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Abstract. Rank minimization has attracted a lot of attention due to
its robustness in data recovery. To overcome the computational difficulty,
rank is often replaced with nuclear norm. For several rank minimization
problems, such a replacement has been theoretically proven to be valid,
i.e., the solution to nuclear norm minimization problem is also the solu-
tion to rank minimization problem. Although it is easy to believe that
such a replacement may not always be valid, no concrete example has
ever been found. We argue that such a validity checking cannot be done
by numerical computation and show, by analyzing the noiseless latent low
rank representation (LatLRR) model, that even for very simple rank min-
imization problems the validity may still break down. As a by-product,
we find that the solution to the nuclear norm minimization formulation
of LatLRR is non-unique. Hence the results of LatLRR reported in the
literature may be questionable.

1 Introduction

We are now in an era of big data as well as high dimensional data. Fortu-
nately, high dimensional data are not unstructured. Usually, they lie near low
dimensional manifolds. This is the basis of linear and nonlinear dimensionality
reduction [1]. As a simple yet effective approximation, linear subspaces are usu-
ally adopted to model the data distribution. Because low dimensional subspaces
correspond to low rank data matrices, rank minimization problem, which models
the real problem into an optimization by minimizing the rank in the objective
function (cf. models (@), @) and ), is now widely used in machine learning
and data recovery [2-5]. Actually, rank is regarded as a sparsity measure for
matrices [3]. So low rank recovery problems are studied [6-9] in parallel with the
compressed sensing theories for sparse vector recovery. Typical rank minimiza-
tion problems include matrix completion [2, |4], which aims at completing the
entire matrix from a small sample of its entries, robust principal component anal-
ysis [3], which recovers the ground truth data from sparsely corrupted elements,
and low rank representation [10, [11], which finds an affinity matrix of subspaces
that has the lowest rank. All of these techniques have found wide applications,
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such as background modeling [3], image repairing [12], image alignment [12],
image rectification [13], motion segmentation [10, [11], image segmentation |14],
and saliency detection [15].

Since the rank of a matrix is discrete, rank minimization problems are usually
hard to solve. They can even be NP hard [3]. To overcome the computational
obstacle, as a common practice people usually replace rank in the objective func-
tion with nuclear norm, which is the sum of singular values and is the convex
envelope of rank on the unit ball of matrix operator norm [5], to transform rank
minimization problems into nuclear norm minimization problems (cf. models (2])
and (@)). Such a strategy is widely adopted in most rank minimization prob-
lems [2-4, [10-15]. However, this naturally brings a replacement validity problem
which is defined as follows.

Definition 1 (Replacement Validity Problem). Given a rank minimiza-
tion problem together with its corresponding nuclear norm formulation, the re-
placement validity problem investigates whether the solution to the nuclear norm
minimization problem is also a solution to the rank minimization one.

In this paper, we focus on the replacement validity problem. There is a related
problem, called exact recovery problem, that is more widely studied by scholars.
It is defined as follows.

Definition 2 (Exact Recovery Problem). Given a nuclear norm minimiza-
tion problem, the exact recovery problem investigates the sufficient conditions
under which the nuclear norm minimization problem could exactly recover the
real structure of the data.

As an example of the exact recovery problem, Candes et al. proved that when the
rank of optimal solution is sufficiently low and the missing data is sufficiently few
or the corruption is sufficiently sparse, solving nuclear norm minimization prob-
lems of matrix completion [2] or robust PCA problems [3] can exactly recover
the ground truth low rank solution with an overwhelming probability. As an-
other example, Liu et al. |10, [L6] proved that when the rank of optimal solution
is sufficiently low and the percentage of corruption does not exceed a thresh-
old, solving the nuclear norm minimization problem of low rank representation
(LRR) |10, [11] can exactly recover the ground truth subspaces of the data.

We want to highlight the difference between our replacement validity prob-
lem and the exact recovery problem that scholars have considered before. The
replacement validity problem is to compare the solutions between two optimiza-
tion problems, while the exact recovery problem is to study whether solving a
nuclear norm minimization problem can exactly recover a ground truth low rank
matrix. As a result, in all the existing exact recovery problems, the scholars have
to assume that the rank of the ground truth solution is sufficiently low. In con-
trast, the replacement validity problem does not rely on this assumption: even if
the ground truth low rank solution cannot be recovered, we can still investigate
whether the solution to a nuclear norm minimization problem is also the solution
to the corresponding rank minimization problem.
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For replacement validity problems, it is easy to believe that the replacement
of rank with nuclear norm will break down for complex rank minimization prob-
lems. While for exact recovery problems, the existing analysis all focuses on
relatively simple rank minimization problems, such as matrix completion [2],
robust PCA problems [3], and LRR [10, [11], and has achieved affirmative re-
sults under some conditions. So it is also easy to believe that for simple rank
minimization problems the replacement of rank with nuclear norm will work.
This paper aims at breaking such an illusion. Here, we have to point out that
replacement validity problem cannot be studied by numerical experiments. This
is because: 1. rank is sensitive to numerical errors. Without prior knowledge,
one may not correctly determine the rank of a given matrix, even if there is a
clear drop in its singular values; 2. it is hard to verify whether a given solution
to nuclear norm minimization problem is a global minimizer to a rank minimiza-
tion problem, whose objective function is discrete and non-convex. So we should
study replacement validity problem by purely theoretical analysis. We analyze a
simple rank minimization problem, noiseless latent LRR (LatLRR) [17], to show
that solutions to a nuclear norm minimization problem may not be solutions of
the corresponding rank minimization problem.

The contributions of this paper include:

1. We use a simple rank minimization problem, noiseless LatLRR, to prove
that solutions to a nuclear norm minimization problem may not be solutions
of the corresponding rank minimization problem, even for very simple rank
minimization problems.

2. As a by-product, we find that LatLRR is not a good mathematical model
because the solution to its nuclear norm minimization formulation is non-
unique. So the results of LatLRR reported in the literature, e.g., |10, [17],
may be questionable.

2 Latent Low Rank Representation

In this section, we first explain the notations that will be used in this paper and
then introduce latent low rank representation which we will analyze its closed
form solutions.

2.1 Summary of Main Notations

A large amount of matrix related symbols will be used in this paper. Capital
letters are used to represent matrices. Especially, I denotes the identity matrix
and 0 is the all-zero matrix. The entry at the ith row and the jth column of
a matrix is denoted by [-];;. Nuclear norm, the sum of all the singular values
of a matrix, is denoted by || - ||.. Operator norm, the maximum singular value,
is denoted by || - ||2. Trace(A) represents the sum of the diagonal entries of A
and A" is the Moore-Penrose pseudo-inverse of A. For simplicity, we use the
same letter to present the subspace spanned by the columns of a matrix. The
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dimension of a space V is presented by dim(V). The orthogonal complement
of V is denoted by V). Range(A) indicates the linear space spanned by all the
columns of matrix A, while Null(A) represents the null space of A. They are
closely related: (Range(A)); = Null(AT). Finally, we always use Ux X x Vi to
represent the skinny SVD of the data matrix X . Namely, the numbers of columns
in Ux and Vx are both rank(X) and Y'x consists of all the non-zero singular
values of X, making X'y invertible.

2.2 Low Rank Subspace Clustering Models

Low rankness based subspace clustering stems from low rank representation
(LRR) [10,[11]. An interested reader may refer to an excellent review on subspace
clustering approaches provided by Vidal [18]. The mathematical model of the
original LRR is

mZinrank(Z), st. X=XZ, (1)

where X is the data matrix we observe. LRR extends sparse subspace cluster-
ing [19] by generalizing the sparsity from 1D to 2D. When there is noise or
corruption, a noise term can be added to the model [10, [11]. Since this paper
considers closed form solutions for noiseless models, to save space we omit the
noisy model. The corresponding nuclear norm minimization formulation of ()
is

mZinHZH*, st. X=XZ, (2)

which we call the heuristic LRR. LRR has been very successful in clustering data
into subspaces robustly [20]. It is proven that when the underlying subspaces are
independent, the optimal representation matrix is block diagonal, each block
corresponding to a subspace [10, [11].

LRR works well only when the samples are sufficient. This condition may
not be fulfilled in practice, particularly when the dimension of samples is large.
To resolve this issue, Liu et al. [17] proposed latent low rank representation
(LatLRR). Another model to overcome this drawback of LRR is fixed rank rep-
resentation [21]. LatLRR assumes that the observed samples can be expressed
as the linear combinations of themselves together with the unobserved data:

mZinrank(Z), st. X =[X,XulZ, (3)

where Xpg is the unobserved samples for supplementing the shortage of the
observed ones. Since Xy is unobserved and problem (B]) cannot be solved directly,
by some deduction and mathematical approximation, LatLRR [17] is modeled
as follows:

rgi{l rank(Z) + rank(L), st. X =XZ+ LX. (4)

Both the optimal Z and L can be utilized for learning tasks: Z can be used for
subspace clustering, while L is for feature extraction, thus providing us with the
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possibility for integrating two tasks into a unified framework. We call ) the
original LatLRR. Similarly, it has a nuclear norm minimization formulation

min[|Z|]. +[|L]]., st. X =XZ+LX, (5)

which we call the heuristic LatLRR. LatLRR has been reported to have better
performance than LRR [10, [17].

In this paper, we focus on studying the solutions to problems (), @), @) and
[, in order to investigate the replacement validity problem.

3 Analysis on LatLRR

This section provides surprising results: both the original and heuristic LatLRR
have closed form solutions! We are able to write down all their solutions, as
presented in the following theorems.

Theorem 1. The complete solutions to the original LatLRR problem [@) are as
follows

Z* =VxWVE+ SIWVE and L* = Ux Zx (I — W)X UL + Ux Xx (I —W)Sa,

] (©)
where W is any idempotent matriz and Sy and Sz are any matrices satisfying:
1. viEs, = 0 and S2Ux = 0; and 2. rank(S1) < rank(W) and rank(Sy) <
rank(I — W).

Theorem 2. The complete solutions to the heuristic LatLRR problem (Bl are
as follows . .
= VxWVE and L* = Ux (I — W)UX, (7)

where W is any block diagonal matriz_satisfying: 1. its blocks are compatible
with Xx, i.e., if [Xx)u # [Xx];; then [W [ lij = 0; and 2. both W and I —W are
positive semi-deﬁnite.

By Theorems [[ and ] we can conclude that if the W in Theorem B is not
idempotent, then the corresponding (Z*, L*) is not the solution to the original
LatLRR, due to the following proposition:

Proposition 1. If the W in ThgoremIZ is not idempotent, then Z* = VXWV};
cannot be written as Z* = VXWV; + SlVVV;, where W and Sy satisfy the
conditions stated in Theorem [dl

The above results show that for noiseless LatLRR, nuclear norm is not a valid
replacement of rank. As a by-product, since the solution to the heuristic LatLRR
is non-unique, the results of LatLRR reported in |11, [17] may be questionable.

We provide detailed proofs of the above theorems and proposition in the
following section.
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4 Proofs

4.1 Proof of Theorem [1]

We first provide the complete closed form solutions to the original LRR in a
more general form
rnZinrank(Z)7 st. A=XZ, (8)

where A € Range(X) so that the constraint is feasible. We call (8]) the generalized
original LRR. Then we have the following proposition.

Proposition 2. Suppose UsX AV T is the skinny SVD of A. Then the minimum
objective function value of the generalized original LRR problem () is rank(A)
and the complete solutions to [) are as follows

Z*=X"A4+8VFE, 9)
where S is any matriz such that Vi£S = 0.
Proof. Suppose Z* is an optimal solution to problem (§]). First, we have
rank(A) = rank(X Z*) < rank(Z*). (10)

On the other hand, because A = XZ is feasible, there exists Z; such that
A= XZ;. Then Zy = X1 A is feasible: XZy = XXTA=XXTXZ, =XZ, = A,
where we have utilized a property of Moore-Penrose pseudo-inverse X XX = X.

So we obtain
rank(Z*) < rank(Zp) < rank(A). (11)

Combining (I0) with (II)), we conclude that rank(A) is the minimum objective
function value of problem (&).

Next, let Z* = PQT be the full rank decomposition of the optimal Z*, where
both P and @ have rank(A) columns. From U XA VI = X PQT, we have VI =
(211U X P)QT. Since both V4 and @ are full column rank and Y = £,'UL X P
is square, Y must be invertible. So V4 and @Q represent the same subspace.
Because P and @ are unique up to an invertible matrix, we may simply choose
@ = V4. Thus UAEAVAT = XPQT reducesto Up X4 = UXEXV;P, ie., V;P =
Z;lU};UAEA, and we conclude that the complete choices of P are given by P =
VXE)_(lU;UAEA + 9, where S is any matrix such that V{S = 0. Multiplying
P with QT = VI we obtain that the entire solutions to problem (§) can be
written as Z* = XTA + SVI where S is any matrix satisfying VLS = 0. O

Remark 1. Friedland and Torokhti [22] studied a similar model as (), which is
mZin | X — AZ||p, s.t. rank(Z) <k. (12)

However, [§) is different from (I2)) in two aspects. First, ([8) requires the data
matrix X to be strictly expressed as linear combinations of the columns in A.
Second, (B]) does not impose an upper bound for the rank of Z. Rather, (&) solves
for the Z with the lowest rank. As a result, (§)) has infinitely many solutions, as
shown by Proposition Pl while [I2]) has a unique solution when k fulfills some
conditions. So the results in [22] do not apply to (&).
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Similar to Proposition Bl we can have the complete closed form solution to
the following problem

mZinrank(L), st. A=LX, (13)

which will be used in the proof of Theorem [I1

Proposition 3. Suppose UsX AV T is the skinny SVD of A. Then the minimum
objective function value of problem ([[3)) is rank(A) and the complete solutions
to problem (I3)) are as follows

L* = AXT 4 U4S, (14)
where S is any matriz such that SUx = 0.

Next, we provide the following propositions.

Proposition 4. rank(X) is the minimum objective function value of the original
LatLRR problem ().

Proof. Suppose (Z*, L*) is an optimal solution to problem (#]). By Proposition 2]
and fixing Z*, we have rank(L*) = rank(X — X Z*). Thus

rank(Z*) + rank(L*) > rank(X Z*) + rank(X — X Z*) > rank(X). (15)

On the other hand, if Z* and L* are adopted as XX and 0, respectively, the
lower bound is achieved and the constraint is fulfilled as well. So we conclude
that rank(X) is the minimum objective function value of the original LatLRR

problem (@). O

Proposition 5. Suppose (Z*,L*) is one of the solutions to problem (). Then

there must exist another solution (Z L) such that XZ7* = XZ and Z = VXWVX
for some matriz W.

Proof. According to the constraint of problem (@), we have XZ = (I — L)X, i.e.,
(XZ)T € Range(XT). Since VxV{ is the projection matrix onto Range(X7),
we have

XZ*VxVe = XZ*. (16)
On the other hand, given the optimal Z*, L* is the optimal solution to
mLinrank(L) st. X(I-2")=LX. (17)
So by Proposition 2l we get
rank(L*) = rank(X (I — Z*)XT). (18)
As a result,
rank(X) = rank(Z*) + rank(L")
= rank(Z*) + rank(X (I — Z*)XT)
= rank(Z*) + rank(X (I — Vx V& Z*Vx VE) XT) (19)
> rank(Vx Vi Z*Vx VL) 4 rank(X (I — Vx VL Z*Vx VE) X T)
> rank(X),
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where the last inequality holds since (Vx V£ Z*Vy VL, X (I-Vx VEZ*Vx V) XT)
is a feasible solution to problem (@) and rank(X) is the minimum objec-
tive according to Proposition Hl (I3) shows that (VxVIZ*VxVI X(I —
VxVEZ*Vx VE)XT) is an optimal solution. So we may take Z = Vx VL Z*Vx V¥

and write it as Z = Vx VT/V;, where W = V;Z*VX.
Finally, combining with equation (], we conclude that

XZ =UxExVEVXVEZ VX VE = XZ*Vx ViE = X 7% (20)
O

Proposition B provides us with a great insight into the structure of problem ():
we may break () into two subproblems

minrank(Z), s.t. XVxWVE =X27, (21)
and B
minrank(L), s.t. X - XVxWVE =LX, (22)
and then apply Propositions 2] and [ to find the complete solutions to problem
@).

For investigating the properties of W in (ZI)) and @2), the following lemma
is critical.

Lemma 1. For A, B € R"*" if AB = BA, then the following inequality holds
rank(A + B) < rank(A) + rank(B) — rank(AB). (23)

Proof. On the basis of AB = BA, it is easy to check that
Null(A) + Null(B) € Null(AB), (24)

and
Null(4) N Null(B) C Null(A + B). (25)

On the other hand, according to the well-known dimension formula

dim(Null(A))+dim(Null(B)) = dim(Null(A)+Null(B))+dim(Null(4)NNull(B)),
(26)
by combining (28) with ([24)) and (28], we get

dim(Null(A4)) + dim(Null(B)) < dim(Null(AB)) + dim(Null(A + B)). (27)

Then by the relationship rank(S) = n — dim(Null(S)) for any S € R"*", we
arrive at the inequality ([23]). O

Based on the above lemma, the following proposition presents the sufficient and
necessary condition on W.
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Proposition 6. Let L* be any optimal solution to subproblem (22), then
(VxWVEL*) is optimal to problem (@) if and only if the square matric W
s idempotent.

Proof. Obviously, (VXWV}; , L*) is feasible based on the constraint in problem
(22). By considering the optimality of L* for (22)) and replacing Z* with Vx WVL
in equation (I¥), we have

rank(L*) = rank(X (I — Vx WV{E)XT). (28)

First, we prove the sufficiency. According to the property of idempotent ma-
trices, we have

rank(W) = trace(W) and rank(I — W) = trace(I — W). (29)

By substituting (Vx WV; , L*) into the objective function, the following equali-
ties hold

rank(Vx WV{E) 4 rank(L*) = rank(W) + rank(X (I — VxWVE)XT)

= rank(W) + rank(Ux Yx (I — W) X' UE)
nk(W) + rank(I — W) (30)

= trace(W) + trace(I — W)

So (VXWV)? ,L*) is optimal since it achieves the minimum objective function
value of problem ().

Second, we prove the necessity. Suppose (Vx WV}; , L*) is optimal to problem
). Substituting it into the objective follows

rank(X) = rank(Vy WVE) + rank(X (I — Vx WVx)XT)
= rank(W) + rank(I — W) (31)
> rank(X).
Hence rank(W) +rank(I — W) = rank(X). On the other hand, as Wand I—W

are commutative, by Lemma [Il we have rank(X) < rank(W) + rank(I — W) —
rank(W — W2). So rank(W — W?2) = 0 and thus W = W?2. O

We are now ready to prove Theorem [I}

Proof. Solving problems (ZI)) and (Z2) by using Propositions @ and B} where W
is idempotent as Proposition [6] shows, we directly get

7 =VxWVE+ 8V and L* = UxEx (I - W)X UL +UpSs,  (32)

where UAZAVA and UBZBVB are the skmny SVDs of UXZXWVX and
UxXx(I— W)VX , respectively, and 51 and Sg are matrices such that VX 51 =0
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and SyUx = 0. Since we have Range((WV;)T) = Range(V4) and Range(Ux X'x
(I —W)) = Range(Up), there exist full column rank matrices M, and M sat-
isfying V4 = (VT/V;)TMl and Ug = UxXx (I — W)Mg, respectively. The sizes
of M and M, are rank(X) x rank(W) and rank(X) x rank(I — W), respec-
tively. We can easily see that a matrix S7 can be decomposed into S; = §1M1T,
such that V;gl = 0 and M; is full column rank, if and only if V;Sl =
0 and rank(S;) < rank(W). Similarly, a matrix Sy can be decomposed into
Sy = M2§2, such that ggUX = 0 and M> is full column rank, if and only if
SaUx = 0 and rank(S3) < rank(] — W) By substituting V4 = (WV;)TMl,
Up=UxXx(I- W)Mg, S1 = §1M1T, and Sy = MS5 into 32), we obtain the
conclusion of Theorem [ O

4.2 Proof of Theorem

We first quote two results from [10].

Lemma 2. Assume X # 0 and A = XZ have feasible solution(s), i.e., A €
Range(X). Then
Z*=X"A (33)

1s the unique minimizer to the generalized heuristic LRR problem:

mZinHZH*, st. A=XZ. (34)

Lemma 3. For any four matrices B, C, D and F of compatible dimensions, we
have the inequalities

1551l

where the second equality holds if and only if C' =0, D =0, and F = 0.

BC
> 15l + 1171l ana | [ 7]

> [|Bl]+, (35)

Then we prove the following lemma.

Lemma 4. For any square matriz Y € R™*™, we have ||Y ||« > trace(Y'), where
the equality holds if and only if Y is positive semi-definite.

Proof. We prove by mathematical induction. When n = 1, the conclusion is
clearly true. When n = 2, we may simply write down the singular values of Y
to prove. ~

Now suppose for any square matrix Y, whose size does not exceed n — 1, the
inequality holds. Then for any matrix ¥ € R"*", using Lemma Bl we get

Y11 Yo
i = | 5 2
> [[Yia| |« + [[Yaz|[« (36)
> trace(Y11) + trace(Yaz)
= trace(Y),

*



236 H. Zhang, Z. Lin, and C. Zhang

where the second inequality holds due to the inductive assumption on the ma-
trices Y11 and Yag. So we always have ||Y][. > trace(Y).

Tt is easy to check that any positive semi-definite matrix Y, it satisfies ||Y||. =
trace(Y'). On the other hand, just following the above proof by choosing Yo as
2 x 2 submatrices, we can easily get that ||Y]]. > trace(Y) strictly holds if
Y € R™™ is asymmetric. So if ||Y||. = trace(Y), then ¥ must be symmetric.
Then the singular values of Y are simply the absolute values of its eigenvalues.
As trace(Y') equals the sum of all eigenvalues of Y, |||, = trace(Y") holds only
if all the eigenvalues of Y are non-negative. O

Using Lemma 2l we may consider the following unconstrained problem

min f(Z) £ | Z||. + [|1X(I = 2)X L., (37)

which is transformed from (B]) be eliminating L therein. Then we have the fol-
lowing result.

Proposition 7. Unconstrained optimization problem 1) has a minimum ob-
jective function value rank(X).

Proof. Recall that the sub-differential of the nuclear norm of a matrix Z is 23]
7| Z|ls = {UzV7 + RIUz R =0, RVz =0, ||R||> < 1}, (38)

where Uz X7V} is the skinny SVD of the matrix Z. We prove that Z* = 1/2XTX
is an optimal solution to (&1). It is sufficient to show that

0€z2f(Z") = 02||2*||« + 0z|IX (I — Z") X

. . (39)
= 02127\l = XTOx 1z xt [|1X (T = Z7)X T (XT)T.

Notice that X(I — Z*) X' = Ux(1/21)UZL is the skinny SVD of X (I — Z*) X
and Z* = Vx (1/2I)ViE is the skinny SVD of Z*. So 0z f(Z*) contains
Vx Ve — XT(UxUDXNHT = Wy VE — Vx Ex UL UxULUx X5V = 0. (40)

Substituting Z* = 1/2X "X into ([B7), we get the minimum objective function
value rank(X). O

Next, we have the form of the optimal solutions to (&) as follows.

Proposition 8. The optimal solutions to the unconstrained optimization prob-
lem 1) can be written as Z* = VxWVE.

Proof. Let (Vx), be the orthogonal complement of Vx. According to Propo-
sition [ rank(X) is the minimum objective function value of (B7). Thus we
get
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rank(X) = [|Z*||. + ||X (1 — Z*) X,
V;? .
= )T Z* [Vx, (Vx)1]
V;Z*VX V;Z (Vx)1L
(Vx TZ*VX (VX)TZ*(VX)
> |[VX Z Vx|l + [lUx Zx VX (1 — Z*)VX2§1U§|\*
= [[VxVX ZVx Vi [« + [[Ux Ex VR (I = Vx VE Z*Va VOV S5 U [

= |IVx V¥ Z*Vx VK [« + [IX(T = Vx VX Z7Vx Vi) X T
> rank(X),

+IIX( = Z5)XT]].

*

+HIIX( = Z5)XT]].

(41)

where the second inequality holds by viewing Z = Vx V£ Z*Vx VI as a feasible
solution to ([3T). Then all the inequalities in ([@Il) must be equalities. By Lemma
B we have

VR Z*(Vx)1 = (Vx)1Z2*Vx = (Vx)1 Z*(Vx)1 = 0. (42)
That is to say
VT . _[wo
where W = VEZ*Vx. Hence the equality
wol[ vi ] =
7% = [V (V- X | = T 44
holds. |

Based on all the above lemmas and propositions, the following proposition gives
the whole closed form solutions to the unconstrained optimization problem (7).
So the solution to problem (37) is non-unique.

Proposition 9. The solutions to the unconstrained optimization problem (1)
are Z* = VxWVL where W satisfies: 1. it is block diagonal and its blocks are
compatible with Z; 2. both W and I — W are positive semi-definite.

Proof. First, we prove the sufficiency. Suppose Z* = VXWV)? satisfies all the
conditions in the theorem. Substitute it into the objective function, we have

127« + 11X (T = 2) X[ = [[W]]. + [|Ex (T = W) ZK .
= [|W]l. + trace(Zx (I — W)X
= HYH* + trace( — W) N (45)
= ||W]||« + rank(X) — trace(W)
= rank(X)
= min||Z[]. + || X(I = 2)X]].,

I Please refer to Theorem [ for the meaning of “compatible with X'x.”
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where based on LemmaIZI the second and the fifth equalities hold since I — W=
Yx(I - W)Z;( as W is block diagonal and both I — W and W are positive
semi-definite.

Next, we give the proof of the necessity. Let Z* represent a minimizer. Ac-
cording to Proposition[8 Z* could be written as Z* VXWVX We will show

that T satisfies the stated conditions. Based on Lemma M we have
vank(X) = ||2°]], + || X(I — 2°)x1]..
= W]l + |Zx (I = W)Z% ||
> ||W] |, + trace(Ex (I — W)E}l)
= HWH* + trace(l — W)
= H/V[?H* + rank(X) — trace(V)
> rank(X).

(46)

Thus all the inequalities above must be equalities. From the last equality and
Lemma [, we directly get that W is positive seml definite. By the first inequality

and Lemma [ we know that Xx (I — W) ¥ is symmetric, i.e.,
O — O —
I =Wl = I — Wy, 47
T =Wy = - (47)

where o; represents the ith entry on the diagonal of X'x. Thus if o; # o, then
[ - W}” =0, i.e., W is block diagonal and its blocks are compatible with Xx.
Notice that I — W = Yx(I - W\)Z;(l. By Lemma [ we get that I — W is also
positive semi-definite. Hence the proof is completed. O

Now we can prove Theorem

Proof. Let W satisfy all the conditions in the theorem. According to Proposition
Bl since the row space of Z* VXWVX belongs to that of X, it is obvious that
(Z*, X(I- Z*)XT) is feasible to problem (). Now suppose that (@) has a better
solution (Z, L) than (Z*,L*), ie.,

X =XZ+LX, (48)

and B B
Z|[« + 1Ll < (1271« + [IL]] - (49)

Fixing Z in (@) and by Lemma[2l we have
1211« + 1(X = X2)X || < [|Z]| + || L]]- (50)

Thus _ _
NZ|]e + 1(X = X2)XT[ < [|1Z¥]|« + |1 X (T = Z*) X7 (51)

So we obtain a contradiction with respect to the optimality of Z* in Proposition
[ hence proving the theorem. O
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4.3 Proof of Proposition [

Proof. Suppose the optimal formulation Z* :~VX/V[7V§ in Theorem [2] could be
written as Z* = VXWV}; + SlWV};, where W is idempotent and S; satisfies
WV};Sl = 0. Then we have

VxWVE = vxWvE + s WvE. (52)

By multiplying both sides with Vi¥' and Vx on the left and right, respectively,
we get e ~ ~
W=W+VisW. (53)

As a result, W is idempotent:
W2 = (W + VESW)(W + VESW)
= W2+ VESW2 + WVESW + VIS WVES, W

- - - - - - 54
=W+ VESW + WVESIW + VISWVESW (54)
- W + V;Slw = W,
which is contradictory to the assumption. (I

5 Conclusions

Based on the expositions in Section Bl and the proofs in Section @l we conclude
that even for rank minimization problems as simple as noiseless LatLRR, re-
placing rank with nuclear norm is not valid. We have also found that LatLRR
is actually problematic because the solution to its nuclear norm minimization
formation is not unique. We can also have the following interesting connections
between LRR and LatLRR. Namely, LatLRR is indeed an extension of LRR
because its solution set strictly includes that of LRR, no matter for the rank
minimization problem or the nuclear norm minimization formulation. So we can
summarize their relationship as Figure [Il

valid surrogate
Original LRR (1) ——————  Heuristic LRR (2)

extension extension

invalid surrogate
Original LatLRR (4) ————— Heuristic LatLRR (5)

Fig. 1. The detailed relationship among the original LRR (), the heuristic LRR (@),
the original LatLRR (@), and the heuristic LatLRR (&) in the sense of their solution
sets
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Although the existing formulation of LatLRR is imperfect, since some scholars
have demonstrated its effectiveness in subspace clustering by using a solution
which is randomly chosen in some sense, in the future we will consider how
to choose the best solution in the solution set in order to further improve the
performance of LatLRR.
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