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Label	vs.	Comparisons

Noise-Tolerant	Interactive	Learning	
Using	Pairwise	Comparisons

Task: Classifying	old/young	people	portraits

Noise Conditions

Pr[𝑌 ≠ ℎ∗ 𝑋 ] ≤ 𝜈.
Adversarial Noise (Labels):
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Direct label query

Is the person in the
image older than 30?	

Comparison query

Which person looks
older?

Goal: Interactive	algorithm	that	decides	which	
type	of data	to	collect,	when and	how	much
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Label Distribution: 𝜂 𝑥 = 𝑃[𝑌 = 1|𝑋 = 𝑥]
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Tsybakov Noise(Tsybakov 2004, Labels):

0.5
Smaller	𝜅 ñ steeper	

𝑃[𝑌 = 1|𝑋 = 𝑥]

𝑃 𝑍 ≠ 𝑠𝑖𝑔𝑛(ℎ∗ 𝑋0 − ℎ∗ 𝑋2 ≤ 𝜈R.
Adversarial Noise (Comparisons):

Previous active learning algorithm: Labelà Classifier

Our algorithm: Rankingà Labelà Classifier

Sample points in
uncertainty region

Get labels Shrink Uncertainty

à à

Sample points in
uncertainty region

Rank Samples

Binary Search to find
the boundary

Shrink Uncertainty
Infer Other Labels

Ranking reduces the problem to 1-dimensional problem
to find threshold between pos/neg samples

Better label complexity

e : classification	error	desired
Tolcomp – Comparison	noise	level	n’	tolerance
q – complexity	of	class	C

𝑑: dimension

Adversarial Noise for both Label & Comparison

Work Efficient? #Label #Query Tolcomp

Label No Ο 𝑑𝜃log 1/𝜀 Ο 𝑑𝜃log 1/𝜀 N/A
Label Yes Ο d2log 𝑑/𝜀 Ο d2log 𝑑/𝜀 N/A
Label+

comparison
Yes 𝜪 𝐥𝐨𝐠 𝟏/𝜺 𝜪 𝒅𝐥𝐨𝐠𝟒 𝒅/𝜺 𝜺𝟐

*No previous work exists for efficient learning under
Tsybakov Noise

Tsybakov Noise for Label, Adversarial Noise for Comp
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*Our work in bold

Lower bounds

• Label complexity & Total complexity are optimal (up to log)
Proof sketch: Reduce to the complexity of 1-dim learning

• Noise tolerance is optimal (up to log)
Proof sketch: Assume oracle with error 𝜈′ is free, consider
the best possible classifier using the oracle

General Case: A^2 algorithm (Balcan et al., 2007)
Linear Classifiers: (Awasthi et al., 2017)

Underlying	active	learning	algorithm	to	combine	with:

To	adapt	to	noise	on	comparisons:
Use group-based binary search, and majority vote
within groups to infer labels

Proof Sketch:
1. Show that there are not too many errors in the ranking
obtained from noisy comparisons.
2. Thus, Ranking -> Label -> Classifier approach achieves low
error on Adversarial & Tsybakov label noise, using few label
queries.
3. Combine with adversarial active learning algorithm to
achieve complexity bounds.


