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Abstract
We study the robust interpolation problem of ar-
bitrary data distributions supported on a bounded
space and propose a two-fold law of robustness.
Robust interpolation refers to the problem of in-
terpolating n noisy training data points in Rd

by a Lipschitz function. Although this problem
has been well understood when the samples are
drawn from an isoperimetry distribution, much
remains unknown concerning its performance un-
der generic or even the worst-case distributions.
We prove a Lipschitzness lower bound Ω(

√
n/p)

of the interpolating neural network with p param-
eters on arbitrary data distributions. With this
result, we validate the law of robustness conjec-
ture in prior work by Bubeck, Li, and Nagaraj
on two-layer neural networks with polynomial
weights. We then extend our result to arbitrary in-
terpolating approximators and prove a Lipschitz-
ness lower bound Ω(n1/d) for robust interpola-
tion. Our results demonstrate a two-fold law of
robustness: i) we show the potential benefit of
overparametrization for smooth data interpolation
when n = poly(d), and ii) we disprove the poten-
tial existence of an O(1)-Lipschitz robust interpo-
lating function when n = exp(ω(d)).

1. Introduction
Robustness has been a central research topic in machine
learning (Szegedy et al., 2014; Goodfellow et al., 2014),
statistics (Huber, 2004), operation research (Ben-Tal et al.,
2009), and many other domains. In machine learning, study
of adversarial robustness has led to significant advances
in defending against adversarial attacks, where test inputs
with slight modification can lead to problematic prediction
results. In statistics and operation research, robustness is a
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desirable property for optimization problems against uncer-
tainty, which can be represented as deterministic or random
variability in the value of optimization parameters. This
is known as robust statistics or robust optimization. In
both cases, the problem can be stated as given a determin-
istic labeling function g : Rd → [−1, 1], (approximately)
interpolating the training data {(xi, g(xi))}ni=1 or its noisy
counterpart by a function with small Lipschitz constant. The
focus of this paper is on the latter setting known as robust in-
terpolation problem (Bubeck & Sellke, 2021). That is, given
noisy training data {(xi, g(xi) + zi)}ni=1 of size n where
x1, · · · , xn are restricted in a unit ball and z1, · · · , zn have
variance > 0, how many network parameters and training
samples are needed for robust interpolation provided that
the functions in the class can (approximately) interpolate
the noisy training data with Lipschitz constant L?

There are several reasons to study the noisy setting (Bubeck
& Sellke, 2021): 1) The real-world data are noisy. For ex-
ample, it has been shown that around 3.3% of the data in
the most-cited datasets was inaccurate or mislabeled (North-
cutt et al., 2021). 2) This noise assumption is necessary
from a theoretical point of view, as otherwise there could
exist a Lipschitz function which perfectly fits the training
data for any large n. Despite progress on the robust inter-
polation problem (Bubeck & Sellke, 2021; Bubeck et al.,
2021), many fundamental questions remain unresolved. In
modern learning theory, it was commonly believed that 1)
big data (Schmidt et al., 2018), 2) low dimensionality of
input (Blum et al., 2020; Yang et al., 2020a; Kumar et al.,
2020), and 3) overparametrization (Bubeck & Sellke, 2021;
Bubeck et al., 2021) improve robustness. We view the ro-
bustness problem from the perspective of Lipschitzness and
ask the following question:

Are big data and large models a remedy for robustness?

In fact, there is significant empirical evidence to indicate
that enlarging the model size (overparametrization) im-
proves robustness when n is moderately large (e.g., when
n = poly(d), see (Madry et al., 2017; Schmidt et al., 2018)).
Our work verifies the benefit of overparametrization for fit-
ting a neural network with p parameters below the noise
level by proving such neural networks must have a Lips-
chitzness lower bound Ω(

√
n/p). On the other hand, big

data and large models may not be a remedy for robustness



A Law of Robustness beyond Isoperimetry

if n goes even larger. We show that for any approximator,
no matter how many parameters it contains, its Lipschitz-
ness is of order Ω(n1/d). In particular, our result disproves
the existence of learning an O(1)-Lipschitz function with
n = exp(ω(d)). Besides, by showing that for any learn-
ing algorithm, there exists a joint data distribution such
that one needs at least n = exp(Ω(d)) samples to learn
an O(1)-Lipschitz function with good population error, we
demonstrate that big data are also necessary for robust inter-
polation in some special cases.

The robust interpolation problem becomes more challenging
when no assumptions are made on the distribution of covari-
ates. Due to the well-separated nature of data, most posi-
tive results for obtaining good Lipschitzness lower bound
have focused on the isoperimetry distribution (Bubeck &
Sellke, 2021). A probability measure µ on Rd satisfies c-
isoperimetry if for any bounded L-Lipschitz f : Rd → R,
and any t ≥ 0,

Pr(|f(x)− E[f(x)]| ≥ t) ≤ 2 exp(− dt2

2cL2
).

Isoperimetry states that the output of any Lipschitz func-
tion is O(1)-subgaussian under suitable rescaling. Special
cases of isoperimetry include high-dimensional Gaussians
N (0, Id

d ), uniform distributions on spheres and hypercubes
of diameter 1. However, real-world data might not follow
the isoperimetry assumption. In contrast, our results of The-
orem 3.4 go beyond isoperimetry and providing a lower
bound of robustness for functions with p parameters under
arbitrary distributions in the bounded space. Our results of
Theorem 3.9 go even further by providing a universal lower
bound of robustness for any model class, including the class
of neural networks with arbitrary architecture.

Notations. We will use X to represent the instance space,
F = {f : X → [−1, 1]} to represent the hypothe-
sis/function space, x ∈ X to represent the sample in-
stance, y ∈ [−1, 1] to represent the target, and z to rep-
resent the target noise. For errors, denote by l(f(x), y)
the loss function of f on instance x and target y, in
our work we use the mean squared error as in Bubeck
& Sellke (2021), i.e., l(f(x), y) = (f(x) − y)2. Let
LD(f) := E(x,y)∼D[l(f(x), y)] be the population error, and
let LS(f) :=

1
|S|
∑

(x,y)∈S [l(f(x), y)] be the empirical er-
ror. Denote by f : X → [−1, 1] the prediction function
which maps an instance to its predicted target. It can be
parameterized, e.g., by deep neural networks. For norms,
we denote by ∥x∥ a generic norm. Examples of norms in-
clude ∥x∥∞, the infinity norm, and ∥x∥2, the ℓ2 norm. We
will frequently use (X , ∥ · ∥) to represent the normed linear
space of X with norm ∥·∥. Define diam(X ) as the diameter
of X w.r.t. the norm ∥ · ∥. For a given score function f , we
denote by Lip∥·∥(f) (or sometimes Lip(f) for simplicity)
the Lipschitz constant of f w.r.t. the norm ∥ · ∥. Let ⌈·⌉

represent the ceiling operator. We will use O(·), Θ(·) o(·),
and Ω(·) to express sample complexity and Lipschitzness.

1.1. Our results

Our law of robustness is two-fold: a) overparametrization
can potentially help robust interpolation when n = poly(d)
(Section 3.1), and b) there exists no robust interpolation
when n = exp(ω(d)) (Section 3.2).

Lipschitzness (or local Lipschitzness) is an important char-
acterization of adversarial robustness for learning algo-
rithms (Yang et al., 2020b; Zhang et al., 2019; Wu et al.,
2022a;b). The popular randomized smoothing approaches
(Cohen et al., 2019; Li et al., 2019; Wu et al., 2022c)
can provide robust guarantee through Lipschitzness but
suffer curse of dimensionality problem (Wu et al., 2021).
Thus, studying the Lipschitzness is crucial for understand-
ing robustness. For a given score function f , we de-
note by Lip∥·∥(f) the Lipschitz constant of f w.r.t. the
norm ∥ · ∥. That is, for any x1, x2 in the input space,
|f(x1)− f(x2)| ≤ Lip∥·∥(f)∥x1 − x2∥. Our results show
lower bounds on the Lipschitzness of learned functions
when the training error is slightly smaller than the noise
level (i.e., in the case of overfitting), but without assump-
tions on the distribution of covariates except that they are
restricted in the bounded space X := {x : ∥x∥ ≤ 1}. We
are interested in the assumption of bounded space because:
1) most applications of machine learning focus on the case
where the data are in the bounded space. For example, im-
ages and videos are considered to be in [−1, 1]d. 2) The
discussion of Lipschitzness is closely related to how large
the input space is. For example, for the images restricted in
[−1, 1]d, special attentions are paid on the ℓ∞ robust radius
of 0.031 or 0.062 (Zhang et al., 2019; Madry et al., 2017),
which corresponds to a (local) Lipschitz constant of O(1)
for the classifier.

Overparametrization may benefit robust interpolation.
The universal law of robustness by Bubeck & Sellke (2021)
provides an Ω(

√
nd/p) Lipschitzness lower bound of the

interpolating functions when the underlying distribution is
isoperimetry (see Theorem 2.1). Our first result goes beyond
the isoperimetry assumption, and provides an Ω(

√
n/p)

Lipschitzness lower bound of the interpolating functions
under arbitrary distribution. We note that the

√
d difference

between the two Lipschitzness lower bounds is due to the
special property of the isoperimetry assumption (see Re-
mark 3.5). Our result predicts the potential existence of an
O(1)-Lipschitz function that fits the data below the noise
level when p = Ω(n). The following informal theorem
illustrates the results (the detailed theorems are introduced
at later sections):

Theorem A (informal version of Theorem 3.4). Let
F be any class of functions from Rd → [−1, 1] and let
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{(xi, yi)}ni=1 be i.i.d. input-output pairs in {x : ∥x∥ ≤
1} × [−1, 1] for any given norm ∥ · ∥. Assume that:

1. The expected conditional variance of the output (i.e.,
the “noise level”) is strictly positive, denoted by σ2 :=
E[Var[y|x]] > 0.

2. F admits a J-Lipschitz parametrization by p real pa-
rameters, each of size at most poly(n, d).

Then, with high probability over the sampling of the data,
one has simultaneously for all f ∈ F:

1

n

n∑
i=1

(yi − f(xi))
2≤σ2 − ϵ ⇒ Lip∥·∥(f)≥Ω

(
ϵ

√
n

p

)
.

Remark 1.1. Our theorem takes a further step in proving the
Conjecture 1 in Bubeck et al. (2021), where it is conjectured
that for generic data sets, with high probability, any f in
the collections of two layer networks with p parameters
fitting the data must also satisfy Lip∥·∥(f) ≥ Ω(

√
n/p).

We validate the conjecture under the polynomial weights
assumption, where Bubeck & Sellke (2021) validate the
Conjecture 1 under the polynomial weights assumption and
the isoperimetry assumption.
Remark 1.2 (Strong overparametrization is not necessary for
the robust interpolation). The Lipschitzness lower bound of
Bubeck & Sellke (2021) suggests strong overparametriza-
tion, i.e., p = Ω(nd), is required for the robust interpolation
under the isoperimetry assumption. Our theorem shows that
strong overparametrization may not be a necessary condi-
tion for the robust interpolation on a general distribution.
Moderate overparametrization with p = Ω(n) may also be
enough for robust interpolation. Our results are consistent
with the empirical observations that CIFAR10 (50000 im-
ages) can be robustly fitted by a model with p = 106, and
ImageNet (107 images) can be robustly fitted by a model
with p = 107 ∼ 108.

Big data hurts robust interpolation. Under the assump-
tions of isoperimetry distribution and the J-Lipschitz pa-
rameterized functions, the universal law of robustness by
Bubeck & Sellke (2021) predicts the potential existence
of an O(1)-Lipschitz function fits the data below the noise
level when p = Ω(nd). Our result goes beyond the two
assumptions and disproves the existence of such O(1)-
Lipschitz functions in the big data scenario when n =
exp(ω(d)) for arbitrary distributions:

Theorem B (informal version of Theorem 3.9). Let
F be any class of functions from Rd → [−1, 1] and let
{(xi, yi)}ni=1 be i.i.d. input-output pairs in {x : ∥x∥ ≤
1} × [−1, 1] for any given norm ∥ · ∥. Assume that:

1. The expected conditional variance of the output (i.e.,
the “noise level”) is strictly positive, denoted by σ2 :=
E[Var[y|x]] > 0.

Then, with high probability over the sampling of the data,
one has simultaneously for all f ∈ F:

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ ⇒ Lip∥·∥(f) ≥ Ω(ϵn1/d).

Difference between our results and Bubeck & Sellke
(2021). Bubeck & Sellke (2021) proposed a universal law
of robustness for general class of functions (see Theorem
2.1). Our results Theorem 3.4 and Theorem 3.9 share the
same setting with Theorem 2.1, while the former ones make
much weaker assumptions: 1) Both Theorem 3.4 and Theo-
rem 3.9 do not require an isoperimetry assumption of input
distributions. 2) Theorem 3.9 does not make any assump-
tion on the Lipschitzness and size of model parametrization.
Moreover, while Theorem 2.1 predicts potential existence
of an O(1)-Lipschitz robust interpolating function when
p = Ω(nd), Theorem 3.9 disproves the hypothesis in the
big data scenario when n = exp(ω(d)) for arbitrary distri-
butions in the bounded space. Besides, our bounds work
for all ℓp(p ≥ 1) norm while the bound in Bubeck & Sellke
(2021) only focuses on ℓ2 norm.

Practical implications. Our analysis provides important
implications for practical settings. When selecting the mod-
els for learning on a certain dataset, ideally the number of
parameters in the selected model should be the same (or
slightly larger) scale of the dataset in order to get good ro-
bust performance. When the size of dataset is too large com-
paring to the dimension of dataset, in order to achieve good
robustness, it may be beneficial to either reduce the size of
the training data or scatter the data in a higher-dimensional
space by padding special covariates. This approach can help
to mitigate the negative effects of the curse of big data and
improve model robustness, particularly when dealing with
large datasets in practical applications.

2. Related Work
Robust interpolation problem. Bubeck et al. (2021) pro-
vided the first guarantee on the law of robustness for two-
layer neural networks which was later extended by Bubeck
& Sellke (2021) to a universal law of robustness for gen-
eral class of functions under isoperimetry distributions. A
probability measure µ on Rd satisfies c-isoperimetry if for
any bounded L-Lipschitz f : Rd → R, and any t ≥ 0,
Pr(|f(x)− E[f(x)]| ≥ t) ≤ 2 exp(− dt2

2cL2 ).

Theorem 2.1 (Theorem 1 of Bubeck & Sellke (2021)).
Let F be a class of functions from Rd → [−1, 1] and let
{(xi, yi)}ni=1 be i.i.d. input-output pairs in Rd × [−1, 1].
Assume that:

1. The expected conditional variance of the output (i.e.,
the “noise level”) is strictly positive, denoted by σ2 :=
E[Var[y|x]] > 0.
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2. F admits a J-Lipschitz parametrization by p real pa-
rameters, each of size at most poly(n, d).

3. The distribution µ of the input xi satisfies isoperimetry
(or a mixture thereof).

Then, with high probability over the sampling of the data,
one has simultaneously for all f ∈ F:

1

n

n∑
i=1

(yi − f(xi))
2≤σ2 − ϵ ⇒ Lip∥·∥2

(f)≥Ω

(
ϵ

√
nd

p

)
.

Our work extends the result of Bubeck & Sellke (2021)
by consequently removing the third assumption (see Theo-
rem 3.4) and the second assumption (see Theorem 3.9).

Sample complexity of robust learning. The sample com-
plexity of robust learning for benign distributions and cer-
tain function class has been extensively studied in the recent
years. In particular, Bhattacharjee et al. (2021) considered
the sample complexity of robust linear classification on
the separated data. Yin et al. (2019) studied the adver-
sarially robust generalization problem through the lens of
Rademacher complexity. Cullina et al. (2018) extended the
PAC-learning framework to account for the presence of an
adversary. Montasser et al. (2019) showed that any hypothe-
sis class with finite VC dimension is robustly PAC learnable
with an improper learning rule. They also showed that the
requirement of being improper is necessary. Schmidt et al.
(2018) showed an Ω(

√
d)-factor gap between the standard

and robust sample complexity for a mixture of Gaussian
distributions in ℓ∞ robustness, which was later extended to
the case of ℓp robustness with a tight bound by Bhagoji et al.
(2019); Dobriban et al. (2020); Dan et al. (2020). Different
from the prior work, our work is the first to discover the
sample complexity of robust learning for arbitrary function
class and learning algorithms.

3. A Two-fold Law of Robustness
In this section, we present our main theoretical analysis,
which contributes to our two-fold law of robustness. All
missing proofs can be found in the appendix.

Robust interpolation problem. We first introduce our
problem settings. Given noisy training data {(xi, yi :=
g(xi) + zi)}ni=1 of size n where x1, . . . , xn are training
samples, g(x1), . . . , g(xn) the ground truth, and z1, . . . , zn
have variance σ2 > 0, we say a model f robustly interpo-
lates (or fits the data below the noise level) the training data
if and only if

∃ϵ > 0,
1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ.

Our two-fold law of robustness. a) Overparametrization
can potentially help robust interpolation when n = poly(d)

(Section 3.1); b) There exists no robust interpolation when
n = exp(ω(d)) (Section 3.2).

3.1. A Lipschitz lower bound beyond the isoperimetry
assumption.

In this part, we show the first part of our two-fold law of
robustness: overparametrization can potentially help robust
interpolation when n = poly(d). Notice, here we claim
“potentially help” as overparametrization is only a necessary
but not sufficient condition for robust interpolation.

Motivation. We notice that, the proof of Theorem 2.1
(Bubeck & Sellke, 2021) depends heavily on the definition
of isoperimetry distribution, i.e., Pr(|f(x) − E[f(x)]| ≥
t) ≤ 2 exp(− dt2

2cL2 ) for L-Lipschitz f : Rd → R.
This formula indicates the high-concentration property
of isoperimetry distributions due to the exp(−d) depen-
dency of Pr(|f(x) − E[f(x)]| ≥ t). The exp(−d) depen-
dency is also the reason that the Lipschitzness lower bound
of Bubeck & Sellke (2021) is Ω(

√
nd/p) instead of the

Ω(
√
n/p) lower bound we derived.

Challenge. One may naturally come up with the idea to
derive a bound of Pr(|f(x) − E[f(x)]| ≥ t) for arbitrary
distributions and go beyond the isoperimetry distribution.
However, the challenge is that unlike the regular concentra-
tion bound on Pr(|x − E[x]| ≥ t), we are dealing with a
more complicate case, where the random variable is f(x)
with arbitrary L-Lipschitz f . To solve this problem, we
apply the Azuma’s inequality below:

Lemma 3.1 (Azuma’s inequality (Azuma, 1967)). Sup-
pose {Xk : k = 0, 1, 2, 3, . . . } is a martingale and
|Xk − Xk−1| ≤ ck almost surely. Then for all positive
integers N and ϵ > 0,

Pr(|XN −X0| ≥ ϵ) ≤ 2 exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
.

Azuma’s inequality shows the concentration bound for the
values of martingales that have bounded differences. With
this lemma, we are able to derive the following concentra-
tion bound for arbitrary distributions on a bounded space.

Lemma 3.2. Given an arbitrary probability measure µ on
the bounded space X ⊂ Rd, for any L-Lipschitz f : Rd →
R, and any t ≥ 0,

Pr(|f(x)− E[f(x)]| ≥ t) ≤ 2 exp(− t2

2diam(X )2L2
).

Comparing with the exp(− dt2

2cL2 ) bound for the isoperime-
try distributions, our bound for arbitrary distributions only
differs a d on the numerator of the term inside the exponen-
tial. In order to achieve the same concentration bound of
isoperimetry distributions, one need diam(X ) = Θ(1/

√
d),



A Law of Robustness beyond Isoperimetry

which means our input are located on an Θ(1/
√
d)-diameter

space. As the real world datasets are usually supported on
an Θ(1)-diameter space, matching the isoperimetry bound
for all distributions is empirical meaningless.

With Lemma 3.2, we can start to calculate the Lipschitzness
lower bound with the following lemma on finite function
class

Lemma 3.3. Let F be a finite class of L-Lipschitz functions
from Rd → [−1, 1] and let {(xi, yi)}ni=1 be i.i.d. input-
output pairs in {x : ∥x∥ ≤ 1} × [−1, 1] for any given norm
∥ · ∥. Assume that the expected conditional variance of the
output (i.e., the “noise level”) is strictly positive, denoted
by σ2 := E[Var[y|x]] > 0, we have

Pr

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)

≤4 exp

(
−nϵ2

83

)
+ |F| exp

(
− ϵ2n

210L2

)
.

Lemma 3.3 shows the connection between the robust in-
terpolation problem and the Lipschitzness of the under-
lying functions. Notice, the probability of ∃f ∈ F :
1
n

∑n
i=1(yi − f(xi))

2 ≤ σ2 − ϵ decreases with L, which
indicates that we need a large enough L to make sure that
there exists f satisfying the condition of robust interpolation
problem. With this intuition, we can calculate the follow-
ing Lipschitzness lower bound for the robust interpolation
problem without the isoperimetry assumption.

Theorem 3.4. Let F be any class of functions from Rd →
[−1, 1] and let {(xi, yi)}ni=1 be i.i.d. input-output pairs in
{x : ∥x∥ ≤ 1} × [−1, 1] for any given norm ∥ · ∥. Assume
that:

1. The expected conditional variance of the output (i.e.,
the “noise level”) is strictly positive, denoted by σ2 :=
E[Var[y|x]] > 0.

2. J-Lipschitz parametrization: F = {fw, w ∈ W} with
W ⊂ Rp, diam(W) ≤ W and for any w1, w2 ∈ W ,

||fw1
− fw2

||F ≤ J ||w1 − w2||.

Then, with probability at least 1−δ, one has simultaneously
for all f ∈ F:

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ ⇒

Lip∥·∥(f) ≥
ϵ

32

√
n

p ln(36WJϵ−1) + ln(2/δ)
.

The crucial part of the proof is to find a finite ϵ/6J-covering
of F with the J-Lipschitz parametrization assumption.
Then we can apply Lemma 3.3 to this finite covering set

and get the Lipschitzness lower bound. We will show in the
next section that without the J-Lipschitz parametrization
assumption, one can hardly use the similar proof technique
to derive the Lipschitzness lower bound.

Bubeck & Sellke (2021) showed that under neural network
settings, J is always of polynomial order of the diameter of
the weight space. Thus, if the weight is only polynomial
large w.r.t. d and n, ln(60WJϵ−1) would not affect the
Lipschitzness bound too much and we may neglect it in its
asymptotic approximation. Thus, we have a Lipschitzness
lower bound of order Ω(ϵ

√
n/p) for the robust interpolation

problem. Our theorem validates the first part of our law of
robustness, i.e., the potential existence of robust interpolat-
ing functions under the overparametrization scenario when
n = poly(d) (see Remark 3.10).

Tightness of our bound. When n = poly(d), Theorem 4
of Bubeck et al. (2021) has already demonstrated the exis-
tence of an at most O(

√
n/p)-Lipschitz two layer network,

which fits generic data below the noise level. Thus, our
Lipschitzness lower bound is tight.

Remark 3.5 (Difference of the
√
d-dependency between

Theorem 2.1 and 3.4). Comparing to the Ω(ϵ
√
nd/p) of

Lipschitzness lower bound in Theorem 2.1, our bound does
not depend on the dimension d. This difference, as we dis-
cussed in Lemma 3.2, is due to the isoperimetry assumption.
In Bubeck et al. (2021), it’s also showed that the tight Lip-
schitzness lower bound of two layer networks is of order
Ω(ϵ
√
n/p), which is consistent with our results.

3.2. A Lipschitz lower bound beyond the J-Lipschitz
parametrization assumption.

In this part, we show the second part of our two-fold law of
robustness. We demonstrate an intriguing observation that
huge data hurts robust interpolation. Our analysis leads to a
universal lower bound of Lipschitzness regarding the robust
interpolation problem, which goes beyond the isoperimetry
and J-Lipschitz parametrization assumptions. Our analysis
is based on the relation between Rademacher complexity
and the generalization gap between the population error
LD(f) and the training error LS(f).

Motivation. The J-Lipschitzness parametrization assump-
tion provides us a simple way to find a covering of the
function space F . Although the Lipschitzness lower bound
in Bubeck & Sellke (2021) has only logarithmic dependency
with respect to J , it may still affect the Lipschitzness lower
bound when the weight of neural networks is exponentially
large w.r.t. d, or the number of layers of neural works is
polynomial w.r.t. d. Thus, we seek to derive a Lipschitzness
lower bound beyond the J-Lipschitzness parametrization
assumption.

Challenge. Without the J-Lipschitzness parametrization
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assumption, the covering number of the function F will
have more complicate dependency on the Lipschitzness
L (see Lemma 3.6). In this case, calculating Lipschitz-
ness lower bound with Lemma 3.6 and Lemma 3.3 re-
quires one to solve an inequality like L−d lnL+ L−2 ≥ C,
which obviously has no closed-form solution when d ≥ 3.
Thus, we need other techniques to deal with this case.
Recall the objective of robust interpolation problem is
1
n

∑n
i=1(yi − f(xi))

2 ≤ σ2 − ϵ, one can immediately find
that the left hand side formula is the train error with mean
squared loss LS(f). Under the label noise settings, we
have LD(f) = ED[(f(x) − y)2] ≥ Ex[Var(y|x)] = σ2,
which yields 1

n

∑n
i=1(yi − f(xi))

2 ≤ σ2 − ϵ ⇒ LS(f) ≤
LD(f)− ϵ. Therefore, if one can derive

LS(f) ≤ LD(f)− ϵ ⇒ Lip∥·∥(f) ≥ Ω(ϵn1/d),

a natural corollary is that

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ ⇒ LS(f) ≤ LD(f)− ϵ

⇒ Lip∥·∥(f) ≥ Ω(ϵn1/d).

In this way, we successfully convert the robust interpolation
problem to a generalization problem between the empirical
error and population error under the mean squared loss,
which can be solved by the statistical learning techniques,
e.g., VC dimension and Rademacher complexity. We focus
on the Rademacher complexity in this part.

Rademacher complexity. We start with the definition of
Rademacher complexity, which measures the richness of a
function class. For a set A ⊂ Rn, the Rademacher complex-
ity is defined as

R(A) :=
1

n
Eσ1,...,σn∈{−1,1}

[
sup
a∈A

n∑
i=1

σiai

]
.

Given a loss function l, a hypothesis class F , and
a training set S = {(x1, y1), ..., (xn, yn)}, denote by
l ◦ F := {l(f(·), ·) : f ∈ F} and l ◦ F ◦
S := {(l(f(x1), y1), ..., l(f(xn), yn)) : f ∈ F}. The
Rademacher complexity of the set l ◦ F ◦ S is given by

R(l◦F◦S) := 1

n
Eσ1,...,σn∈{−1,1}

[
sup
f∈F

n∑
i=1

σil(f(xi), yi))

]
.

For every function f ∈ F , the generation error between
LD(f) and LS(f) is bounded by the Rademacher complex-
ity of the function space l ◦ F ◦ S. More formally, assume
that ∀f ∈ F ,∀x ∈ X , |l(f(x), y)| ≤ a. Then with a proba-
bility at least 1− δ, for all f ∈ F ,

LD(f)−LS(f) ≤ 2ES∈Dn [R(l ◦F ◦S)]+a

√
2 ln(2/δ)

n
.

(1)

From Equation 1, we can see that given a lower bound of
generalization gap LD(f) − LS(f) ≥ ϵ, one has immedi-
ately

ES∈Dn [R(l ◦ F ◦ S)] ≥ ϵ

2
− a

2

√
2 ln(2/δ)

n
.

Therefore, if we can find the relation between the
Rademacher complexity of l ◦ F and the Lipschitzness of
the functions in class F , we are able to derive a constrain
of the Lipschitz constant for F . The contraction lemma of
Rademacher complexity (Lemma 26.9 of Shalev-Shwartz
& Ben-David (2014)) states that for a given space A and a
L-lipschitz function h on A, we have R(h◦A) ≤ L ·R(A).
Thus, if the error function l(f(x), y) is C-Lipschitz w.r.t.
f ∈ F for arbitrary y ∈ [−1, 1],

R(l ◦ F ◦ S) ≤ C ·R(F ◦ S). (2)

It has been proved (von Luxburg & Bousquet, 2004) that
the Rademacher complexity of a set is directly related to the
number of ϵ-covering of the set. So the first step to calculate
the Rademacher complexity of F ◦ S is to find the covering
number of this function space.

Given a space (X , || · ||) and a covering radius η, let
N(X , η, || · ||), a.k.a. the η-covering number, be the mini-
mum number of η-ball which covers X . For a given function
space F , define

||f − f ′||F = sup
x∈X

|f(x)− f ′(x)|.

We have the following upper bound of the covering number
of F :

Lemma 3.6 (Covering number of L-Lipschitz function
space). For a bounded and connected space (X , || · ||), let
BL be the set of functions f ’s such that Lip||·||(f) ≤ L. If
X is connected and centered, we have for every ϵ > 0,

N(BL, ϵ, || · ||F ) ≤
⌈
2L · diam(X )

ϵ

⌉
2N(X , ϵ

2L ,||·||).

The Dudley’s integral provides the relation between the
covering number of a function class and its Rademacher
complexity. With Dudley’s integral, von Luxburg & Bous-
quet (2004) showed that for every ϵ > 0,

ES′∈Dn [R(BL ◦ S)]≤

2ϵ+
4
√
2√
n

∫ diam(BL)

ϵ/4

√
ln(N(BL, u, || · ||F ))du.

(3)

Notice that when u > 2L · diam(X ), the number of u-
covering is 1 and ln(N(BL, u, || · ||F )) = 0. Combining it
with Lemma 3.6 yields the following lemma:
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Lemma 3.7. Let (X , || · ||) be a bounded and connected
space and BL be all functions f ∈ F with Lip||·||(f) ≤ L.
Let n = |S|. If X is connected and centered, for any ϵ > 0

ES∈Dn [R(BL ◦ S)] ≤ 2ϵ+
4
√
2√
n
×∫ 2L·diam(X )

ϵ/4

√
N
(
X ,

u

2L
, || · ||

)
ln 2+ln

⌈
2L · diam(X )

u

⌉
du.

As all the variables in Lemma 3.7 are known, by calcu-
lating the integration, one can derive an upper bound of
Rademacher complexity ES∈Dn [R(BL ◦ S)]:
Lemma 3.8. If diam(X ) = 2 w.r.t. || · || and d ≥ 3, we
have

ES∈Dn [R(BL ◦ S)] ≤

96
L

n1/d
+

96
√
2 ln 2

d− 2

L

n1/d
+

16
√
2L√
n

√
ln

(
1

3
n1/d + 1

)
.

According to Equation 1 in (Mendelson & Vershynin,
2003), when u

2L ≤ diam(X ), N(X , u
2L , || · ||) ≤

( 6L·diam(X )
u )d if X ⊆ Rd. Then the integral part will

be
√
( 12Lu )d ln 2+ln

⌈
2L·diam(X )

u

⌉
, which is no more than√

( 12Lu )d ln 2 +
√
ln( 4Lu + 1). Taking ϵ = Θ( L

n1/d ), the

integral part will be bounded by Θ(Ln1/2−1/d). Thus
ES′∈Dn [R(BL ◦ S′)] ≤ Θ( L

n1/d ) +
4
√
2√
n
Θ(Ln1/2−1/d) =

Θ( L
n1/d ).

In our settings, we are interested in the squared ℓ2 loss
l(f(x), y) = (f(x) − y)2. We have ∇f(x)l(f(x), y) =
2(f(x) − y) ≤ 2(|f(x)| + |y|) ≤ 4, i.e., l(f(x), y) is
4-Lipschitz w.r.t. f(x) for arbitrary y ∈ [−1, 1]. Thus,
ES∈Dn [R(l◦BL◦S)] ≤ 4ES∈Dn [R(BL◦S)]=O

(
L

n1/d

)
.

Combining this result with Equation 1 yields the main theo-
rem of our paper:

Theorem 3.9 (Lipschitzness Lower Bound Beyond the
J-Lipschitz parametrization assumption). Let F be any
class of functions from Rd → [−1, 1] and let {(xi, yi)}ni=1

be i.i.d. input-output pairs in {x : ∥x∥ ≤ 1} × [−1, 1] for
any given norm ∥ · ∥. Assume that:

1. The expected conditional variance of the output (i.e.,
the “noise level”) is strictly positive, denoted by σ2 :=
E[Var[y|x]] > 0.

Then with probability at least 1− δ, for all f ∈ F:

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ ⇒

Lip∥·∥(f) ≥
n1/d

K

(
1

8
ϵ− 1

2

√
2 ln(2/δ)

n

)
,

where K = 96 + 96
√
2 ln 2

d−2 + 16
√
2

n1/2−1/d

√
ln( 13n

1/d + 1).

Theorem 3.9 states that, for all data distribution D with label
noise of variance σ2 and every function f : X → [−1, 1],
overfitting i.e. 1

n

∑n
i=1(yi − f(xi))

2 ≤ σ2 − ϵ implies
Lip∥·∥ ≥ Ω(ϵn1/d), which validates the second part of our
law of robustness, i.e., achieving good robust interpolation
is impossible when n = exp(ω(d)).
Remark 3.10. Theorem 3.9 disprove the existence of robust
interpolating functions when n = exp(ω(d)). Thus, the first
part of our law of robustness holds only when n = poly(d).

Tightness of our bound. Intuitively, the Lipschitzness of
the interpolating function is inversely propositional to the
distance between the closest training data pairs. Given n
training data in the d-dimensional bounded space, one can
scatter the data evenly in the space, where the distance be-
tween any training pair is as large as Θ(1/n1/d). Inspired
by this, we complement Theorem 3.9 with a matching Lip-
schitzness upper bound of O(n1/d), which shows that the
Lipschitzness lower bound in Theorem 3.9 is achievable by
a certain function and training data:

Theorem 3.11 (Tightness of our bound). For any distribu-
tion D which is supported on {x ∈ Rd : ||x|| ≤ 1}, there
exist n training samples {x1, ..., xn} such that ∀i, j, i ̸=
j, ||xi − xj || ≥ 1

n1/d . Denote by {y1, ..., yn} the observed
targets. We design a function f∗ which first perfectly fits
the training samples, i.e., f∗(xi) = yi,∀i ∈ [n], then use
the linear interpolation between neighbour training points
as the prediction of other samples. This function is at most
2n1/d-Lipschitz.

Theorem 3.11 shows that there exists n samples, such that
the function which perfectly fits the training samples is
O(n1/d)-Lipschitz.

3.2.1. OUR (COUNTER-INTUITIVE) IMPLICATIONS

It was widely believed that 1) big data (Schmidt et al., 2018),
2) low dimensionality of input (Blum et al., 2020), and 3)
overparametrization (Bubeck & Sellke, 2021; Bubeck et al.,
2021; Gao et al., 2019) improve robustness. Our main re-
sults of Theorem 3.9 challenge the common beliefs and
show that these hypotheses may not be true in the robust in-
terpolation problem. Our results shed light on the theoretic
understanding of robustness beyond isoperimetry assump-
tion.

The curse of big data. Our Lipschitzness lower bound in
Theorem 3.9 is increasing w.r.t. the sample size n. The
intuition is that as one has more training data, those data are
squeezed in the bounded space with smaller margin. Thus to
fit the data well, the Lipschitz constant of the interpolating
functions cannot be small. Perhaps surprisingly, our results
contradict with the common belief that more data always
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improve model robustness.

The blessing of dimensionality. It is known that high
dimensionality of input space strengthens the power of ad-
versary. For example, in the ℓ∞ threat model, an adversary
can change every pixel of a given image by 8 or 16 intensity
levels. Admittedly, higher dimensionality means that the
adversary can modify more pixels. However, we show that
our Lipschitzness lower bound in Theorem 3.9 is decreas-
ing w.r.t. d. The intuition is that input space with higher
dimension has larger space to scatter the data. So the data
can be well-separated, and thus the Lipschitz constant of the
interpolating functions can be small.

4. Small Data May Hurt Performance and
Robustness

In Section 3, we mainly focus on the robust interpolation
problem on the training samples. The lower bound given by
Theorem 3.9 implies that one can sample at most exp(O(d))
training samples in order to obtain an O(1)-Lipschitz func-
tion in the robust interpolation problem. In this section,
we show that n = exp(Ω(d)) is a necessary condition for
obtaining a good population error by any O(1)-Lipschitz
learning algorithm.

We now provide a complementary result of Section 3.2. We
first prove that for learning algorithms on binary classifi-
cation tasks, if the number of training samples is less than
half of the number of all samples, there exists a distribution
with label noise such that the average error of all learning
algorithms is greater than a constant. As the distribution
on a binary classification is naturally a distribution on the
regression tasks, we can find such a distribution for the
regression tasks similarly.

Lemma 4.1. Let A(S) : X → {−a, a} be any learning
algorithm with respect to the squared ℓ2 loss over a do-
main X and samples S. Assume there are label noise
E[Var[y|x]] = σ2. Let m be any number smaller than
|X |/2, representing the size of a training set. Then, for any
a > 0 there exists a distribution D (with label noise) over
X × {−a, a} such that

ES∼Dm [LD(A(S))]] ≥ 1

2
(a2 + σ2).

In the next lemma, we will show a no-free-lunch theory
on the regression tasks and algorithms that outputs an L-
Lipschitz function. The intuition is to consider the minimum
distance between two points in the distribution D. On one
hand, if the minimum distance is less than ϵ, we can assign
the two samples that achieve the minimum distance with
labels 1 and −1, respectively. As the algorithm A is L-
Lipschitz, the maximum difference between the predicted
labels of the two selected points is Lϵ. Thus, the error of

A will be larger than 1 − Lϵ. On the other hand, if the
minimum distance is larger than ϵ, the maximum number of
points in the distribution D will be less than the number of
the ϵ-packing of the input space X . By Lemma 4.1, there
exists a distribution such than if the number of training
samples is less than half of the ϵ-packing of the input space,
the average error of all learning algorithms will be at least a
constant. More formally, we have the following theorem:
Lemma 4.2 (No-free-lunch theory with L-Lipschitz algo-
rithms). Let A(S) : X → [−1, 1] be any algorithm that
returns an L-Lipschitz function (w.r.t. the norm ∥ · ∥) for the
task of regression w.r.t. the squared ℓ2 loss over a domain
(X , || · ||) and samples S. Let n be the size of training set,
i.e., n = |S|. Assume that the label noise has variance
σ2 := ED[Var(y|x)] ≤ 1/2. Then, there exists a distribu-
tion D over X × [−1, 1] with noisy labels such that for all
L-Lipschitz (w.r.t. norm ∥ · ∥) learning algorithm and any
ϵ ∈ [0, 1

2L ]:

n < M(X , ϵ, || · ||)/2 ⇒

ES∼Dn [LD(A(S))] ≥ min

{
1

4
,
1

2
− Lϵ

}
+ σ2,

where M(X , ϵ, || · ||) is the ϵ-packing number of (X , || · ||).

Now we are ready to prove our main theorem.
Theorem 4.3. Let S = {(xi, yi)}ni=1 be i.i.d. training pairs
in {x : ∥x∥ ≤ 1}× [−1, 1] for any given norm ∥ · ∥. Denote
by LD(f) := ED[(f(x)− y)2] the squared ℓ2 loss. Assume
that the expected conditional variance of the output (i.e.,
the “noise level”) is strictly positive and bounded by 1/2,
denoted by σ2 := E[Var[y|x]]. Let A(S) : X → R be any
L-Lipschitz learning algorithm over a training set S. Then
there exists a distribution D′ of (x, y) such that

n <
1

2

(
2L

1− 2ϵ

)d

⇒ ES [LD′(A(S))] ≥ min

{
1

4
, ϵ

}
+σ2.

Proof. Consider X = {x ∈ Rd : ||x|| ≤ 1}. We have

M(X , η, || · ||) ≥
(

1
η

)d
. Thus by Lemma 4.2, there exists

a distribution D such that if σ2 ≤ 0.5,

n <
1

2

(
1

η

)d

⇒ n < M(X , η, || · ||)/2 ⇒

ES∼Dn [LD(A(S))] ≥ min

{
1

4
,
1

2
− Lη

}
+ σ2.

Taking η = 1/2−ϵ
L where ϵ ∈ (0, 1/2), we have n <

1
2

(
2L

1−2ϵ

)d
implies ES∼Dn [LD(A(S))] ≥ min

{
1
4 , ϵ
}
+

σ2. Thus in the worst case, n has to be at least exp(Ω(d))
if one wants to achieve good astuteness by any learning
algorithm that returns an O(1)-Lipschitz function. This
completes the proof of Theorem 4.3.
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Theorem 4.3 states that for certain distributions, n has to be
at least exp(Ω(d)) if one wants to achieve good population
error by any O(1)-Lipschitz learning algorithm. This is
not restricted to the algorithms that perfectly fit the training
data. The sample complexity lower bound matches the
upper bound given in Theorem 3.9.

5. Conclusions
In this work, we study the robust interpolation problem
beyond the isoperimetry assumption, and propose a two-
fold law of robustness. We show the potential bene-
fit of overparametrization for smooth data interpolation
when n = poly(d), and disprove the potential existence
of an O(1)-Lipschitz robust interpolating function when
n = exp(ω(d)). Besides, we also prove that small data
(exp(O(d))) may hurt robustness on certain distributions.
Perhaps surprisingly, the results shed light on the curse of
big data and the blessing of dimensionality regarding robust-
ness.
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A. Missing proofs
A.1. Proof of Lemma 3.2

Proof. Denote by X the random variable of µ on bounded space X We consider the Z1 = f(X) and Z0 = E[f(X)], since

|Z1 − Z0| = |f(X)− E[f(X)]| = |EX′ [f(X)− f(X ′)]| ≤ |L sup
x,x′∈X

||x− x′||| = Ldiam(X ),

where X ′ is of the same distribution with X . Because E[Z1] = Z0, {Z0, Z1} is a martingale with bounded difference. Thus,
by Azuma’s inequality Lemma 3.1, we have

Pr(|f(x)− E[f(x)]| ≥ t) = Pr(|Z1 − Z0| ≥ t) ≤ 2 exp(− t2

2diam(X )2L2
).

A.2. Proof of Lemma 3.3

Proof. We use the similar proof technique as in Bubeck & Sellke (2021). Our proof depends on the following lemma.

Lemma A.1 (Lemma 2.1 of Bubeck & Sellke (2021)). Let F be any class of functions from Rd → [−1, 1]. Let {(xi, yi)}ni=1

be i.i.d. input-output pairs in Rd × [−1, 1] for any given norm ∥ · ∥. Assume that the expected conditional variance of the
output (i.e., the “noise level”) is strictly positive, denoted by σ2 := E[Var[y|x]] > 0.

Pr

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ 2 exp

(
−nϵ2

83

)
+ Pr

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)zi ≥
ϵ

4

)
.

We now try to bound the term Pr(∃f ∈ F : 1
n

∑n
i=1 f(xi)zi ≥ ϵ

4 ). As xi is randomly sampled from the input distribution
and diam(X ) = 2, we have

Pr(|f(xi)− E[f(x)]| ≥ t) ≤ 2 exp(− t2

8L2
),

which indicates f(xi)− E[f(x)] is 8L2/n-subgaussian distributed. Because |zi| = |yi − g(xi)| ≤ 2, we know (f(xi)−
E[f(x)])zi is 32L2-subgaussian. By Property 1 in Case et al. (2019) we know 1

n

∑n
i=1(f(xi) − E[f(x)])zi is 32L2/n-

subgaussian. Since E[(f(xi)− E[f(x)])zi] = 0, we have

Pr

(
1

n

n∑
i=1

(f(xi)− E[f(x)])zi ≥
ϵ

8

)
≤ exp(− nϵ2

210L2
),

Since the range of the functions is in [−1, 1] we have E[f(x)] ∈ [−1, 1] and hence:

Pr

(
∃f :

1

n

n∑
i=1

E[f(x)]zi ≥
ϵ

8

)
≤ Pr

(
| 1
n

n∑
i=1

zi| ≥
ϵ

8

)
,

By Hoeffding’s inequality, the above quantity is smaller than 2 exp(−nϵ2/83) Thus we obtain with an union bound:

Pr

(
∃f ∈ F :

1

n

n∑
i=1

f(xi)zi ≥
ϵ

4

)
≤ |F|Pr

(
1

n

n∑
i=1

(f(xi)− E[f(x)])zi ≥
ϵ

8

)
+ Pr

(
| 1
n

n∑
i=1

zi| ≥
ϵ

8

)

≤ |F| exp(− nϵ2

210L2
) + 2 exp(−nϵ2/83).

Together with Lemma A.1 we have

Pr

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

)
≤ 4 exp

(
−nϵ2

83

)
+ |F| exp

(
− nϵ2

210L2

)
,

which proves this lemma.
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A.3. Proof of Theorem 3.4

Proof. We use the similar proof technique as in Bubeck & Sellke (2021).

We argue that the η-covering of the function space F is upper bounded by the η/J-covering of the parameter space W . To
see this, we can select the centers Wc = {wc

i } of the η/J-covering of W , and covering F with η-balls centered at fwc
i
,

because ∀fw ∈ F , we can find w′ ∈ Wc such that ||w − w′|| ≤ η/J , by the definition of J-Lipschitz parametrization we
have ||fw − f ′

w||F ≤ J ||w − w′|| ≤ η, thus F can be covered by N(W, η/J, || · ||) balls. So we have

N(F , η, || · ||F ) ≤ N(W, η/J, || · ||) ≤ (6JW/η)p.

Taking η = ϵ
6 and denote by Wϵ the ϵ/6J-covering of the W . Applying Lemma 3.3 to Fw = {fw : w ∈ Wϵ} we have

Pr

(
∃f ∈ Fw :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ

2
and Lip||·||(f) ≤ L

)
≤ 4 exp

(
−nϵ2

83

)
+ exp

(
p ln(36JWϵ−1)− nϵ2

210L2

)
,

For all f ∈ F , we can find an f ′ ∈ Fw such that ||f − fw||F ≤ ϵ/6. One can easily derive

1

n

n∑
i=1

(yi − f(xi))
2 ≤ 1

n

n∑
i=1

(yi − fw(xi))
2 + ϵ/2 ≤ σ2 − ϵ.

Thus, if n is large enough such that exp(−nϵ2/83) ≤ δ/8 and L ≥ ϵ
32

√
n

p ln(36WJϵ−1)+ln(2/δ) , we have

Pr

(
∃f ∈ F :

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ and Lip||·||(f) ≤ L

)
≤ δ,

which yields with probability at least 1− δ,

1

n

n∑
i=1

(yi − f(xi))
2 ≤ σ2 − ϵ ⇒ Lip||·||(f) ≥

ϵ

32

√
n

p ln(36WJϵ−1) + ln(2/δ)

A.4. Proof of Lemma 3.6

Proof. We consider the Lipschitz function class BL := {f : Lip||·||(f) ≤ L}. In order to bound the covering number of F ,
we consider an ϵ

2L -covering of input space X consisting of N = Nϵ/(2L)(X ) plates U1,U2, ...,UN centered at s1, s2, ..., sN .
The fact that X is connected enables one to join any two sets Ui and Uj by a chain of intersecting Uk. For any function
f ∈ F , we can construct its approximating functional f̃ by taking its value on U1 as an ϵ/2-approximation of f(s1). As
diam(U1) ≤ L · diam(X ), there are at most ⌈2L · diam(X )/ϵ⌉ such approximations. On the other hand, note that the
N plates are chained. By Lipschitzness, the function values of f on s1 and s2 differ at most ϵ/2, and so f(s2) differs at
most ϵ from f̃(s1) by triangle inequality. It implies that to construct an ϵ-approximation of f(s2) on U2, we shall know
either f̃(s1)− ϵ/2 or f̃(s1) + ϵ/2. Repeating the same argument by N times, we can bound the ϵ-covering of f on X by
⌈2L · diam(X )/ϵ⌉2N .

A.5. Proof of Lemma 3.7

Proof. The proof of this lemma is quite straight forward. Notice that when u > 2L · diam(X ), the number of u-covering
for BL is 1 and ln(N(BL, u, || · ||F )) = 0. Combining Equation 3 with Lemma 3.6 yields this lemma.
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A.6. Proof of Lemma 3.8

Proof. As u
2L ≤ diam(X ), we have N(X , u

2L , || · ||) ≤ ( 12Lu )d and

ES∈Dn [R(BL ◦ S)] ≤ 2ϵ+
4
√
2√
n

∫ 2L·diam(X )

ϵ/4

√
N
(
X ,

u

2L
, || · ||

)
ln 2 + ln

(⌈
2L · diam(X )

u

⌉)
du

≤ 2ϵ+
4
√
2√
n

∫ 4L

ϵ/4

√(
12L

u

)d

ln 2 + ln

(⌈
2L

u

⌉)
du

≤ 2ϵ+
4
√
2√
n

∫ 4L

ϵ/4

√(12L

u

)d

ln 2 +

√
ln

(⌈
2L

u

⌉) du

≤ 2ϵ+
4
√
2√
n

∫ 4L

ϵ/4

√(
12L

u

)d

ln 2 du+
16

√
2L√
n

√
ln(16L/ϵ+ 1).

Switching the integral variable from u to v = u/12L we have∫ 4L

ϵ/4

√(
12L

u

)d

ln 2 du = 12L

∫ 1/3

ϵ/(48L)

√
v−d ln 2 dv

= 12L

[√
ln 2

1

−d/2 + 1
v−d/2+1|1/3ϵ/(48L))

]
< 12L

2
√
ln 2

d− 2

(
48L

ϵ

)d/2−1

.

Based on the calculation above we have

ES∈Dn [R(BL ◦ S)] ≤ 2ϵ+ L
96
√
2 ln 2√

n(d− 2)

(
48L

ϵ

)d/2−1

+
16
√
2L√
n

√
ln(16L/ϵ+ 1).

As this inequality holds for arbitrary ϵ > 0, we can take ϵ = 48L/n1/d and have

ES∈Dn [R(BL ◦ S)] ≤ 96
L

n1/d
+

96
√
2 ln 2

d− 2

L

n1/d
+

16
√
2L√
n

√
ln

(
1

3
n1/d + 1

)
∼ O

(
L

n1/d

)
.

A.7. Proof of Theorem 3.9

Proof. According to Equation 1,

LD(f)− LS(f) ≤ 2ES∈Dn [R(l ◦ F ◦ S)] + a

√
2 ln(2/δ)

n
,

where a := max(x,y) l(f(x), y) ≤ 4. According to Equation 2 and ∇f(x)l(f(x), y) ≤ 4, we have ES∈Dn [R(l ◦ F ◦ S)] ≤
4ES∈Dn [R(F ◦ S)]. Thus,

ES∈Dn [R(F ◦ S)] ≥ 1

8

(
LD(f)−LS(f)−4

√
2 ln(2/δ)

n

)
.

Under the label noise settings, we have

LD(f) = ED[(f(x)− y)2]

= Ex,y[(f(x)− Ey[y|x])2 + (y − Ey[y|x])2]
≥ Ex[Var(y|x)] = σ2.
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So with the overfitting assumption LS(f) ≤ σ2 − ϵ, we have

ES∈Dn [R(F ◦ S)] ≥ 1

8

(
LD(f)−LS(f)−4

√
2 ln(2/δ)

n

)

=
ϵ

8
− 1

2

√
2 ln(2/δ)

n
.

(4)

Consider BL = {f ∈ F : Lip||·||(f) ≤ L}. According to Lemma 3.8, we have

K
L

n1/d
≥ ES∈Dn [R(BL ◦ S)] ≥ ϵ

8
− 1

2

√
2 ln(2/δ)

n
,

where K = 96 + 96
√
2 ln 2

d−2 + 16
√
2

n1/2−1/d

√
ln( 13n

1/d + 1) ∼ Θ(1). Thus we have

L ≥ n1/d

K

(
1

8
ϵ− 1

2

√
2 ln(2/δ)

n

)
.

If ∃f0 ∈ F , such that

LS(f0)≤σ2 − ϵ ⇒ Lip∥·∥(f0)<
n1/d

K

(
1

8
ϵ−1

2

√
2 ln(2/δ)

n

)
,

we have

ϵ

8
− 1

2

√
2 ln(2/δ)

n
> K

Lip∥·∥(f0)

n1/d
≥

ES∈Dn [R(BLip∥·∥(f0)
◦ S)] ≥ ϵ

8
− 1

2

√
2 ln(2/δ)

n
,

which yields contradiction. Therefore, ∀f ∈ F ,

LS(f)≤σ2 − ϵ ⇒ Lip∥·∥(f)≥
n1/d

K

(
1

8
ϵ−1

2

√
2 ln(2/δ)

n

)
.

Taking X = {x ∈ Rd : ||x|| ≤ 1}, we have diam(X ) = 2, which yields Theorem 3.9.

A.8. Proof of Theorem 3.11

Proof. First, we show that we can find n training samples {x1, ..., xn} such that ∀i, j, i ̸= j, ||xi − xj || ≥ 1
n1/d . Consider

the 1
n1/d -packing of the space {x : ||x|| ≤ 1}, the packing number is greater than the 1

n1/d -covering number of the same
space, which at least (1/ 1

n1/d )
d = n, we then choose {x1, ..., xn} from the 1

n1/d -packing, the minimum pairwise distance
is at least 1

n1/d . Next, we show f∗ is at most n1/d-Lipschitz, as f∗ is the linear interpolation between neighbour training

points, the worst case Lipschitz constant is |yi−yj |
||xi−xj || ≤ 2n1/d.

A.9. Proof of Lemma 4.1

Proof. Our proof is partly based on Theorem 5.1 of Shalev-Shwartz & Ben-David (2014). Let C be a subset of X of size
2m. There exist T = 22m possible labeling functions from C to {−a, a}. Denote these functions by f1, ..., fT . We then
define a distribution Di w.r.t. fi by

Di({(x, y)}) =

{
p/|C|, if y = fi(x);

(1− p)/|C|, if y ̸= fi(x),

where p > 1/2 satisfies Var(y|x) = σ2 = 4a2p(1 − p) (notice that as fi(x) can only be a or −a, p is the same for all
fi(x)’s). In this way, Di satisfies the noisy label setting. We will show that for every algorithm A that receives a training set
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of size m from C × {−a, a} and returns a function A(S) : C → R , it holds that

max
i∈[T ]

ES∼Dm
i
[LDi(A(S))] ≥ a2 + σ2

2
.

There are k = (2m)m possible sequences of m instances from C. Denote these sequences by S1, ..., Sk. Also, if
Sj = (x1, ..., xm), we denote by Si

j the sequence containing the instances in Sj labeled by the function fi, namely,
Si
j = ((x1, a1fi(x1)), ..., (xm, amfi(xm))), where Pr(al = 1) = p, Pr(al = −1) = 1− p, and a1, ..., am are i.i.d. for all

Si
j , given that p is the same for all fi(x)’s. If the distribution is Di, then the possible training sets that algorithm A receives

are Si
1, ..., S

i
k, and all these training sets have the same probability of being sampled. Therefore,

ES∼Dm
i
[LDi(A(S))] =

1

k

k∑
j=1

LDi
(A(Si

j)).

Using the facts that “maximum” is larger than “average” and that “average” is larger than “minimum”, we have

max
i∈[T ]

1

k

k∑
j=1

LDi
(A(Si

j)) ≥
1

T

T∑
i=1

1

k

k∑
j=1

LDi
(A(Si

j))

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi
(A(Si

j))

≥ min
j∈[k]

1

T

T∑
i=1

LDi
(A(Si

j)).

Next, fix some j ∈ [k] . Denote by Sj := (x1, ..., xm) and let v1, ..., vq be the instances in C that do not appear in Sj .
Clearly, q ≥ m. Therefore, for every function h : C → R and every i we have

LDi(h) =
1

2m
Ea∈{−1,1}2m

[∑
x∈C

(h(x)− aifi(x))
2

]

=
1

2m

∑
x∈C

[p(h(x)− fi(x))
2 + (1− p)(h(x) + fi(x))

2]

=
1

2m

∑
x∈C

[(h(x)− (2p− 1)fi(x))
2 + 4p(1− p)fi(x)

2]

= σ2 +
1

2m

∑
x∈C

[(h(x)− (2p− 1)fi(x))
2].

Note that

1

2m

∑
x∈C

[(h(x)− (2p− 1)fi(x))
2] ≥ 1

2m

q∑
r=1

(h(vr)− (2p− 1)fi(vr))
2 ≥ 1

2q

q∑
r=1

(h(vr)− (2p− 1)fi(vr))
2.

Hence,

1

T

T∑
i=1

LDi
(A(Si

j)) ≥
1

T

T∑
i=1

Ea∈{−1,1}m

[
σ2 +

1

2q

q∑
r=1

(A(Si
j(a))(vr)− (2p− 1)fi(vr))

2

]

= σ2 +
1

2q

q∑
r=1

1

T

T∑
i=1

Ea∈{−1,1}m [(A(Si
j(a))(vr)− (2p− 1)fi(vr))

2]

≥ σ2 +
1

2
min
r∈[p]

1

T

T∑
i=1

Ea∈{−1,1}m [(A(Si
j)(a)(vr)− (2p− 1)fi(vr))

2].
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Next, fix some r ∈ [p]. We can partition all the functions in f1, ..., fT into T/2 disjoint pairs, where for a pair (fi, fi′) we
have that for every c ∈ C, fi(c) ̸= fi′(c) if and only if c = vr. Note that for such a pair and the same a, we must have
Si
j(a) = Si′

j (a) and ∀a ∈ {−1, 1}m,Pr(a|Si
j) = Pr(a|Si′

j ). It follows that

Ea∈{−1,1}m [(A(Si
j)(vr)− (2p− 1)fi(vr))

2] + Ea∈{−1,1}m [(A(Si′

j )(vr)− (2p− 1)fi′(vr))
2]

≥Ea∈{−1,1}m [(A(Si
j)(vr)− (2p− 1)fi(vr))

2 + (A(Si′

j )(vr)− (2p− 1)fi′(vr))
2]

≥Ea∈{−1,1}m

[
1

2
(2p− 1)2(fi′(vr)− fi(vr))

2

]
=2(2p− 1)2a2,

which yields
1

T

T∑
i=1

Ea∈{−1,1}m [(A(Si
j(a))(vr)− (2p− 1)fi(vr))

2] ≥ (2p− 1)2a2.

Combining the discussion above, we have

max
i∈[T ]

ES∼Dm
i
[LDi

(A(S))] ≥ min
j∈[k]

1

T

T∑
i=1

LDi
(A(Si

j)) ≥ σ2 +
1

2
(2p− 1)2a2 =

a2 + σ2

2
.

A.10. Proof of Lemma 4.2

Proof. Consider an arbitrary finite set C ⊆ X . Denote by d(C) := min(a,b)∈C×C,a ̸=b ||a− b||. We now consider two cases:
a) d(C) < ϵ and b) d(C) ≥ ϵ, and show that our conclusion holds for both cases.

Case a): d(C) < ϵ. Denote by (x1, x2) = argmin(a,b)∈C×C,a ̸=b ||a − b||. We can select D such that D({(x1, 1)}) =
p
2 ,D({(x1,−1)}) = (1−p)

2 and D({(x2,−1)}) = p
2 ,D({(x2,−1)}) = 1−p

2 , where 4p(1 − p) = σ2, p > 1/2. Consider
an L-Lipschitz learning algorithm A(S) : C → R:

ES∼Dn [LD(A(S))]

≥ min
S∼Dn

[
p

2
(A(S)(x1)− 1)2 +

1− p

2
(A(S)(x1) + 1)2 +

p

2
(A(S)(x2) + 1)2 +

1− p

2
(A(S)(x2)− 1)2

]
≥ min

S∼Dn
[1− (2p− 1)|A(S)(x1)−A(S)(x2)|]

≥ 1− L(2p− 1)||x1 − x2||
≥ 1− L · d(C)
= 1− Lϵ

≥ 1

2
− Lϵ+ σ2.

Case b): d(C) ≥ ϵ. We reduce the regression problem from a binary classification problem with target {−1, 1} by
considering the distribution D such that D only on X × {−1, 1}. Then by ??, for every A(S) : X → R and every C ⊆ X
there exists D such that

n <
|C|
2

⇒ ES∼Dn [LD(A(S))] ≥ 1 + σ2

2
.

Notice that C ⊆ X can be chosen arbitrarily. Thus we have

n < max
C⊆X ,d(C)≥ϵ

|C|
2

⇒ ES∼Dn [LD(A(S))] ≥ 1 + σ2

2
.

Denote the ϵ-packing number of space (X , || · ||) by M(X , ϵ, || · ||). We have

max
C⊆X ,d(C)≥ϵ

|C|
2

= M(X , ϵ, || · ||)/2.
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That is,

n < M(X , ϵ, || · ||)/2 ⇒ ES∼Dn [LD(A(S))] ≥ 1 + σ2

2
≥ 1

4
+ σ2.

Combining a) and b) yields our conclusion.

A.11. Proof of Theorem 4.3

Proof. Consider X = {x ∈ Rd : ||x|| ≤ 1}. We have M(X , η, || · ||) ≥
(

1
η

)d
and thus there exists a distribution D such

that if σ2 ≤ 0.5

n <
1

2

(
1

η

)d

⇒ n < M(X , η, || · ||)/2 ⇒ ES∼Dn [LD(A(S))] ≥ min

{
1

4
,
1

2
− Lη

}
+ σ2.

Taking η = 1/2−ϵ
L where ϵ ∈ (0, 1/2), we have

n <
1

2

(
2L

1− 2ϵ

)d

⇒ ES∼Dn [LD(A(S))] ≥ min

{
1

4
, ϵ

}
+ σ2.

Thus in the worst case, n has to be at least exp(Ω(d)) if one wants to achieve good astuteness by any O(1)-Lipschitz
learning algorithm, this completes our proof.

B. Some basic concepts of Rademacher complexity
Definition B.1 (Representativeness of S).

RepD(l,F , S) := sup
f∈F

(LD(f)− LS(f)).

Definition B.2 (Rademacher complexity). For A ∈ Rn,

R(A) :=
1

n
Eσ1,...,σn∈{−1,1}

[
sup
f∈F

n∑
i=1

σiai

]
.

Lemma B.3. Assume that ∀f ∈ F ,∀x ∈ X , |l(f, x)| ≤ c. Then with probability at least 1− δ, for all f ∈ F ,

LD(f)− LS(f) ≤ ES∈Dn [RepD(l,F , S)] + c

√
2 ln(2/δ)

n
.

Lemma B.4 (Lemma 26.2 in Shalev-Shwartz & Ben-David (2014)).

ES∈Dn [RepD(l,F , S)] ≤ 2ES∈Dn [R(l ◦ F ◦ S)],

where S = {x1, ..., xn} and l ◦ F ◦ S = {(l(f, x1, y1), ..., l(f, xn, yn)) ∈ Rn}.

Lemma B.5 (Theorem 26.5 in Shalev-Shwartz & Ben-David (2014)). Assume ∀f ∈ F ,∀x ∈ X , |l(f, x)| ≤ a, then with
probability at least 1− δ, for all f ∈ F ,

LD(f)− LS(f) ≤ 2ES′∈Dn [R(l ◦ F ◦ S′)] + a

√
2 ln(2/δ)

n
.

Lemma B.6 (Lemma 26.9 in Shalev-Shwartz & Ben-David (2014)). If l(f(x), y) is C||·||-Lipschitz w.r.t. f(x) for arbitrary
y ∈ [−1, 1],

R(l ◦ F ◦ S) ≤ C ·R(F ◦ S).


