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Robust, Secure and Trustworthy functioning of machine
learning is the foundation of autopilot systems and AI-
landing problems.



What causes adversarial examples?
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Input Space Deep Neural Network ! Feature Space

Adversarial reachable 
region △ # (not necessarily   
ℓ% small ball)

min
),+

,-,.~01Adversarial Training:

Gradient 
Ascent

Gradient 
Descent

max
-4∈△ -

Loss(ℎ(; #< ), y) 

ℎ

Reachable region

labelinstance



What causes adversarial examples?
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Input Space Deep Neural Network ! Feature Space

No guarantee to get 
its global optimality

(Empirical Defense)

ℎ

Certified Defense: provide certification about its optimality via smoothing

min
),+

,-,.~01Adversarial Training:

Gradient 
Ascent

max
-4∈△ -

Loss(ℎ(; #< ), y) 

How to test robustness 
on #?@A? as an adversary: max

-4∈△ -BCDB

Loss(ℎ(; #< ), y?@A?) 

Gradient 
Descent

Reachable region

Adversarial reachable 
region △ # (not necessarily   
ℓ% small ball)

labelinstance



9

Paradigms

Applications

Adversarial 
Defenses

Overview of This Talk

Empirical Defense Certified Defense

Norm-Bounded 
Adversarial Example Hardness Result

Robustness

Adversarial Example Random Noise Mixed Random/Adversarial 
Corruption

Positive Result
Unrestricted 
Adversarial 

Example

Part I: Empirical Defense --- TRADES
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EFGH ; := ,-,.~01{∃#
< ∈△ (#)	s. t. 	; #< Q ≤ 0}

EUVW ; := ,-,.~01{; # Q ≤ 0}

• An example of trade-off (for norm-bounded threat model when △ # = X%(#, Y)):

= Pr	(Q = +1|#)

#~Uniform[0,1]

Trade-off between Robustness and Accuracy

Bayes Optimal Classifier

EUVW ; 0 (minimal EUVW)

EFGH ; 1

Q ∈ {+1,−1}, classifier ;:c → ℝ

0 1

+1 class −1 class

#

Indicator function
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Computationally, weighted average 
EUVW ! + Efgh(!)/j is non-differentiable.

Solution: minimize min
+
EUVW ; + EFGH(;)/k 

Trade-off between Robustness and Accuracy

0 1

Bayes Optimal Classifier All +1 Classifier

EUVW ; 0 (minimal EUVW) 1/2

EFGH ; 1 1/2 (minimal EFGH)

• An example of trade-off (for norm-bounded threat model when △ # = X%(#, Y)):

+1 class −1 class

EFGH ; := ,-,.~01{∃#
< ∈△ (#)	s. t. 	; #< Q ≤ 0}

EUVW ; := ,-,.~01{; # Q ≤ 0}

Q ∈ {+1,−1}, classifier ;:c → ℝ

= Pr	(Q = +1|#)

#~Uniform[0,1]

#

Indicator function
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[Bartlett et al.’06] Convexity, Classification, and Risk Bounds, Journal of the American Statistical Association, 2006

El ; := ,-,.~0m(; # Q)
[Bartlett et al.’06]

approximate

Classification-Calibrated Surrogate Loss
EFGH ; := ,-,.~01{∃#

< ∈△ (#)	s. t. 	; #< Q ≤ 0}

Can we design a differentiable surrogate loss for the trade-off?
EUVW ; := ,-,.~01{; # Q ≤ 0}

n
m
(
n
)
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minimize difference between ;(#) and Q for accuracy

min
+
[,-,.~0 m ; # Q + ,-,.~0 max

-<∈△(-)
m ; # ; #< /k ]

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

Our Methodology --- TRADES



min
+
,m ; # Q min

+
[,m ; # Q + , max

-<∈∆(-)
m ; # ; #< /k ]
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minimize difference between ;(#) and ;(#′) for robustness

Our Methodology --- TRADES

Gradient Ascent
Replace 0 with 
0U and do ERM

min
+
[,-,.~0 m ; # Q + ,-,.~0 max

-<∈△(-)
m ; # ; #< /k ]

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
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TRADES Loss(;):

Our Methodology --- TRADES

min
+
[,-,.~0 m ; # Q + ,-,.~0 max

-<∈△(-)
m ; # ; #< /k ]

Gradient Ascent

min
+
,m ; # Q min

+
[,m ; # Q + , max

-<∈∆(-)
m ; # ; #< /k ]

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
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Theorem	1	(Informal,	upper	bound,	Zhang	et	al.’19):

For any distribution 0, ;, ∆(#) and k > 0, we have EFGH ; − EUVW
∗ ≤ TRADES	Loss ; −	El

∗ .
q EUVW

∗ : minimal value of EUVW ; over all classifiers ;
q El

∗ : minimal value of El ; := ,-,.~0m ; # Q 	over all classifiers ;
q m: classification-calibrated surrogate loss

Theoretical Results

TRADES Loss(;):

min
+
[,-,.~0 m ; # Q + ,-,.~0 max

-<∈△(-)
m ; # ; #< /k ]

min
+
,m ; # Q min

+
[,m ; # Q + , max

-<∈∆(-)
m ; # ; #< /k ]

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
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Theorem	2	(Informal,	lower	bound,	Zhang	et	al.’19):

For any ∆(#), there exist a data distribution 0, a classifier ;, and an k > 0 such that
EFGH ; − EUVW

∗ ≥ TRADES	Loss(;) −	El
∗ .

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

Theorem	1	(Informal,	upper	bound,	Zhang	et	al.’19):

For any distribution 0, ;, ∆(#) and k > 0, we have EFGH ; − EUVW
∗ ≤ TRADES	Loss ; −	El

∗ .
q EUVW

∗ : minimal value of EUVW ; over all classifiers ;
q El

∗ : minimal value of El ; := ,-,.~0m ; # Q 	over all classifiers ;
q m: classification-calibrated surrogate loss

Theoretical Results



Experiments --- CIFAR10 with 8-intensity level attacks
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min
+
, max
-<∈X(-,z)

m ; #′ Q

min
+
[,m ; # Q + , max

-<∈X(-,z)
m ; # ; #< /k ]

(by Madry et al.)

(ours)

Natural 
Accuracy

Robust
Accuracy
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Significant Experimental Results via Case Study
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• 400+ teams, ~3,000 submissions
• ImageNet dataset
• Model Track and Attack Track
• Participants in the two tracks play 

against each other

• Evaluation criterion

Case Study I: NeurIPS’18 Adversarial Vision Challenge
Ranking



1st out of 400 teams and 3,000 submissions from academia and industry
such as Tsinghua Univ, LG, EPFL, Google, Gatech …

21

Case Study I: NeurIPS’18 Adversarial Vision Challenge

y-axis: mean ℓ{
perturbation distance 
to let a classifier 
make a mistake
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Case Study II: Unrestricted Adversarial Examples Challenge
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The class 
of bicycle

The class 
of bird

Case Study II: Unrestricted Adversarial Examples Challenge
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min
+
[,m ; # Q + , max

-<∈△(-)
m ; # ; #< /k ]

Choose the adversarial 
reachable region as the union 
of these threat models

Our methodology:

Case Study II: Unrestricted Adversarial Examples Challenge
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Clean 
image:

Case Study II: Unrestricted Adversarial Examples Challenge
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Clean 
image:

Corrupted
image:

Case Study II: Unrestricted Adversarial Examples Challenge
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Clean 
image:

Corrupted
image:

Case Study II: Unrestricted Adversarial Examples Challenge
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Clean 
image:

Corrupted
image:

Case Study II: Unrestricted Adversarial Examples Challenge
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Clean 
image:

Corrupted
image:

Case Study II: Unrestricted Adversarial Examples Challenge

Adversarial 
example around the 
decision boundary
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The class 
of bicycle

The class 
of bird

Interpretability of TRADES --- Adversarial Examples by Boundary Attack
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Jan. 2019

TRADES

Significant Impact of TRADES
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Jan. 2019

TRADES

April 2019

Acceleration

• Achieved 30x speed-up on ImageNet, almost as fast as natural training

Univ. of Maryland
Peking University
(2 concurrent works)

Significant Impact of TRADES
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Jan. 2019

TRADES

April 2019

Acceleration Semi-Supervision

• TRADES + 500K extra unlabeled data can improve robust accuracy by +5% on CIFAR10

June 2019
Univ. of Maryland
Peking University
(2 concurrent works)

Stanford
DeepMind

Peking University
(3 concurrent works)

Significant Impact of TRADES
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Jan. 2019

TRADES

April 2019 June 2019

Acceleration Semi-Supervision

Dec. 2019

NLP Champion

• Won 1st place in  (on Dec. 9th, 2019), beating largest NLP T5 model of 11 billion parameters

Univ. of Maryland
Peking University
(2 concurrent works)

GaTech, MicrosoftStanford
DeepMind

Peking University
(3 concurrent works)

Significant Impact of TRADES

[Jiang et al.’20] SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization, ACL 2020
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Jan. 2019

TRADES

April 2019

Acceleration Semi-Supervision

Dec. 2019

NLP Champion

Sep. 2020

Hyper-Parameters

DeepMind
Tsinghua University
(2 concurrent works)

• Hyper-parameter tuning of TRADES can further improve robust accuracy by 5% on CIFAR-10

June 2019
Univ. of Maryland
Peking University
(2 concurrent works)

GaTech, MicrosoftStanford
DeepMind

Peking University
(3 concurrent works)

Significant Impact of TRADES



Significant Impact of TRADES

DeepMind
Tsinghua University
(2 concurrent works)

Univ. of Maryland
Peking University
(2 concurrent works)

GaTech, MicrosoftStanford
DeepMind

Peking University
(3 concurrent works)

June 2019
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Jan. 2019

TRADES

April 2019

Acceleration Semi-Supervision

Dec. 2019

NLP Champion

Oct. 2020

Benchmark

Sep. 2020

Hyper-Parameters

Univ. of Tubingen
EPFL, Princeton

5 out of top 5 and 9 out of top 10 methods use TRADES 
as their training algorithms.



Significant Impact of TRADES (based on Our CIFAR Challenge)
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Attack Submitted by Attack Model Robust Acc Time

PGD-20 (initial entry) ℓ|,	8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) ℓ|,	8 intensity 56.43% Jan 24, 2019

*Powered by TRADES CIFAR-10 Challenge on

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.’19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurIPS 2020.

• TRADES motivates new attacks:
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Attack Submitted by Attack Model Robust Acc Time

PGD-20 (initial entry) ℓ|,	8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) ℓ|,	8 intensity 56.43% Jan 24, 2019
fab-attack U. of Tubingen ℓ|,	8 intensity 53.44% Jun 7, 2019

*Powered by TRADES CIFAR-10 Challenge on

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.’19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurIPS 2020.

• TRADES motivates new attacks:

Significant Impact of TRADES (based on Our CIFAR Challenge)
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Attack Submitted by Attack Model Robust Acc Time

PGD-20 (initial entry) ℓ|,	8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) ℓ|,	8 intensity 56.43% Jan 24, 2019
fab-attack U. of Tubingen ℓ|,	8 intensity 53.44% Jun 7, 2019

MultiTargeted DeepMind ℓ|,	8 intensity 53.07% Oct 31, 2019

• TRADES motivates new attacks:
*Powered by TRADES CIFAR-10 Challenge on

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.’19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurIPS 2020.

Significant Impact of TRADES (based on Our CIFAR Challenge)
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Attack Submitted by Attack Model Robust Acc Time
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[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
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Attack Submitted by Attack Model Robust Acc Time

PGD-20 (initial entry) ℓ|,	8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) ℓ|,	8 intensity 56.43% Jan 24, 2019
fab-attack U. of Tubingen ℓ|,	8 intensity 53.44% Jun 7, 2019

MultiTargeted DeepMind ℓ|,	8 intensity 53.07% Oct 31, 2019
ODI-PGD Stanford ℓ|,	8 intensity 53.01% Feb 16, 2020

CAA Xiaofeng Mao ℓ|,	8 intensity 52.94% Dec 14, 2020
EWR-PGD Ye Liu ℓ|,	8 intensity 52.92% Dec 20, 2020

*Powered by TRADES CIFAR-10 Challenge on

… … Can we give a certified lower bound for the robust acc.?

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.’19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurIPS 2020.

• TRADES motivates new attacks:

Significant Impact of TRADES (based on Our CIFAR Challenge)
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Random Smoothing --- A wrapper to robustify base classifier

Base Classifier
;(#)

Smoothed Classifier
} # = argmax

.

ℙÄ	 [; # + Å = Q]

[Cohen et al.’19] Certified Adversarial Robustness via Randomized Smoothing, ICML 2019.
[Lecuyer et al.’19] Certified Robustness to Adversarial Examples with Differential Privacy, S&P 2019.
[Li et al.’19] Certified Adversarial Robustness with Additive Noise, NeurIPS 2019.

smoothing

Data point #

Output majority 
vote:

Randomly perturbed 
data point # + Å

Proposed by 
[Cohen et al.’19], 
[Lecuyer et al.’19], 
[Li et al.’19] 

Given any input # ∈ ℝÇ, let Å be Gaussian noise É(0, Ñ{Ö) and Ü = max
.
ℙÄ[; # + Å = Q]	. Then 

} # = }(# + á) for any á such that á | ≤ Φâä(Ü)Ñ/ ã
� , where Φ is CDF of standard Gaussian.

Certified	robust	radius	by	[Cohen	et	al.’19]:
Confidence of majority vote



Classifier }(#) is certifiably correct for #:
1. certified radius > adv budget
2. classifier }(#) is correct for #

Given any input # ∈ ℝÇ, let Å be Gaussian noise É(0, Ñ{Ö) and Ü = max
.
ℙÄ[; # + Å = Q]	. Then 

} # = }(# + á) for any á such that á | ≤ Φâä(Ü)Ñ/ ã
� , where Φ is CDF of standard Gaussian.
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Our Experiments on Random Smoothing
Certified	robust	radius	by	[Cohen	et	al.’19]:

Smoothed Classifier
} # = argmax

.

ℙÄ	 [; # + Å = Q]

Adversarial 
budget

Certified 
radius

Computable certified 
radius for #

#

Confidence of majority vote



Given any input # ∈ ℝÇ, let Å be Gaussian noise É(0, Ñ{Ö) and Ü = max
.
ℙÄ[; # + Å = Q]	. Then 

} # = }(# + á) for any á such that á | ≤ Φâä(Ü)Ñ/ ã
� , where Φ is CDF of standard Gaussian.
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Certified	robust	radius	by	[Cohen	et	al.’19]:

Computable certified 
radius for #

Our Experiments on Random Smoothing

8/255 Certified Robust Acc.
~10% (for random smoothing on all base classifiers)

Confidence of majority vote



Computable certified 
radius for #
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8/255 Certified Robust Acc.
~10% (for random smoothing on all base classifiers)

Given any input # ∈ ℝÇ, let Å be Gaussian noise É(0, Ñ{Ö) and Ü = max
.
ℙÄ[; # + Å = Q]	. Then 

} # = }(# + á) for any á such that á | ≤ Φâä(Ü)Ñ/ ã
� , where Φ is CDF of standard Gaussian.

Certified	robust	radius	by	[Cohen	et	al.’19]:

Our Experiments on Random Smoothing

Confidence of majority vote
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Given any input # ∈ ℝÇ, let Å be Gaussian noise É(0, Ñ{Ö) and Ü = max
.
ℙÄ[; # + Å = Q]	. Then 

} # = }(# + á) for any á such that á | ≤ Φâä(Ü)Ñ/ ã
� , where Φ is CDF of standard Gaussian.

Certified	robust	radius	by	[Cohen	et	al.’19]:

Computable certified 
radius for #

Random Smoothing with dimension-independent ℓ| radius?

Can we improve the ç/ é
� dependence by looking at 

other noise distributions or is it inevitable? Why?

Confidence of majority vote
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Our Hardness Result concerning Random Smoothing

Theorem	1 (Our	hardness	result,	JMLR’20):

Given any input #, let Å be noise from any distribution with variance of Åè being Ñè{. If 
} # = }(# + á) for any á such that á | ≤ Y, then Y < ë%Ñè/ ã

� for 99% entries í.

[Blum, Dick, Manoj, Zhang (ì-î)’20] Random Smoothing Might be Unable to Certify ℓ| Robustness, JMLR 2020

Given any input # ∈ ℝÇ, let Å be Gaussian noise É(0, Ñ{Ö) and Ü = max
.
ℙÄ[; # + Å = Q]	. Then 

} # = }(# + á) for any á such that á | ≤ Φâä(Ü)Ñ/ ã
� , where Φ is CDF of standard Gaussian.

Certified	robust	radius	by	[Cohen	et	al.’19]:
Confidence of majority vote
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Intuition behind the Hardness Result

#

# + á# + á′
Yã

Reasonable question: why	Y < ë%Ñè/ ã
� is inevitable?

Y

Pythagorean 
Theorem

Step 1: ã-dimensional case

[Blum, Dick, Manoj, Zhang (ì-î)’20] Random Smoothing Might be Unable to Certify ℓ| Robustness, JMLR 2020

Projecting Å onto direction of á, 
the std of projected noise > ë%Y ã

�

Theorem	1 (Our	hardness	result,	JMLR’20):

Given any input #, let Å be noise from any distribution with variance of Åè being Ñè{. If 
} # = }(# + á) for any á such that á | ≤ Y, then Y < ë%Ñè/ ã

� for 99% entries í.

, Å {
{ > ë%Y

{ã{

ïñ
ó > ë%Y

{ã∃í,

,
Åòá

á {

 
{

�

Projecting Å onto direction of á′, 
the std of projected noise > ë%Y ã

�

,
Åòá′

á′ {

 
{

�

ïé
ó… …ïô

ó
ïó
ó

ïö
ó+ + + + =

by def.
ã such entries

Key intuition: The magnitude (std) of random noise 
in the direction should overwhelm that of adv. 
perturbation to cancel out its effect
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Intuition behind the Hardness Result

Step 1: ã-dimensional case
Step 2: repeat Step 1 for (ã − 1)-dimensional case by projecting out dimension í

[Blum, Dick, Manoj, Zhang (ì-î)’20] Random Smoothing Might be Unable to Certify ℓ| Robustness, JMLR 2020

Theorem	1 (Our	hardness	result,	JMLR’20):

Given any input #, let Å be noise from any distribution with variance of Åè being Ñè{. If 
} # = }(# + á) for any á such that á | ≤ Y, then Y < ë%Ñè/ ã

� for 99% entries í.

#

# + á# + á′

Y ã
�

Y ã
�

Yã

Y

Pythagorean 
Theorem

,
Åòá′

á′ {

 
{

�

,
Åòá

á {

 
{

�

Projecting Å onto direction of á, 
the std of projected noise > ë%Y ã

�

Projecting Å onto direction of á′, 
the std of projected noise > ë%Y ã

�

Reasonable question: why	Y < ë%Ñè/ ã
� is inevitable?
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Intuition behind the Hardness Result

Step 1: ã-dimensional case
Step 2: repeat Step 1 for (ã − 1)-dimensional case by projecting out dimension í
Step 3: repeat Step 2 for (ã − 2)-dimensional case
… (repeat by 99%ã times)

[Blum, Dick, Manoj, Zhang (ì-î)’20] Random Smoothing Might be Unable to Certify ℓ| Robustness, JMLR 2020

Theorem	1 (Our	hardness	result,	JMLR’20):

Given any input #, let Å be noise from any distribution with variance of Åè being Ñè{. If 
} # = }(# + á) for any á such that á | ≤ Y, then Y < ë%Ñè/ ã

� for 99% entries í.

#

# + á# + á′

Y ã
�

Y ã
�

Yã

Y

Pythagorean 
Theorem

,
Åòá′

á′ {

 
{

�

,
Åòá

á {

 
{

�

Projecting Å onto direction of á, 
the std of projected noise > ë%Y ã

�

Projecting Å onto direction of á′, 
the std of projected noise > ë%Y ã

�

Reasonable question: why	Y < ë%Ñè/ ã
� is inevitable?
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Take-Home Message from the Hardness Result

q (Current version of) random smoothing might be unable to certify ℓ| robustness.

q The Ñè/ ã
� dependence in the certified radius stems from the fact that the length of 

adversarial perturbation can be as large as Y ã
� in the ℓ| ball.

[Blum, Dick, Manoj, Zhang (ì-î)’20] Random Smoothing Might be Unable to Certify ℓ| Robustness, JMLR 2020

Theorem	1 (Our	hardness	result,	JMLR’20):

Given any input #, let Å be noise from any distribution with variance of Åè being Ñè{. If 
} # = }(# + á) for any á such that á | ≤ Y, then Y < ë%Ñè/ ã

� for 99% entries í.

#

# + á# + á′

Y ã
�

Y ã
�

Yã

Y

Pythagorean 
Theorem

,
Åòá′

á′ {

 
{

�

,
Åòá

á {

 
{

�

q The hardness can be extended to other shapes beyond ℓ| ball. 

Projecting Å onto direction of á, 
the std of projected noise > ë%Y ã

�

Projecting Å onto direction of á′, 
the std of projected noise > ë%Y ã

�
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What’s next for robustness?
q Certified robustness requires thinking beyond random smoothing

q Major issue with curve fitting: training phase should “mimic” the test phase

min
+
[,m ; # Q + , max

û<∈△(-)
m ; # ; #< /k ]

Impossible to mimic 
ALL corruptions

Training Phase:

Out-of-distribution generalization (sample complexity) problem (ImageNet-C):
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What’s next for robustness?

q Expert system: inference engine, knowledge base, human interface

q Certified robustness requires thinking beyond random smoothing

q Major issue with curve fitting: training phase should “mimic” the test phase
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What’s next for robustness?
q Knowledge Base: a huge organized set of knowledge about a particular subject 

q Inference Engine: a set of rules on which to make decisions

q User Interface: human in the loop and human-computer interaction

Curve Fitting (e.g. TRADES)
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Fairness

Robustness Privacy

Trustworthy ML

Towards Trustworthy Machine Learning

random smoothing

Gaussian mechanism

trade-off between 
robustness and accuracy

trade-off between 
fairness and utility … …
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