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Abstract
We study the problem of clustering sensitive
data while preserving the privacy of individu-
als represented in the dataset, which has broad
applications in practical machine learning and
data analysis tasks. Although the problem has
been widely studied in the context of low-
dimensional, discrete spaces, much remains un-
known concerning private clustering in high-
dimensional Euclidean spaces Rd. In this
work, we give differentially private and effi-
cient algorithms achieving strong guarantees for
k-means and k-median clustering when d =
Ω(polylog(n)). Our algorithm achieves cluster-
ing loss at most log3(n)OPT+poly(log n, d, k),
advancing the state-of-the-art result of

√
dOPT+

poly(log n, dd, kd). We also study the case where
the data points are s-sparse and show that the
clustering loss can scale logarithmically with d,
i.e., log3(n)OPT + poly(log n, log d, k, s). Ex-
periments on both synthetic and real datasets ver-
ify the effectiveness of the proposed method.

1. Introduction
In this work, we consider the problem of clustering sensi-
tive data while preserving the privacy of individuals repre-
sented in the dataset. In particular, we consider k-means
and k-median clustering under the constraint of differen-
tial privacy, which is a popular information-theoretic no-
tion of privacy (Dwork et al., 2014; 2006) that roughly re-
quires the output of algorithm to be insensitive to changes
in an individual’s data. Clustering is an important build-
ing block for many data processing tasks with applica-
tions in recommendation systems (McSherry & Mironov,
2009), database systems (Ester et al., 1996), image process-
ing (Zhang et al., 2014; 2015; Pappas, 1992), and data min-
ing (Berkhin, 2006). Improved privacy-preserving cluster-
ing algorithms have the potential to significantly improve
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the quality of many different areas of private data analysis.

Formally, we consider the following problem: Given a set
of points x1, . . . , xn in Rd, privately find a set of k centers
z1, . . . , zk in Rd that approximately minimize one of the
following clustering objectives:

n∑
i=1

min
j
‖xi − zj‖2︸ ︷︷ ︸

k-means objective

or
n∑
i=1

min
j
‖xi − zj‖︸ ︷︷ ︸

k-median objective

. (1)

Minimizing these objectives exactly is NP-hard (Dasgupta,
2008), so we instead seek to find approximate solutions
whose clustering objective is at most α×OPT+ β, where
OPT denotes the optimal objective. Unlike the non-private
setting, any differentially private clustering algorithm must
have β > 0 (Bassily et al., 2014).

Despite a large amount of work on private clustering, many
fundamental problems remain open. One of the long-
standing challenges is to design polynomial-time private
k-means and k-median clustering algorithms with small
clustering loss for the high-dimensional, big-data setting.
There is significant evidence to indicate that even without
the requirement on privacy, exact optimization of these ob-
jective function in Euclidean spaces might be computation-
ally infeasible (Dasgupta, 2008; Aloise et al., 2009): The
best-known result in this line of research is (9 + ε)×OPT
by the local search algorithm (Kanungo et al., 2002). When
the space is discrete, there exists a private algorithm that
provides slightly better loss guarantee 6 × OPT (Gupta
et al., 2010). However, this problem becomes notori-
ously hard in the context of differential privacy in Eu-
clidean spaces, as one typically needs to preserve privacy
for each point in the much larger Euclidean space. While
there exist algorithms in this setting with clustering loss
polylog(k) × OPT + O(n/ log2 n) (Nock et al., 2016), or√
d × OPT + poly(dd, kd, log n) when d is a small con-

stant (Feldman et al., 2009) (See Table 1), the problem is
left unresolved in the big-data (large n), high-dimensional
(d = Ω(polylogn)) scenarios if we require both α and β to
be as small as polylog(n). Note that running the algorithm
of Feldman et al. (2009) after projecting to O(log n) dimen-
sional space gives O(log(n)log(n)) error, and the algorithm
of Nock et al. (2016) has Õ(n) additive loss. Moreover,
brute-force discretization in O(log n) dimensional space
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Table 1. Comparisons of our clustering loss with the best prior efficient algorithms. We mark algorithms with extra assumption require-
ments on datasets with *.

Reference Loss Space Private Guarantee
Kanungo et al. (2002) k-means Euclidean N α = 9 + ε, β = 0

Nissim et al. (2007)* k-means Euclidean Y α = 1, β = nφ2
√
k

ε

Gupta et al. (2010) k-median Discrete Y α = 6, β = poly(k, log |V |), |V | is the size of space
Nock et al. (2016)* k-means Euclidean Y α = polylog(k), β = n

log2 n

Feldman et al. (2009) k-median Euclidean Y α =
√
d, β = poly(dd, kd, log n)

Ours Both Euclidean Y α = polylog(n), general: β = poly(d, k, log n)
α = polylog(n), s-sparse: β = poly(log d, k, log n, s)

does not give a polynomial time algorithm.

Given the difficulty of the general form of private clus-
tering, many positive results in this line of research have
focused on the assumptions that the data points are well-
separated. A set of data points are called well-separated
if all near-optimal clusterings of data induce similar data
partitions. We can exploit such a structural assumption in
many aspects. For example, these well-separated datasets
are amenable to slightly perturbed initialization (Ostrovsky
et al., 2012). This is the main insight behind prior work
for private k-means clustering (Nissim et al., 2007; Wang
et al., 2015). However, these observations and techniques
break down in the general case.

Another interesting setting is when the data is extremely
high dimensional, but each example is s-sparse. In this
case, we might hope to improve the additive error β to
be as small as poly(log d, k, log n, s). When the entries of
data points are dense, the dependence of β = poly(d) is
in general inevitable even if the number of centers is 1, ac-
cording to the lower bound for private empirical risk min-
imization (Bassily et al., 2014). While some prior works
have explored the possibility of non-private clustering in
the context of sparse data (Barger & Feldman, 2016), much
remains unknown in the private setting.

1.1. Our Contributions
Our work tackles the problem of private clustering in
high-dimensional Euclidean spaces, specifically in the case
when we have plentiful high-dimensional data. We advance
the state-of-the-art in several aspects:
• We design and analyze a computationally efficient algo-

rithm for private k-means clustering with clustering loss
at most log3(n) × OPT + poly(log n, d, k) (See Corol-
lary 1). In contrast to Nock et al. (2016) and Nissim
et al. (2007), our algorithm achieves small clustering loss
without additional assumptions on data. Furthermore,
our clustering loss bound is also competitive even under
their assumptions.

• We extend our algorithm to the problem of k-median
clustering. The clustering loss is at most log3/2(n) ×

OPT+poly(log n, d, k) (See Theorem 12). Our guaran-
tee advances the state-of-the-art results of Feldman et al.
(2009) in the high-dimensional space.

• In the case of s-sparse data, we further improve the addi-
tive error term β to be at most poly(log n, log d, s, k) for
private k-means clustering (See Corollary 2). To the best
of knowledge, this is the first result concerning the com-
putationally efficient, differentially private clustering al-
gorithm for high-dimensional s-sparse data.

• We propose an approach for privately constructing a can-
didate set of centers with approximation guarantee (See
Theorem 5). The candidate set can be potentially applied
to other problems and is of independent interest.

• We empirically compare our algorithm with the non-
private k-means++ algorithm and four strong private ba-
seilnes. Across all datasets, our algorithm is competitive
with k-means++ and significantly outperforms the pri-
vate baselines, especially for large dimensional data.

1.2. Our Techniques

Our algorithm has two main steps: First, we use the
Johnson-Lindenstrauss (JL) transform to project the data
into O(log n)-dimensional space and use a novel technique
to privately construct a small set of good candidate centers
in the projected space; Then we apply a discrete clustering
algorithm to privately find k good centers from the can-
didate set. Centers in the original space are recovered by
noisy averaging.

Private Candidate Set: Our algorithm uses a novel pri-
vate technique that recursively subdivides low-dimensional
Euclidean spaces to construct a set of candidate points con-
taining good centers. The algorithm proceeds in rounds,
recursively subdividing the space into multiple cubes un-
til there are few points in each cube. Finally, the algorithm
outputs the centers of all cubes as a candidate set of centers.

In order to make the above procedure work well, we need
to achieve three goals: (a) The output preserves privacy;
(b) The algorithm is computationally efficient, i.e., the size
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of candidate set is polynomial in n and k; and (c) The can-
didate set has high (α, β)-approximation rate, namely, it
contains a subset of size k on which the clustering loss is
at most α × OPT + β with α, β small. To achieve goal
(a), our algorithm randomizes the decision of whether to
subdivide a cube or not. To achieve goal (b), we make the
probability of empty cube being further divided negligible,
and the size of candidate set is upper bounded by the size of
a simple partition tree, which is poly(n, k). For goal (c), it
suffices to ensure each of the cluster centers to be captured
within distance at scale of its own radius. As a lot of data
points will be gathered around an optimal center, we can
put candidate centers at each cube containing many points
during partition. Random shift and repetition are used to
avoid the worst cases.

From Candidate Set to Private Clustering: Our private
clustering algorithm then follows the technique of local
swapping on the discrete set of candidate centers, inspired
by the work of Gupta et al. (2010) for k-median clustering.
Their algorithm maintains a set of k centers and greedily
replaces one center with a better one from the candidate
set. However, Gupta et al. (2010)’s algorithm only works
for the k-median problem where the loss obeys the triangle
inequality. To extend the analysis to the k-means problem,
we adopt the techniques of Kanungo et al. (2002). In partic-
ular, we construct k swap pairs of points, take the average
of gains of these swap pairs, and relate it to the optimal
loss OPT. Finally, we recover the centers in the original
high-dimensional space privately. Given the centers in the
projected space, the centers in the original space has low
sensitivity. We can thus take the noisy mean of a cluster to
obtain a private center for each cluster.

2. Related Work
The problem of private clustering in the Euclidean spaces
was investigated by Blum et al. (2005), who proposed a pri-
vate version of Lloyd iteration, which we refer to as SuLQ
k-means. However, the algorithm suffers from the absence
of uniform guarantee on the clustering loss. Given the sen-
sitive and non-convex nature of clustering objective, Nis-
sim et al. (2007) and Wang et al. (2015) applied the sample-
and-aggregate framework to address the problem of private
clustering by making strong assumptions on the input data.
When no assumption is made on the structure of data, Feld-
man et al. (2009) provided an information-theoretic upper
bound OPT + poly(k, d, log n) for the clustering loss ac-
cording to the brute-force discretization of whole space and
the exponential mechanism. However, no computation-
ally efficient algorithm is available in the high-dimensional
Euclidean spaces with clustering loss even close to this
bound: Feldman et al. (2009) proposed an efficient al-
gorithm for the bi-criteria approximation in the constant-
dimensional spaces, but their additive loss term β actu-

ally exponentially depends on d; Gupta et al. (2010) de-
signed an algorithm with a constant-factor approximation
ratio and poly(k, log |V |) additive loss term for clustering
in the finite-data space V , but the algorithm does not work
in the Euclidean spaces. Recently, Nock et al. (2016) pro-
posed a private version of the k-means++ algorithm. How-
ever, the additive loss term β therein is almost as high as
the data size n.

3. Preliminaries
We define some notation and clarify our problem setup.

Notation: We will use capital letters to represent matri-
ces or datasets and lower-case letter to represent vectors
or single data points. For a vector v, v[i] denotes the ith

entry of v. We denote by M(X) the output of an algo-
rithm with input dataset X . We will frequently use d to
indicate the dimension of input space, p to indicate the di-
mension of space after projection, and Λ to indicate the
radius of input data. For vector norms, we will denote by
‖ · ‖ the `2 norm, ‖ · ‖0 the number of non-zero entries,
and ‖ · ‖∞ the maximum of absolute value among entries.
Define B(x,Λ) = {y : ‖x − y‖ ≤ Λ}. We denote by
U([−Λ,Λ]p) the uniform distribution in the p-dimensional
cube [−Λ,Λ]p. For any set V , we denote by |V | the car-
dinality of the set. We will frequently denote the clus-
tering loss in problem (1) on the centers z1, z2, ..., zk by
L(z1, z2, ..., zk). A sample drawn from one-dimensional
Laplace distribution with density f(x) = 1

2b exp
(
− |x|b

)
is

denoted by Lap(b).

Problem Setup: We use the following definition of differ-
ential privacy:

Definition 1 (ε-Differential Privacy). A randomized algo-
rithmM with output range O is ε-differentially private if
for any given set S ⊆ O and two datasets X ∈ Rd×n and
Y = [X; z] for any z ∈ Rd, we have e−ε Pr[M(X) ∈
S] ≤ Pr[M(Y ) ∈ S] ≤ eε Pr[M(X) ∈ S].

In this paper, we study the problem of private clustering
in high-dimensional Euclidean spaces without making any
assumptions on the data structure. Formally, we define our
problem as follows.

Problem 1 (Private Clustering in High-Dimensional Eu-
clidean Spaces). Suppose d = Ω(polylog(n)) is the di-
mension of Euclidean space. Given bounded data points
x1, x2, ..., xn ∈ Rd as input, how can we efficiently
output k centers z1, z2, ..., zk such that the algorithm
is ε-differentially private and the clustering loss is at
most polylog(n) × OPT + poly(d, log n, k, 1

ε )? In the
case of sparse data where ‖xi‖0 ≤ s for each i, can
we improve the clustering loss to polylog(n) × OPT +
poly(log d, log n, k, s, 1

ε )?
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Algorithm 1 private partition({xi}ni=1, ε, δ,Q).
input X = [x1, x2, · · · , xn] ⊆ B(0,Λ) ⊆ Rp, parameters
ε, δ, initial cube Q s.t. {xi}ni=1 ⊆ Q.

output Private grid C ⊆ Rp.
Initialize depth a = 0, active set of cubesA = {Q}, and
set C = ∅.
while a ≤ log n and A 6= ∅ do
a = a+ 1.
C = C ∪

(⋃
Qi∈A center(Qi)

)
.

for Qi ∈ A do
Remove Qi from A.
PartitionQi evenly in each dimension and obtain 2p

cubes {Q(l)
i }2

p

l=1.
for l ∈ {1, 2, · · · , 2p} do

Add Q(l)
i to A with probability f

(
|Q(l)

i ∩X|
)

,
where

f(m) =

{
1
2 exp(−ε′(γ −m)), m ≤ γ,
1− 1

2 exp(ε′(γ −m)), otherwise,

ε′ = ε
2 logn and γ = 20

ε′ log n
δ .

end for
end for

end while

4. Private Candidate Set
In this section, we present an efficient algorithm that con-
structs a polynomial-sized candidate set of centers pri-
vately in the low-dimensional space Rp with dimension
p = 8 log n. This algorithm will serve as the building block
for the private clustering. Our algorithm works by repeat-
edly applying a recursive discretization of the space with
random shifts. It is worth noticing that direct extension of
previous methods such as (Matoušek, 2000) lead to arbi-
trarily bad quality. The random shift is thus essential to our
proof, which will be further explained in Appendix.

4.1. Private Discretization Routine
We first describe our subroutine of private discretization, a
private recursive division procedure: We start with a cube
containing all the data points, privately decide whether to
partition the current cubes based on number of data points
they contain, and stop when there are few points in each
cube. Our algorithm is a variation of the hierarchical par-
titioning in (Matoušek, 2000), while setting appropriate
stopping probabilities preserves privacy for our algorithm
(See Algorithm 1).

To make the algorithm computationally efficient, we need
to show that the number of candidate centers generated by
Algorithm 1 is as small as poly(n). This is based on the
fact that, by design, no empty cube is subdivided by our

Active cube

Inactive cube

Candidate centers

Data points

Figure 1. Constructing candidate set of centers by Algorithm 1.
Here we recursively divide each active cube into multiple sub-
cubes. Roughly, a cube is called active if there are sufficient
points therein. The algorithm outputs the centroid of each active
cube as the candidate set of centers.

algorithm with high probability. A cube is called active if
the algorithm will divide the cube into multiple subcubes
in the next round. We have the following theorem on the
size of candidate set.

Theorem 1. The set C generated by Algorithm 1 satisfies
|C| ≤ n log n, with probability 1− δ.

Though we have generated n log n candidate centers, they
are well-aligned and depend only slightly on the data. This
alignment makes it possible for us to perform composition
argument by the number of recursion instead of by number
of points. We have the following theorem on the privacy.

Theorem 2. Algorithm 1 preserves ε-differential privacy.

The following theorem uses tail bounds for the exponential
distribution and the union bound to upper bound the num-
ber of points in each cube not subdivided by Algorithm 1.

Theorem 3. With probability at least 1 − δ, in Algo-
rithm 1, when a cube Qi is removed from A and its sub-
divided cubes are not inserted to A, then we have either
|Qi ∩X| ≤ O

(
γ log n

δ

)
, or the edge length of Qi is at

most Λ
n .

4.2. Private Construction of Candidate Set
We now give an algorithm that constructs a polynomial-
sized candidate set with ε-differential privacy by applying
the above procedure of private discretization as a subrou-
tine. A good candidate set should contain k potential cen-
ters with small clustering loss relative to OPT. We formal-
ize such a criterion as follows.

Definition 2 ((α, β)-Approximate Candidate Set). Given a
set of points S = {x1, x2, · · · , xn} ⊆ Rp, a set of points
C ⊆ Rp is called an (α, β)-approximate candidate set of
centers, if ∃z1, z2, · · · , zk ∈ C such that the clustering loss
(1) on these points is at most α× OPT + β.

As an example, the dataset S is itself a (2, 0)-approximate
candidate set, although is not private. One may also use an
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Algorithm 2 candidate({xi}ni=1, ε, δ).
input X = [x1, x2, · · · , xn] ⊆ B(0,Λ) ⊆ Rp, parameters
ε, δ.

output Candidate center set C.
Initialize C = ∅.
for t = 1, 2, · · · , T = 27k log n

δ do
Sample shift vector v ∼ U([−Λ,Λ]p).
Let Qv = [−Λ,Λ]d + v.
C = C ∪ private partition({xi}ni=1,

ε
T ,

δ
T , Qv).

end for

Λ
n -cover of B(0,Λ) to construct an (1, O(kΛγ log n

δ )Λ2)-
approximate candidate set with privacy. However, this
brute-force discretization results in a set of size nΩ(p)

in Rp, which depends on n exponentially even if p =
Θ(log n). In contrast, our following Algorithm 2 efficiently
constructs an (O(log3 n),O(kpolylog(n)))-approximate
candidate set of size polynomial in n.

Since Algorithm 2 only sees the private data through re-
peated application of Algorithm 1, we obtain the following
privacy guarantee using standard composition theorems.

Theorem 4. Algorithm 2 preserves ε-differential privacy.

The remaining key argument is to show the approximation
rate of candidate set constructed by Algorithm 2. The ran-
domness and repetition is critical for the algorithm: They
make it possible for us to “guess” the position of optimal
centers and avoid the worst cases. Figure 1 depicts how
each optimal cluster may be captured by a cube of the ap-
propriate scale, provided that the center of the cluster is
not near the boundary of a cube. Our proof techniques are
partly inspired by random grids for near neighbor report-
ing (Aiger et al., 2014) and locality sensitive hashing (An-
doni & Indyk, 2006). We give a short sketch of our proof
in the following, and readers may refer to the Appendix for
complete proofs.

Theorem 5. With probability at least 1 − δ, Algorithm 2
outputs an

(
O(log3 n),O(kγ( εT ) log n

δ )
)
-appriximate can-

didate set of centers, where γ(c) = 40
c log n

δ log n, and
T = k log n

δ .

Proof Sketch. There exists a set of fixed but unknown
optimal centers u∗1, u

∗
2, · · · , u∗k, and corresponding opti-

mal clusters S∗1 , S
∗
2 , · · · , S∗k . We say u∗i is captured by C

with factor L, if B
(
u∗j , Lr

∗
j + O( 1

n )
)
∩ C 6= ∅, where

r∗j =
√

1
|S∗j |

∑
i∈S∗j
‖xi − ul‖2 is the average loss. We

will show that any optimal center is captured with factor
O(log3/2 n), unless the size of corresponding cluster is too
small.

For each u∗i , we can guarantee the number of points around
it, using Markov Inequality:

∣∣B(u∗j , 2r
∗
j ) ∩ S∗j

∣∣ ≥ 1
2

∣∣S∗j ∣∣.
Consider the tree induced by hierarchical partition, as

Algorithm 3 localswap({xi}ni=1, C, ε, δ).
input Private dataset {xi}ni=1 ⊆ Rp with ‖xi‖ ≤ Λ, pa-

rameters ε, δ, candidate set C.
output Clustering centers Z = [z1, z2, · · · , zk] ⊆ C.

Uniformly sample k centers i.i.d. fromC and formZ(0).
T ← 100k log n

δ .
for t = 1, 2, · · · , T do

Choose
(
x ∈ Z(t−1), y ∈ C \ Z(t−1)

)
with proba-

bility in proposition to exp

(
−εL(Z′)−L(Z(t−1))

8Λ2(T+1)

)
,

where Z ′ = Z(t−1) − {x}+ {y}.
Z(t) ← Z(t−1) − {x}+ {y}.

end for
Choose t ∈ {1, 2, · · · , T} with probability in proportion

to exp

(
− εL(Z(t))

8(T+1)Λ2

)
.

Output Z(t).

shown in Theorem 3, it doesn’t stop being divided until
either there’re only γ( εT ) log n

δ data points within it, or it’s
edge length is less than 1

n . Since the center of a cube Ql
can capture points within this cube with factor

√
p, we only

need to show the partition tree is activated at a level with
edge length pr∗j .

If the ball around u∗j is completely contained in Ql, we’ve
already capture this center with O(log3 n) factor. But ac-
tually the ball can be divided into several cubes, making it
hard to activate this cube. That’s why we turn to the ran-
dom shift. Using geometric arguments we can show that,
B(u∗j , 2r

∗
j ) ⊆ Ql with constant probability. Several repeti-

tions are then used to boost the probability of success, and
to make it uniformly hold for k centers.

Therefore, we can guarantee that each optimal cluster with
size at least Ω

(
kγ log n

δ

)
will be captured. Smaller clus-

ters can be ignored safely, as its contribution to the total
clustering loss goes to the σ = O

(
k
ε log3 n

δ

)
term. �

5. From Candidate Set to Private Clustering
In this section, we develop an efficient algorithm of pri-
vate clustering based on the candidate set of centers that
we construct in the low-dimensional spaces. Technically,
our approach is a two-step procedure of private discrete
clustering in the low-dimensional space and private recov-
ery in the original high-dimensional space. In particular,
the step of private discrete clustering extends the work of
Gupta et al. (2010) to the k-means problem on the candi-
date set of centers, and the step of private recovery outputs
k centers in the input space.

5.1. Private Discrete Clustering



Differentially Private Clustering in High-Dimensional Euclidean Spaces

In this section, we propose a differentially private k-means
algorithm in the discrete spaces. Inspired from the previous
work on k-median problem (Gupta et al., 2010), our al-
gorithm builds upon the local swap heuristics for k-means
clustering (Kanungo et al., 2002): In each round, the al-
gorithm maintains a set greedily by replacing one point
therein with a better one outside (See Algorithm 3). We
first prove that such an algorithm is differentially private.

Theorem 6. Algorithm 3 preserves ε-differential privacy.

Proof. The privacy guarantee is straightforward using the
basic composition theorem over T rounds of the algorithm,
and an additional exponential mechanism that selects the
best one. It is easy to verify the sensitivity of loss incre-
ments L(Z −{x}+ {y})−L(Z) is 8Λ2, the privacy guar-
antee of exponential mechanism in each round follows.

The analysis of clustering loss of Algorithm 3 is based on a
lower bound on the total gains of k swap pairs (Gupta et al.,
2010). However, for the k-means problem, the triangle in-
equality does not hold for the quadratic `2 loss. To resolve
this issue, we apply the inequality relaxation techniques for
swap pairs developed by Kanungo et al. (2002). We have
the following theorem on the clustering loss.

Theorem 7. With probability at least 1 − δ, the output of
Algorithm 3 obeys L(Z) ≤ 30OPT+O

(
k2Λ2

ε log2 n|C|
δ

)
.

5.2. Private Recovery of Centers in Original Space

We now propose Algorithm 4 for approximately recover-
ing k centers in the original high-dimensional space. This
algorithm is basically built on Algorithms 2 and 3 as sub-
routines: Algorithm 2 receives a set of points in the low-
dimensional projected space as input, and outputs a small
set of points that contains k centers with good clustering
loss; Algorithm 3 privately outputs a set of clustering cen-
ters from a given candidate set.

The following parallel composition lemma (McSherry,
2009) guarantees that if we have an ε-differentially private
algorithm for recovering the center of one cluster, then we
can use it to output the centers of all k centers while still
preserving ε differential privacy. This result follows from
the fact that the clusters are disjoint.

Lemma 1 (McSherry (2009)). Let C1, . . . , Ck be any par-
tition of the points x1, . . . , xn in Rd and suppose thatA(S)
is an ε differentially private algorithm that operates on sets
of points in Rd. Outputting (A(C1), . . . ,A(Ck)) also pre-
serves ε differential privacy.

Now we are ready to prove the privacy of Algorithm 4.

Theorem 8. Assume that candidate ({xi}ni=1, ε, δ) (Al-
gorithm 2) preserves ε-differential privacy for {xi}ni=1,
and that given any candidate set of centers C,

Algorithm 4 Private Clustering.
input x1, x2, · · · , xn ∈ B(0,Λ), parameters k, ε, δ.
output Clustering centres z1, z2, · · · , zk ∈ Rd.

Set dimension p = 8 log n, number of trials T = 2 log 1
δ .

for t = 1, 2, · · ·T do
Sample G ∼ N (0, 1)p×d.
[y1, y2, · · · , yn] = 1√

d
G[x1, x2, · · · , xn].

C = candidate
(
{yi}ni=1,

ε
6T , δ

)
.

{u1, u2, · · · , uk} = localswap
(
{yi}ni=1, C,

ε
6T , δ

)
.

Sj = {i : j = argminl ‖yi − ul‖}, j = 1, 2, · · · , k.
sj = max

{
|Sj |+ Lap

(
24T
ε

)
, 1
}

.

z
(t)
j = 1

|sj |
∑
xi∈Sj xi + Lap

(
24TΛ
εsj

)d
, ∀j.

end for
Choose Z from Z(1), Z(2), · · · , Z(T ) with probability in
proportion to exp

(
− εL(Z(t))

24Λ2

)
.

localswap ({xi}ni=1, C, ε, δ) (Algorithm 3) preserves ε-
differential privacy for {xi}ni=1. Then Algorithm 4 pre-
serves ε-differential privacy.
Putting everything together, we have the following theorem
on the clustering loss of Algorithm 4. The key technique in
our proof is to convert the argument of preservation of pair-
wise distance in the JL Lemma to the bound on the cluster-
ing loss. This is due to a simple observation that the optimal
loss in any cluster only depends on the pairwise distances
among its data points.
Theorem 9. Assume that candidate ({xi}ni=1, ε, δ) (Al-
gorithm 2) outputs an (α, σ1(ε))-approximate candidate
set with probability at least 2

3 , and that with probabil-
ity at least 2

3 , localswap ({xi}ni=1, C, ε, δ) (Algorithm 3)
achieves clustering loss at most cOPTC + σ2(ε), where
OPTC is the optimal clustering centers in the candidate
set of centers C. Then with probability at least 1 − δ,
the output of Algorithm 4 has k-means clustering loss
at most 3cαOPT + 3cσ′1 + 3σ′2 + O

(
dΛ2 log3 1

δ

ε2

)
, where

σ′i = σi

(
ε

2 log 1/δ

)
for i = 1, 2.

Theorem 9, together with Theorems 5 and 7, leads to the
following guarantees on the clustering loss of Algorithm 4.
Corollary 1. There is an ε-differential private algorithm
that runs in poly(k, d, n) time, and releases a set of cen-
ters z̃1, z̃2, · · · , z̃k such that with probability at least 1− δ,
L
(
{z̃j}kj=1

)
≤ O(log3 n)OPT + O

(
k2ε+d
ε2 Λ2 log5 n

δ

)
.

6. Extensions
In this section, we present two extensions of our al-
gorithms: a) private k-means clustering with high-
dimensional sparse data; b) private k-median clustering.

6.1. High-Dimensional Sparse Data
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Algorithm 5 Privately Recover Centers for Sparse Dataset.
input Private data set {xi}ni=1 ⊆ Rd with ‖xi‖∞ ≤

Λ, ‖xi‖0 ≤ s, parameters ε, δ, accuracy η.
output v ∈ Rd.

Compute µ = 1
n

∑n
i=1 xi ∈ Rd.

Initialize I = {1, 2, · · · , d}, v = 0 ∈ Rd.
for j ∈ {1, 2, · · · , d 2s

η e} do
Sample r ∈ I with probability in proportion to
exp

{
εηn
4Λs |µ[r]|

}
.

I = I \ {r}, v[r] = v[r] + µ[r] + Lap
(

4Λs
εηn

)
.

end for

For the case of high-dimensional sparse data where
‖xi‖0 ≤ s, our goal is to improve the additive loss term
β to be as small as poly(k, s, log d, log n) by small mod-
ifications of Algorithm 4. The steps of discretization rou-
tine, construction of candidate set, and clustering in the dis-
crete space all remain the same as in the general case. The
only difference is the step of private recovery of centers
in the high-dimensional original space. In the non-sparse
setting, we simply take a noisy mean of points that belong
to cluster i and output the center for cluster i, resulting in
Ω(d) additive loss. However, such a procedure does not
exploit the sparse nature of data points. The challenge is
that a high-dimensional vector has too many entries to hide
for differential privacy, usually resulting in large error. To
improve the clustering loss, we force the output vector to
be sparse, by choosing coordinates with large absolute val-
ues, while zeroing out others (See Algorithm 5). Both the
choice of non-zero coordinates and the estimation of their
values need to preserve privacy, for which we use both the
exponential and Laplacian mechanisms. By a composition
argument, we have the privacy of Algorithm 5.

Theorem 10. Algorithm 5 preserves ε-differential privacy.

The following theorem guarantees that for high-
dimensional sparse data, the clustering loss has logarithmic
dependence on the dimension.

Theorem 11. With probability at least 1 − δ, the out-
put of Algorithm 5 obeys

∑n
i=1 ‖xi − v‖2 ≤

1
1−ηOPT +

O

(
Λ2s2 log ds

ηδ

η2ε

)
.

The intuition of Theorem 11 is based on the following ob-
servation: If the mean is approximately sparse, we can trun-
cate it safely with small additional loss; If not, the mean
must spread across a large set of entries, so the support of
data vectors must be very different from each other, mak-
ing the variance large. In both cases, the loss of truncation
can be bounded by the variance of data points, and we can
put such a loss of truncation to the multiplicative factor.

By the privacy argument in Lemma 1, as well as Theorems
5 and 7, we have the following result.

Corollary 2. For x1, x2, · · · , xn ∈ Rd with ‖xi‖0 ≤ s and
‖xi‖∞ ≤ C, there is an ε-differentially private algorithm
that runs in poly(k, d, n) time, and releases a set of cen-
ters z̃1, z̃2, · · · , z̃k such that with probability at least 1− δ,
L
(
{z̃j}kj=1

)
≤ O(log3 n)OPT+O

(
sk2+s2 log d

δ

ε log2 n
δ

)
.

An important implication of Corollary 2 is that private clus-
tering for high-dimensional sparse data is as easy as private
clustering in O(log d) dimensions. The approximation fac-
tor we can achieve in the high-dimensional sparse case is
roughly the same as low-dimensional case.

6.2. k-Median Clustering
We can also easily modify our algorithms to adapt to k-
median problem. Note that Theorem 5 is independent of
form of loss function, since it is based on capturing the
optimal centers. Therefore, the candidate set constructed
in Algorithm 2 guarantees an

(
O(log

3
2 n),O(kΛγ log n

δ )
)

-
approximation rate. Since the discrete clustering algorithm
proposed by Gupta et al. (2010) is designed for k-median,
it only remains to develop a private recovery procedure in
the original space Rd. According to Lemma 1, a private
1-median algorithm suffices to recover the centers. We
can achieve good approximation rate via log-concave sam-
pling (Bassily et al., 2014).
Lemma 2 (Error Bound for Exponential Mechanism (Bass-
ily et al., 2014)). For x1, x2, · · · , xn ∈ Rd, there is a
polynomial-time algorithm that releases a center z and pre-
serves ε-differential privacy, such that with probability at
least 1 − δ, we have

∑n
i=1 ‖xi − z‖ − minp ‖xi − p‖ ≤

O(dΛ
ε log2 1

δ ).

Incorporating log-concave sampling into the step of pri-
vate recovery in Algorithm 4, we derive a private k-median
algorithm. The privacy guarantee follows directly from
Lemma 1 and the composition argument. As for the k-
median objective, the optimal clustering loss is no longer
a function of pairwise distances. Fortunately, observe that
the original dataset is (2, 0)-approximate candidate set for
k-median loss. By this, we have the following guarantee.

Theorem 12. For k-median problem, there is an ε-
differentially private algorithms that runs in poly(k, d, n)
time, and releases a set of centers z̃1, z̃2, · · · , z̃k such
that with probability at least 1 − δ, L

(
{z̃j}kj=1

)
≤

O(log3/2 n)OPT + O
(

(k2+d)Λ
ε log3 n

δ

)
.

7. Experiments
In this section, we present an empirical evaluation of our
proposed clustering algorithm and several strong baselines
on real-world image and synthetic datasets. We compare
against non-private k-means++ of Arthur & Vassilvitskii
(2007), SuLQ k-means of Blum et al. (2005), the sample
and aggregate clustering algorithm of Nissim et al. (2007),
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(a) Synthetic (d=100)
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(b) CIFAR10 in3c (d=160)
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(c) MNIST (d=784)
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(d) Effect of ε (MNIST)

Figure 2. Figures (a-c) show the effect of k on the clustering objective and Figure (d) shows the effect of ε on the clustering objective.

the k-variates++ algorithm of Nock et al. (2016), and the
griding algorithm of Su et al. (2016). The k-variates++
algorithm can only run when k is small, and the griding al-
gorithm has time and space complexity exponential in the
dimension, so we are only able to compare against these
two baselines with small k or small d. We postpone de-
tailed comparisons against these two algorithms to supple-
mentary material. For all other datasets with higher dimen-
sions and all values of k, our algorithm is competitive with
non-private k-means++ and is always better than SuLQ and
sample and aggregate. Moreover, in agreement with our
theory, the gap between the performance of our algorithm
and the other private baselines grows drastically as the di-
mension of the dataset increases.

The implementation of our algorithm projects to a space of
dimension p = log(n)/2, rather than 8 log(n) and repeats
the candidate set construction routine only k times. Finally,
we perform 8 iterations of the SuLQ k-means algorithm to
further improve the quality of the resulting centers. These
modifications do not affect the privacy guarantee of the al-
gorithm, but gave improved empirical performance. Our
implementation of the SuLQ k-means algorithm runs for
20 iterations and uses the Gaussian mechanism to approxi-
mate the sum of points in each cluster, since this allowed us
to add less noise. The SuLQ algorithm initializes its cen-
ters to be k randomly chosen points from the bounding box
of the data. Unless otherwise stated, we set ε = 1.0.

Results: We first compared our algorithm and all baselines
on a small synthetic dataset in 3 dimensions with k = 3. Su
et al.’s griding algorithm achieves the best objective, while
sample and aggregate, SuLQ, and our method all perform
comparably, and k-variates++ is an order of magnitude
worse. Details of the comparison are given in the supple-
mentary material. The griding algorithm and k-variates++
were not able to run in the rest of our experiments.

Next, we ran the non-private k-means++, SuLQ k-means,
and sample and aggregate algorithms on the following
datasets for each value of k in {2, 4, 8, 16, 32, 64}. A more
detailed description is given in the supplementary material.

MNIST: The raw pixels of MNIST (LeCun et al., 1998). It
has 70k examples and 784 features.

CIFAR-10: 100k randomly sampled examples from the CI-
FAR10 dataset (Krizhevsky, 2009) with 160 features ex-
tracted from layer in3c of a Google Inception (Szegedy
et al., 2015) network.

Synthetic: A synthetic dataset of 100k samples drawn from
a mixture of 64 Gaussians in R100.

Figure 2 (a-c) shows the objective values obtained by each
algorithm averaged over 5 independent runs. The sample
and aggregate algorithm’s results have been omitted, since
its objective values are orders of magnitude worse than the
other algorithms. Across all values of k and all datasets, our
algorithm is competitive with non-private k-means++ and
always outperforms SuLQ k-means. As the dimensionality
of the datasets increases, our algorithm remains competi-
tive with k-means++, while SuLQ becomes less competi-
tive for large dimensions.

Finally, figure 2 (d) shows the effect of the privacy parame-
ter ε on the objective values for each algorithm on MNIST
with k = 10. Our algorithm is competitive with the non-
private k-means algorithm even for small ε, while the SuLQ
algorithm objective deteriorates quickly.

8. Conclusions
In this paper, we propose efficient algorithms for ε-private
k-means and k-median clustering in Rd that achieves clus-
tering loss at most O

(
log3 n

)
OPT + poly

(
k, d, log n, 1

ε

)
and O

(
log

3
2 n
)
OPT + poly

(
k, d, log n, 1

ε

)
, respectively.

We also study the scenario where the data points
are s-sparse and show that the k-means clustering
loss can be even smaller, namely, O

(
log3 n

)
OPT +

poly
(
k, s, log d, log n, 1

ε

)
. Results of this type advance

the state-of-the-art approaches in the high-dimensional Eu-
clidean spaces. Our method of constructing candidate set
can be potentially applied to other problems, which might
be of independent interest more broadly.
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