) and Algorithm 3 (Mixture
of Subspaces) for the exact recovery of the underlying matrix. The data are generated as follows.
We construct 5 independent subspaces {Si}5i=1 whose bases {Ui}5i=1 are 100× 4 random matrices
consisting of orthogonal columns (τ = 4 and r = 20). We then sample 20 data from each subspace
uniformly and obtain a 100× 100 data matrix. The sample size d varies from 1 to 100, and we record
the empirical probability of success over 200 times of experiments, where we define that an algorithm
succeeds if ‖L̂ − L‖F ≤ 10−6 and rank(L̂) = r. As shown in Figure 1, we see that the sample
complexity can indeed be smaller in the case of mixture of subspaces.
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Figure 1: Comparison of sample complexity between the case of single subspace and that of mixture
of subspaces.
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2 Proof of Robust Recovery under Deterministic Noise

Lemma 1 (Lemma 2. [1]). Let W = span{w1,w2, ...,wk−1}, U = span{w1,w2, ...,wk−1,u},
and Ũ = span{w1,w2, ...,wk−1, ũ} be subspaces spanned by vectors in Rm. Then

θ
(
U, Ũ

)
≤ π

2

θ(ũ,u)

θ(ũ,W)
.

Lemma 2 (Lemma 2 in Main Body). Let Uk = span{u1,u2, ...,uk} and Ũk =
span{ũ1, ũ2, ..., ũk} be two subspaces such that θ(ui, ũi) ≤ εnoise for all i ∈ [k]. Let
γk =

√
20kεnoise and θ(ũi, Ũi−1) ≥ γi for i = 2, ..., k. Then

θ
(
Uk, Ũk

)
≤ 10k

εnoise
γk

=
γk
2
. (1)

Proof. The proof is basically by induction on k. Instead, we will prove a stronger result by showing
that (1) holds on subspaces Uk = span{W,u1,u2, ...,uk} and Ũk = span{W, ũ1, ũ2, ..., ũk}
for arbitrary fixed subspace W. The base case k = 1 follows immediately from Lemma 1. Now
suppose the conclusion holds for any index ≤ k − 1. Let Uk

0 = span{Uk−1, ũk}. Then for the
index k, we have

θ(Uk, Ũk) ≤ θ(Uk,Uk
0) + θ(Uk

0 , Ũ
k)

≤ π

2

θ(ũk,uk)

θ(ũk,Uk−1)
+ 10(k − 1)

εnoise
γk−1

(By Lemma 1 and induction hypothesis)

≤ π

2

εnoise

θ(ũk, Ũk−1)− θ(Uk−1, Ũk−1)
+ 10(k − 1)

εnoise
γk−1

≤ π

2

εnoise
γk − 10(k − 1) εnoiseγk−1

+ 10(k − 1)
εnoise
γk−1

(By induction hypothesis)

=
εnoise
γk−1

(
π

2

γ2
k−1

γkγk−1 − 10(k − 1)εnoise
+ 10(k − 1)

)
≤ εnoise

γk−1
(π + 10k − 10)

=
εnoise
γk

γk
γk−1

(π + 10k − 10)

=
εnoise
γk

√
k

k − 1
(π + 10k − 10)

≤ εnoise
γk

10k (k ≥ 2).

Lemma 3 (Lemma 3 in Main Body). Let εk = 2γk, γk =
√

20kεnoise, and k ≤ r. Suppose that
we observe a set of coordinates Ω ⊂ [m] of size d uniformly at random with replacement, where
d ≥ c0(µ0r + mkεnoise) log2(2/δ). If θ(L:t, Ũ

k) ≤ εk, then with probability at least 1 − 4δ, we
have

‖MΩt − PŨk
Ω:

MΩt‖2 ≤ C
√
dkεnoise
m

.

Inversely, if θ(L:t, Ũ
k) ≥ cεk, then with probability at least 1− 4δ, we have

‖MΩt − PŨk
Ω:

MΩt‖2 ≥ C
√
dkεnoise
m

,

where c0, c and C are absolute constants.

Proof. The first part of the theorem follows from the upper bound of Lemma 15. Specifically, by
plugging d into the lower bound of Lemma 15, we see that α < 1/2 and γ < 1/3. Note that∥∥L:t − PŨkL:t

∥∥
2

= ‖L:t‖2 sin θ
(
L:t,PŨkL:t

)
≤ θ

(
L:t,PŨkL:t

)
= θ(L:t, Ũ

k) ≤ εk.
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Therefore, by Lemma 15,∥∥∥MΩt − PŨk
Ω:

MΩt

∥∥∥
2
≤ O

(√
d

m

∥∥M:t − PŨkM:t

∥∥
2

)

≤ O

(√
d

m

(∥∥L:t − PŨkL:t

∥∥
2

+
∥∥PŨk(L:t −M:t)

∥∥
2

+ ‖M:t − L:t‖2
))

≤ O

(√
d

m
(εk + 2εnoise)

)

≤ C
√
dkεnoise
m

.

We now proceed the second part of the theorem. To this end, we first explore the relation between
the incoherence of the noisy basis Ũk and the clean one Uk. Since we are able to control the error
propagation in Ũk, intuitively, the incoherence of Ũk and Uk is not distinct too much. In particular,
for any i ∈ [m], ∥∥PŨkei

∥∥
2
≤ ‖PUkei‖2 +

∥∥PUkei − PŨkei
∥∥

2

≤ ‖PUkei‖2 +
∥∥PUk − PŨk

∥∥ ‖ei‖2
= ‖PUkei‖2 + ‖ei‖2 sin θ

(
Uk, Ũk

)
≤ ‖PUkei‖2 + θ

(
Uk, Ũk

)
≤ ‖PUkei‖2 +

γk
2

= ‖PUkei‖2 +
1

4
εk.

Therefore,

µ
(
Ũk
)

=
m

k
max
i∈[m]

∥∥PŨkei
∥∥2

2
≤ m

k

(
2 ‖PUkei‖22 +

1

8
ε2k

)
≤ 2µ(Uk) + c′′mεnoise,

for global constant c′′. Also, note that∥∥PŨkM:t − L:t

∥∥
2
≥ sin θ

(
L:t,PŨkM:t

)
‖L:t‖2 ≥

1

2
θ
(
L:t,PŨkM:t

)
≥ 1

2
θ
(
L:t, Ũ

k
)
≥ cεk

2
.

So we have∥∥∥MΩt − PŨk
Ω
MΩt

∥∥∥
2
≥

√√√√ 1

m

(
d

2
− 3kµ(Ũk)β

2

)∥∥M:t − PŨkM:t

∥∥
2

≥ Ω

(√
d

m
− 3kµ(Uk)

m
log2(1/δ)− c0kεnoise log2(1/δ)

∥∥M:t − PŨkM:t

∥∥
2

)

≥ Ω

(√
d

m
− 3µ0r

m
log2(1/δ)− c0kεnoise log2(1/δ)

∥∥M:t − PŨkM:t

∥∥
2

)
(Since Uk ⊆ Ur)

≥ Ω

(√
d

m
− c0kεnoise log2(1/δ)

(∥∥PŨkM:t − L:t

∥∥
2
− ‖L:t −M:t‖2

)) (
Since d > 3µ0r log2(1/δ)

)
> Ω

(√
d

m
− c0kεnoise log2(1/δ)

(cεk
2
− εnoise

))

> C

√
dkεnoise
m

(
Since d > c0mkεnoise log2(1/δ)

)
.
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Algorithm 1 Noise-Tolerant Life-Long Matrix Completion under Bounded Deterministic Noise
Input: Columns of matrices arriving over time.
Initialize: Let the basis matrix Û0 = ∅. Randomly draw entries Ω ⊂ [m] of size d uniformly with
replacement.
1: For t from 1 to n, do
2: (a) If ‖MΩt − PÛk

Ω:
MΩt‖2 > ηk

3: i. Fully measure M:t and add it to the basis matrix Ûk. Orthogonalize Ûk.
4: ii. Randomly draw entries Ω ⊂ [m] of size d uniformly with replacement.
5: iii. k := k + 1.
6: (b) Otherwise M̂:t := ÛkÛk†

Ω:MΩt.
7: End For
Output: Estimated range space ÛK and the underlying matrix M̂ with column M̂:t.

Theorem 4 (Theorem 1 in Main Body). Let r be the rank of the underlying matrix L with µ0-
incoherent column space. Suppose that the `2 norm of the noise in each column is upper bounded
by εnoise. Set d ≥ c0(µ0r + mkεnoise) log2(2n/δ)) and ηk = C

√
dkεnoise/m for some global

constants c0 and C. Then Algorithm 1 outputs ÛK with K ≤ r, M̂ with `2 error ‖M̂:t − L:t‖2 ≤
Θ
(
m
d

√
kεnoise

)
uniformly for all t with probability at least 1− δ, where k ≤ r is the number of base

vectors when learning the t-th column.

Proof. We first show K ≤ r. Every time we add a new direction to the basis matrix if and
only if Condition (a) in Algorithm 1 holds true. In that case by Lemma 3, if setting ηk =

C
√
dkεnoise/m, then with probability at least 1 − 4δ, we have that θ(L:t, Ũ

k) ≥ 2γk, which
implies θ(M:t, Ũ

k) ≥ θ(L:t, Ũ
k)− θ(M:t,L:t) ≥ γk. So by Lemma 2, θ(Uk, Ũk) ≤ γk/2. Thus

θ(L:t,U
k) ≥ θ(L:t, Ũ

k)− θ(Uk, Ũk) ≥ 3γk/2. Since rank(L) = r, we obtain that K ≤ r.

We now proceed to prove the upper bound on the `2 error. We discuss Case (a) and (b) respectively.
If Condition (a) in Algorithm 1 holds true, then according to the algorithm, we fully observe M:t

and use it as our estimate M̂:t. So
∥∥∥M̂:t − L:t

∥∥∥
2
≤ εnoise ≤ Θ(md

√
kεnoise); On the other hand, if

Case (b) in Algorithm 1 holds true, then we represent M̂:t by the basis subspace Ũk. So we have∥∥∥M̂:t − L:t

∥∥∥
2

=
∥∥∥ŨkŨk†

Ω:MΩt − L:t

∥∥∥
2

≤
∥∥∥ŨkŨk†L:t − L:t

∥∥∥
2

+
∥∥∥ŨkŨk†

Ω:LΩt − ŨkŨk†L:t

∥∥∥
2

+
∥∥∥ŨkŨk†

Ω:LΩt − ŨkŨk†
Ω:MΩt

∥∥∥
2

= sin θ(L:t, Ũ
k) +

∥∥∥ŨkŨk†
Ω:LΩt − ŨkŨk†L:t

∥∥∥
2

+
∥∥∥ŨkŨk†

Ω:(LΩt −MΩt)
∥∥∥

2
.

To bound the second term, let L:t = Ũkv + e, where Ũkv = ŨkŨk†L:t and ‖e‖2 ≤ εk since
‖e‖2 = sin θ(L:t, Ũ

k) ≤ εk. So

ŨkŨk†
Ω:LΩt − ŨkŨk†L:t = Ũk(ŨkT

Ω: Ũk
Ω:)
−1ŨkT

Ω: (Ũk
Ω:v + eΩ)− Ũk

Ω:v

= ŨkŨk†
Ω:eΩ.

Therefore,∥∥∥M̂:t − L:t

∥∥∥
2
≤ θ(L:t, Ũ

k) +
∥∥∥ŨkŨk†

Ω:LΩt − ŨkŨk†L:t

∥∥∥
2

+
∥∥∥ŨkŨk†

Ω:(LΩt −MΩt)
∥∥∥

2

≤ θ(L:t, Ũ
k) +

∥∥∥ŨkŨk†
Ω:

∥∥∥ ‖eΩ‖2 +
∥∥∥ŨkŨk†

Ω:

∥∥∥ ‖LΩt −MΩt‖2

≤ εk + Θ
(m
d
εk

)
+ Θ

(m
d
εnoise

)
= Θ

(m
d

√
kεnoise

)
,

where
∥∥∥ŨkŨk

Ω:

∥∥∥ ≤ σ1(Ũk)/σk(Ũk
Ω:) ≤ Θ(m/d) once d ≥ Ω(µ(Ũk)k log(k/δ)), due to Lemma

16. The final sample complexity follows from the union bound on the n columns.
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3 Proof of Exact Recovery under Random Noise

Algorithm 2 Noise-Tolerant Life-Long Matrix Completion under Sparse Random Noise
Input: Columns of matrices arriving over time.
Initialize: Let the basis matrix B̂0 = ∅, the counter C = ∅. Randomly draw entries Ω ⊂ [m] of
size d uniformly without replacement.
1: For each column t of M, do
2: (a) If ‖MΩt − PB̂kΩ:

MΩt‖2 > 0

3: i. Fully measure M:t and add it to the basis matrix B̂k.
4: ii. C := [C, 0].
5: iii. Randomly draw entries Ω ⊂ [m] of size d uniformly without replacement.
6: iv. k := k + 1.
7: (b) Otherwise
8: i. C := C + 1T

supp(B̂k†Ω:MΩt)
. //Record supports of representation coefficient

9: ii. M̂:t := B̂kB̂k†
Ω:MΩt.

10: t := t+ 1.
11: End For
Outlier Removal: Remove columns corresponding to entry 0 in vector C from B̂s0+r =
[Es0 ,Ur].
Output: Estimated range space, identified outlier vectors, and recovered underlying matrix M̂

with column M̂:t.

Lemma 5. Let X = UΣVT be the skinny SVD of X, orthc(X) = U, and orthr(X) = VT . Then
for any set of coordinates Ω and any matrix X ∈ Rm×n, we have

rank(XΩ:) = rank([orthc(X)]Ω:) and rank(X:Ω) = rank([orthr(X)]:Ω).

Proof. Let X = UΣVT be the skinny SVD of matrix X, where U = orthc(X) and VT =
orthr(X). On one hand,

XΩ: = IΩ:X = IΩ:UΣVT = [orthc(X)]Ω:ΣVT .

So rank(XΩ:) ≤ rank([orthc(X)]Ω:). On the other hand, we have

XΩ:VΣ−1 = [orthc(X)]Ω:.

Thus rank([orthc(X)]Ω:) ≤ rank(XΩ:). So rank(XΩ:) = rank([orthc(X)]Ω:).

The second part of the argument can be proved similarly. Indeed, X:Ω = UΣVT I:Ω =
UΣ[orthr(X)]:Ω and Σ−1UTX:Ω = [orthr(X)]:Ω. So rank(X:Ω) = rank([orthr(X)]:Ω),
as desired.

Proposition 6. Let L ∈ Rm×n be any rank-r matrix with skinny SVD UΣVT . Denote by L:Ω the
submatrix formed by subsampling the columns of L with i.i.d. Ber(d/n). If d ≥ 8µ(V)r log(r/δ),
then with probability at least 1− δ, we have rank(L:Ω) = r. Similarly, denote by LΩ: the submatrix
formed by subsampling the rows of L with i.i.d. Ber(d/m). If d ≥ 8µ(U)r log(r/δ), then with
probability at least 1− δ, we have rank(LΩ:) = r.

Proof. We only prove the first part of the argument. For the second part, applying the first part
to matrix LT gets the result. Denote by T the matrix VT = orthr(L) with orthonormal rows,
and by X =

∑n
i=1 δiT:ie

T
i ∈ Rr×n the sampling of columns from T with δi ∼ Ber(d/n). Let

Xi = δiT:ie
T
i . Define positive semi-definite matrix

Y = XXT =

n∑
i=1

δiT:iT
T
:i .

Obviously, σ2
r(X) = λr(Y). To invoke the matrix Chernoff bound, we estimate the parameters L

and µr in Lemma 16. Specifically, note that

EY =

n∑
i=1

EδiT:iT
T
:i =

d

n

n∑
i=1

T:iT
T
:i =

d

n
TTT .
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Therefore, µr = λr(EY) = dσ2
r(T)/n > 0. Furthermore, we also have

λmax(Xi) = ‖δiT:i‖22 ≤ ‖T‖22,∞ , L.

By the matrix Chernoff bound where we set ε = 1/2,
Pr [σr(X) > 0] = Pr [λr(Y) > 0]

≥ Pr

[
λr(Y) >

1

2
µr

]
= Pr

[
λr(Y) >

d

2n
σ2
r(T)

]
≥ 1− r exp

(
− dσ2

r(T)

8n‖T‖22,∞

)
, 1− δ.

So if

d ≥
8n‖T‖22,∞
σ2
r(T)

log
r

δ
= 8n‖T‖22,∞ log

(r
δ

)
,

then Pr [σk+1(X) = 0] ≤ δ, where the last equality holds since σr(T) = σr(V
T ) = 1. Note that

‖T‖22,∞ ≤ max
i∈[n]
‖VTei‖22 ≤

r

n
µ(V).

So if d ≥ 8µ(V)r log(r/δ) then with probability at least 1− δ, rank(T:Ω) = r. Also, by Lemma
5, rank(T:Ω) = rank([orthr(L)]:Ω) = rank(L:Ω). Therefore, rank(L:Ω) = r with a high
probability, as desired.

Lemma 7. Let Uk ∈ Rm×k be a k-dimensional subspace of Ur. Suppose we get access to a set of
coordinates Ω ⊂ [m] of size d uniformly at random without replacement. Let s ≤ d − r − 1 and
d ≥ cµ0r log(k/δ) for a universal constant c.

1. If M:t ∈ Ur but M:t 6∈ Uk then with probability at least 1−δ, rank
(
[Es

Ω:,U
k
Ω:,MΩt]

)
=

s+ k + 1.

2. If M:t ∈ Uk, then rank
(
[Es

Ω:,U
k
Ω:,MΩt]

)
= s+ k with probability 1, the representation

coefficients of M:t corresponding to Es in the dictionary [Es,Uk] is 0 with probability 1,
and [Es,Uk][Es

Ω:,U
k
Ω:]
†MΩt = M:t with probability at least 1− δ.

3. If M:t 6∈ Ur, i.e., M:t is an outlier drawn from a non-degenerate distribution, then
rank

(
[Es

Ω:,U
k
Ω:,MΩt]

)
= s+ k + 1 with probability 1− δ.

Proof. For the first part of the lemma, note that rank([Uk,M:t]) = k + 1. So according to
Proposition 6, with probability 1−δ we have that rank([Uk,M:t]Ω:) = k+1 since d ≥ cµ0r log((k+
1)/δ) ≥ 8µ([Uk,M:t])k log((k + 1)/δ) (Because M:t ∈ Ur). Recall Facts 3 and 4 of Lemma 13
which imply that rank([Es,Uk,M:t]Ω:) = s+ k + 1 when s ≤ d− r − 1. This is what we desire.

For the middle part, the statement rank
(
[Es

Ω:,U
k
Ω:,MΩt]

)
= s + k comes from the assumption

that M:t ∈ Uk, which implies that MΩt ∈ Uk
Ω: with probability 1, and that rank

(
[Es

Ω:,U
k
Ω:]
)

=
s + k when s ≤ d − r − 1 (Facts 3 and 4 of Lemma 13). Now suppose that the representation
coefficients of M:t corresponding to Es in the dictionary [Es,Uk] is NOT 0 and M:t ∈ Uk. Then
M:t −Ukc ∈ span(Es), where c is the representation coefficients of M:t corresponding to Uk in
the dictionary [Es,Uk]. Also, note that M:t −Ukc ∈ Uk. So rank[Es,M:t −Ukc] = s, which
is contradictory with Fact 2 of Lemma 13. So the coefficient w.r.t. Es in the dictionary [Es,Uk]

is 0, and we have that [Es,Uk][Es
Ω:,U

k
Ω:]
†MΩt = UkUk†

Ω:MΩt = Uk(UkT
Ω: Uk

Ω:)
−1UkT

Ω: MΩt =
Uk(UkT

Ω: Uk
Ω:)
−1UkT

Ω: Uk
Ω:v = Ukv = M:t, where v is the representation coefficient of M:t w.r.t.

Uk. (The (UkT
Ω: Uk

Ω:)
−1 exists because rank(Uk

Ω:) = k by Proposition 6)

As for the last part of the lemma, note that by Facts 2 and 4 of Lemma 13, rank([Es,M:t]Ω:) =
s + 1. Then by Fact 3 of Lemma 13 and the fact that Uk

Ω: has rank k (Proposition 6), we have
rank

(
[Es

Ω:,U
k
Ω:,MΩt]

)
= s+ k + 1 when s ≤ d− r − 1, as desired.
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Now we are ready to prove Theorem 8.

Theorem 8 (Theorem 4 in Main Body). Let r be the rank of the underlying matrix L with µ0-
incoherent column space. Suppose that the outliers Es0 ∈ Rm×s0 are drawn from any non-degenerate
distribution, and that the underlying subspace Ur is identifiable. Then Algorithm 2 exactly recovers
the underlying matrix L, the column space Ur, and the outlier Es0 with probability at least 1− δ,
provided that d ≥ cµ0r log

(
r
δ

)
and s0 ≤ d−r−1. The total sample complexity is thus cµ0rn log

(
r
δ

)
,

where c is a universal constant.

Proof. The proof of Theorem 8 is an immediate result of Lemma 7 by using the union bound
on the samplings of Ω. Although Lemma 7 states that, for a specific column M:t, the algorithm
succeeds with probability at least 1 − δ, the probability of success that uniformly holds for all
columns is 1 − (r + s0)δ rather than 1 − nδ. This observation is from the proof of Lemma 7:
[Es,Uk][Es

Ω:,U
k
Ω:]
†MΩt = M:t holds so long as (UkT

Ω: Uk
Ω:)
−1 exists. Since in Algorithm 2 we

resample Ω if and only if we add new vectors into the basis matrix, which happens at most r + s0

times, the conclusion follows from the union bound of the r + s0 events. Thus, to achieve a global
probability of 1 − δ, the sample complexity for each upcoming column is Θ(µ0r log(r + s0/δ)).
Since we also require that s0 ≤ d − r − 1, the algorithm succeeds with probability 1 − δ once
d ≥ Θ(µ0r log(d/δ)). Solving for d, we obtain that d & µ0r log(µ2

0r
2/δ2) � µ0r log(r/δ)1. The

total sample complexity for Algorithm 2 is thus Θ(µ0rn log(r/δ)).

For the exact identifiability of the outliers, we have the following guarantee:

Lemma 9 (Outlier Removal). Let the underlying subspace Ur be identifiable, i.e., for each i ∈
[r], there are at least two columns M:ai and M:bi of M such that [orthc(U

r)]T:iM:ai 6= 0 and
[orthc(U

r)]T:iM:bi 6= 0. Then the entries of C in Algorithm 2 corresponding to Ur cannot be 0’s.

Proof. Without loss of generality, let Ur be orthonormal. Suppose that the lemma does not hold true.
Then there must exist one column Ur

:i of Ur, say e.g., ei, such that eTi M:t = 0 for all t except when
the index t corresponds exactly to the Ur

:i. This is contradictory with the condition that the subspace
Ur is identifiable. The proof is completed.

Thus the proof of Theorem 8 is completed.

4 Proof of Lower Bound for Exact Recovery

Theorem 10 (Theorem 5 in Main Body). Let 0 < δ < 1/2, and Ω ∼ Uniform(d) be the index
of the row sampling ⊆ [m]. Suppose that Ur is µ0-incoherent. If the total sampling number
dn < cµ0rn log (r/δ) for a constant c, then with probability at least 1− δ, there is an example of
M such that under the sampling model of Section 2.1 in the main body (i.e., when a column arrives
the choices are either (a) randomly sample or (b) view the entire column), there exist infinitely many
matrices L′ of rank r obeying µ0-incoherent condition on column space such that L′Ω: = LΩ:.

Proof. We prove the theorem by assuming that the underlying column space is known. Since we
require additional samples to estimate the subspace, the proof under this assumption gives a lower
bound. Let ` =

⌊
m
µ0r

⌋
. Construct the underlying matrix L by

L =

r∑
k=1

bkuku
T
k ,

where the known uk (Because the column space is known) is defined as

uk =

√
1

`

∑
i∈Bk

ei, Bk = {(k − 1)`+ 1, (k − 1)`+ 2, ..., k`}.

So the matrix L is a block diagonal matrix formulated as Figure 2. Further, construct the noisy matrix

1We assume here that µ0 ≤ poly(r/δ).
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Figure 2: Construction of underlying matrix L.

M by M = [L,E]. The matrix E ∈ Rm×s0 corresponds to the outliers, and the matrix L corresponds
to the underlying matrix.

Notice that the information of bk’s is only implied in the corresponding block of L. So overall, the
lower bound is given by solving from the inequality

Pr{For all blocks, there must be at least one row being sampled} ≥ 1− δ.

We highlight that the bk’s can be chosen arbitrarily in that they do not change the coherence of
the column space of L. Also, it is easy to check that the column space of L is µ0-incoherent. By
construction, the underlying matrix L is block-diagonal with r blocks, each of which is of size `× `.
According to our sampling scheme, we always sample the same positions of the arriving column after
the column space is known to us. This corresponds to sample the row of the matrix in hindsight. To
recover L, we argue that each block should have at least one row fully observed; Otherwise, there is
no information to recover bk’s. Let A be the event that for a fixed block, none of its rows is observed.
The probability π0 of this event A is therefore π0 = (1 − p)`, where p is the Bernoulli sampling
parameter. Thus by independence, the probability of the event that there is at least one row being
sampled holds true for all diagonal blocks is (1− π0)r, which is ≥ 1− δ as we have argued. So

−rπ0 ≥ r log(1− π0) ≥ log(1− δ),

where the first inequality is due to the fact that −x ≥ log(1 − x) for any x < 1. Since we have
assumed δ < 1/2, which implies that log(1− δ) ≥ −2δ, thus π0 ≤ 2δ/r. Note that π0 = (1− p)`,
and so

− log(1− p) ≥ 1

`
log
( r

2δ

)
≥ µ0r

m
log
( r

2δ

)
.

This is equivalent to
mp ≥ m

(
1− exp

(
−µ0r

m
log

r

2δ

))
.

Note that 1− e−x ≥ x− x2/2 whenever x ≥ 0, we have

mp ≥ (1− ε/2)µ0r log
( r

2δ

)
,

where ε = µ0r log(r/2δ) < 1. Finally, by the equivalence between the uniform and Bernoulli
sampling models (i.e., d ≈ mp, Lemma 14), the proof is completed.

5 Mixture of Subspaces

In this section, we assume that the underlying subspace is a mixture of h independent subspaces, each
of which is of dimension at most τ � r. Such an assumption naturally models settings in which there
are really h different categories of data while they share a certain commonality across categories.
Indeed, many real datasets match the assumption, e.g., face image, 3D motion trajectory, handwritten
digits, etc.
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Algorithm 3 Noise-Tolerant Life-Long Matrix Completion under Random Noise for Mixture of
Subspaces

Input: Columns of matrices arriving over time.
Initialize: Let the basis matrix B̂0 = ∅, the counter C = ∅. Randomly draw entries Ω ⊂ [m] of
size d uniformly without replacement.
1: For each column t of M, do
2: (a) If there does not exist a τ -sparse linear combination of columns of B̂k

Ω: that represents
MΩt exactly
3: i. Fully measure M:t and add it to the basis matrix B̂k.
4: ii. C := [C, 0].
5: iii. Randomly draw entries Ω ⊂ [m] of size d uniformly without replacement.
6: iv. k := k + 1.
7: (b) Otherwise
8: i. C := C + 1T

supp(B̂k†Ω:MΩt)
. //Record supports of representation coefficient

9: ii. M̂:t := B̂kB̂k†
Ω:MΩt.

10: t := t+ 1.
11: End For
Outlier Removal: Remove columns corresponding to entry 0 in vector C from B̂s0+r =
[Es0 ,Ur].
Output: Estimated range space, identified outlier vectors, and recovered underlying matrix M̂

with column M̂:t.

Lemma 11 (Mixture of Subspaces). Let [Es,Uk] be the current dictionary matrix consisting of a
random noise matrix Es ∈ Rm×s and a clean basis matrix Uk ∈ Rm×k. Suppose we get access to a
set of coordinates Ω ⊂ [m] of size d uniformly at random without replacement. Let s ≤ d− τ − 1
and d ≥ 8µττ log(τ/δ). Denote by Uτ ∈ Rm×τ a submatrix of Uk with τ columns.

1. If M:t ∈ Ur but it cannot be represented by a linear combination of τ vectors in the
current dictionary, then with probability at least 1− δ, MΩt does not belong to any fixed
τ -combination of the truncated dictionary as well.

2. If M:t can be represented by a linear combination of τ vectors in the current basis, then
MΩt can be represented as a linear combination of the same τ truncated vectors in the
dictionary with probability 1, the representation coefficients of M:t corresponding to Es in
the dictionary is 0 with probability 1, and [Es,Uk][Es

Ω:,U
k
Ω:]
†MΩt = M:t with probability

at least 1− δ.

3. If M:t is an outlier drawn from a non-degenerate distribution, then MΩt cannot be repre-
sented by the dictionary with probability 1.

Proof. The proof is similar as that of Lemma 7. For completeness, we give a brief proof here. For the
first part of the lemma, by Facts 2 and 4 of Lemma 13, the Es

Ω: cannot have a non-zero representation
coefficient of MΩt in any possible τ -combination of the current dictionary when s ≤ d− τ − 1, due
to the randomness. Thus the problem of whether MΩt can be τ represented by the current dictionary
[Es

Ω:,U
k
Ω:] is totally determined by whether it can be τ represented by Uk

Ω:. Now suppose that MΩt

can be written as a linear τ -combination of the current basis Uτ
Ω:. Then according to Proposition

6, since d ≥ 8µττ log(τ/δ), we have that rank([Uτ ,M:t]) = τ , which is contradictory with the
assumption of Event 1.

The first argument in Event 2 is obvious. Now suppose that the representation coefficients of M:t

corresponding to Es in the dictionary [Es,Uk] is NOT 0 and M:t ∈ Uk. Then M:t − Ukc ∈
span(Es), where c is the representation coefficients of M:t corresponding to Uk in the dictio-
nary [Es,Uk]. Also, note that M:t − Ukc ∈ Uk. So rank[Es,M:t − Ukc] = s, which is
contradictory with Fact 2 of Lemma 13. So the coefficient w.r.t. Es in the dictionary [Es,Uk] is
0. Since by assumption M:t can be represented by τ combination of columns in Uk, termed
Uτ , we have that [Es,Uk][Es

Ω:,U
k
Ω:]
†MΩt = UτUτ†

Ω:MΩt = Uτ (UτT
Ω: Uτ

Ω:)
−1UτT

Ω: MΩt =

9



Uτ (UτT
Ω: Uτ

Ω:)
−1UτT

Ω: Uτ
Ω:v = Uτv = M:t, where v is the representation coefficient of M:t w.r.t.

Uτ . (The (UτT
Ω: Uτ

Ω:)
−1 exists because rank(Uτ

Ω:) = τ by Proposition 6)

Event 3 is an immediate result of Lemma 13.

Theorem 12 (Theorem 6 in main body). Let r be the rank of the underlying matrix L. Suppose that
the columns of L lie on a mixture of independent subspaces, each of which is of dimension at most τ .
Denote by µτ the maximal incoherence over all τ -combinations of L. Let the noise model be that
of Theorem 8. Then Algorithm 3 exactly recovers the underlying matrix L, the column space Ur,
and the outlier Es0 with probability at least 1− δ, provided that d ≥ cµττ2 log

(
r
δ

)
for some global

constant c and s0 ≤ d− τ − 1. The total sample complexity is thus cµττ2n log
(
r
δ

)
.

Proof. Theorem 12 is a result of union bound of Lemma 11. For the event of type 1, the union bound
is over

(
r
τ

)
= O(rτ ) events. For the event of type 2, since we resample Ω at most r + s0 times by

algorithm, the union bound is over r + s0 samplings. The event of type 3 is with probability 1. So
overall, replacing δ with min{δ/rτ , δ/(r + s0)} in Lemma 11, the sample complexity we need is
at least O(µττ log(max{rτ , r + s0}/δ)). Note that s0 ≤ d− τ − 1. So the sample complexity for
each column is at least O(µττ

2 log(r/δ)) and the total one is O(µττ
2n log(r/δ)), as desired. The

success of outlier removal step is guaranteed by Lemma 9.

6 Facts on Subspace Spanned by Non-Degenerate Random Vectors

Lemma 13. Let Es ∈ Rm×s be matrix consisting of corrupted vectors drawn from any non-
degenerate distribution. Let Uk ∈ Rm×k be any fixed matrix with rank k. Then with probability 1,
we have

1. rank(Es) = s for any s ≤ m;

2. rank([Es,x]) = s + 1 holds for x ∈ Uk ⊂ Rm uniformly and s ≤ m − k, where x can even
depend on Es;

3. rank([Es,Uk]) = s+ k, provided that s+ k ≤ m;

4. The marginal of non-degenerate distribution is non-degenerate.

Proof. For simplicity, we only show the proof of Fact 1. The other facts can be proved similarly. Let
Es = [Es−1, e]. Since e is drawn from a non-degenerate distribution, the conditional probability
satisfies Pr[rank(Es−1, e) = s | Es−1] = 1 by the definition of non-degenerate distribution. So
Pr[rank(Es−1, e) = s] = EEs−1 Pr[rank(Es−1, e) = s | Es−1] = 1.

7 Equivalence between Bernoulli and Uniform Models

Lemma 14. Let n be the number of Bernoulli trials and suppose that Ω ∼ Ber(d/n). Then with
probability at least 1− δ, |Ω| = Θ(d), provided that d ≥ 4 log(1/δ).

Proof. Take a perturbation ε such that d/n = d0/n+ ε. By the scalar Chernoff bound which states
that

Pr(|Ω| ≤ d0) ≤ e−ε
2n2/2d0 ,

if taking d0 = d/2, ε = d/2n and d ≥ 4 log(1/δ), we have

Pr(|Ω| ≤ d/2) ≤ e−d/4 ≤ δ. (2)

In the other direction, by the scalar Chernoff bound again which states that

Pr(|Ω| ≥ d0) ≤ e−ε
2n2/3d,

if taking d0 = 2d, ε = −d/n and d ≥ 4 log(1/δ), we obtain

Pr(|Ω| ≥ 2d) ≤ e−d/3 ≤ δ. (3)

Finally, according to (2) and (3), we conclude that d/2 < |Ω| < 2d with probability at least 1−δ.
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8 A Collection of Concentration Results

Lemma 15 (Theorem 6. [3]). Denote by Ũk a k-dimensional subspace in Rm. Let the sampling
number d ≥ max{ 8

3kµ(Ũk) log(2k
δ ), 4µ(PŨk⊥y) log( 1

δ )}. Denote by Ω an index set of size d
sampled uniformly at random with replacement from [m]. Then with probability at least 1− 4δ, for
any y ∈ Rm, we have

d(1− α)− kµ(Ũk) β
1−ζ

m

∥∥y − PŨky
∥∥2

2
≤
∥∥∥yΩ − PŨk

Ω:
yΩ

∥∥∥2

2
≤ (1 + α)

d

m

∥∥y − PŨky
∥∥2

2
,

where α =

√
2
µ(P

Ũk⊥y)

d log(1/δ) +
2µ(P

Ũk⊥y)

3d log(1/δ), β = (1 + 2 log(1/δ))2, and ζ =√
8kµ(Ũk)

3d log(2r/δ).

Lemma 16 (Matrix Chernoff Bound [2]). Consider a finite sequence {Xk} ∈ Rn×n of independent,
random, Hermitian matrices. Assume that

0 ≤ λmin(Xk) ≤ λmax(Xk) ≤ L.

Define Y =
∑
k Xk, and µr as the r-th largest eigenvalue of the expectation EY, i.e., µr = λr(EY).

Then

Pr {λr(Y) > (1− ε)µr} ≥ 1− r
[

e−ε

(1− ε)1−ε

]µr
L

≥ 1− re−
µrε

2

2L for ε ∈ [0, 1).
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