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Small but carefully-crafted
adversarial perturbation

Adversarial
Perturbation Attack
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Robust, Secure and Trustworthy functioning of machine
learning is the foundation of autopilot systems and Al-
landing problems.



What causes adversarial examples?

Input Space Deep Neural Network f Feature Space

Reachable region ® @

Adversarial reachable Gradient Gradient instance  |gpel
region A (X) (not necessarily Descent Ascent e ~

€ small ball) Adversarial Training: .[Ex yNDn-LOSS(h(f(x’)):Y)



What causes adversarial examples?

Input Space

0.6 0.8 1.0

Deep Neural Network f Feature Space

Reachable region

® O
Adversarial reachable Gradient h Gradient instance  |gpel
region A (X) (not necessarily Descent Ascent e ~
¢, small ball) Loss(h(f(x’)),y)

Adversarial Training: E, y~DN
(Empirical Defense) ’

How to test robustness max  Loss(R(f(x"), Viest) No guarantee to get
ON Xiesr @S @N adversary: x’ea(xrest) »Jtest/ s global optimality

Certified Defense: provide certification about its optimality via smoothing
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A standardized benchmark for adversarial robustness



Trade-off between Robustness and Accuracy

R,op(f):= IEx,y@ch’ eEA (x)s.t. f(x")y <0} y € {+1,—1}, classifier f: X - R
Indicator function
Ruat(f): = Exy-p1{f (x)y < 0}
 An example of trade-off (for norm-bounded threat model when A (x) = B, (x, €)):

n(x)A= Pr(y = +1|x)
1

1/2[ Bayes Optimal Classifier
Rnae (f) 0 (minimal Ryq¢)
J = = T Rron (f) 1
x~Uniform[0,1]
m—— 1+ class m— —1 class
— — — —



Trade-off between Robustness and Accuracy

R,op(f):= IEx,yq)ch’ eEA (x)s.t. f(x")y <0} y € {+1,—1}, classifier f: X - R
Indicator function
Ruat(f): = Exy~p1{f (x)y < 0}
 An example of trade-off (for norm-bounded threat model when A (x) = B, (x, €)):

n@i= Pr(y = +1|x)
1

1721 All +1 Classifier
Ryat (f) 1/2
m— — —>x Rron(f) 1/2 (minimal R,.,,)
0 £ & 1
x~Uniform[0,1]
1 class — —1 class Solution: minimize mfin Roait(f) + Rrop () /A

Computationally, weighted average

R,..:(f) + R.op(f)/A is non-differentiable.




Classification-Calibrated Surrogate Loss

Rrob(f): — IEx,y~D1{E|x, €A (x) s. L. f(x’)y = O}
Can we design a differentiable surrogate loss for the trade-off?

Rnae(f):= IEx,y~D1{f(x)y <0} < [Bartlett et al.’06] Ry (f): = IEx,y~D¢(f(x)y)

approximate

— 0-1
.- exponential

. \
© x.\ \‘\ O, Iogistic
N . -—-—-- truncated quadratic

b (t)

-2 -1 0 1 2

[Bartlett et al.’06] Convexity, Classification, and Risk Bounds, Journal of the American Statistical Association, 2006
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Our Methodology --- TRADES

minimize difference betwegn f(x) and y for accuracy
[ |

mjjn[IEx,y~1) d(f(x)y) + Eyyp x,rgf(); ) d(f ) f (x) /D]

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019



Our Methodology --- TRADES

minimize difference between f(x)and f (x’) for robustness

¢(f()f (x’)//l)]

Gradient Ascent

1.0 0.0
mmIE¢(f (x)y) mfm[IE ¢(f(x)y) +IE nax ¢(f(x)f(x’)//’1)
[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’ 19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019

m1n xy~p P(f (xX)y) + [Ex y~D

Replace D with /

D™ and do ERM




Our Methodology --- TRADES

TRADES Loss(f):
min[E,.y - $( () + By AKX §(COf /)]

Gradient Ascent

1.0 0.0
mm E ¢(f (x)y) mfm[IE o(f (x)y) + E nax ¢(f () f (x") /)]
[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’ 19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019




Theoretical Results

Theorem 1 (Informal, upper bound, Zhang et al.’19):

For any distribution D, f, A(x) and 4 > 0, we have R;,,(f) — Rpqt < TRADES Loss(f) — Ry

d Ry ,;: minimal value of R,,,;(f) over all classifiers f
d Ry: minimal value of Ry (f): = Ey ,.p¢(f(x)y) over all classifiers f

O ¢: classification-calibrated surrogate loss

TRADES Loss(f):

minE.yp (fCI) + By max $(f )/ )]

XIEA(X)

1.0
0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0

mfin E¢(f(x)y) rnfin[IE ¢(f(x)y) + E onax d(f () f(x")/ )]
[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019




Theoretical Results

Theorem 1 (Informal, upper bound, Zhang et al.’19):
For any distribution D, f, A(x) and 41 > 0, we have R;,,(f) — Rpqt < TRADES Loss(f) — Ry

nat
d Ry ,;: minimal value of R,,,;(f) over all classifiers f

d Ry: minimal value of Ry (f): = Ey ,.p¢(f(x)y) over all classifiers f
O ¢: classification-calibrated surrogate loss

Theorem 2 (Informal, lower bound, Zhang et al.19):

For any A(x), there exist a data distribution D, a classifier f, and an A > 0 such that
Ryop(f) — Rpgt = TRADES Loss(f) — Ry.

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
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Experiments --- CIFAR10 with 8-intensity level attacks

Natural Robust
Accuracy Accuracy

Defense | Defense type | Under which attack | Dataset | Distance | Auac(f) | Aron(f)
Buckman et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 (/) - 0%
Ma et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 ({/~) - 5%
Dhillon et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 (/) - 0%
Song et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 ({/~) - 9%
Na et al. (2017) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.015 (/) - 15%

Wong et al. (2018) robust opt. FGSM?° (PGD) CIFARI10 | 0.031 (/) | 27.07% | 23.54%

| Madry etal. (2018) robust opt. FGSM?" (PGD) CIFARI10 | 0.031 (/) | 87.30% | 47.04% |
min E max qb(f(x )y) (by Madry et al.)
f x1€EB(x,e
TRADES (1/A = 1.0) regularization FGSM?° (PGD) CIFARI10 | 0.031 (/o) | 88.64% | 49.14%
TRADES (1/\ = 6.0) regularization | FGSM?® (PGD) | CIFARI10 | 0.031 (/) | 84.92% | 56.61%
mln[IE ¢(f()y) +E max ¢(f (x)f(x")/A)] (ours)

TRADES (1/\ = 6.0) regularlzatlon LBFGSAttack CIFARIO O 031 (600) 84.92% 81.58%

TRADES (1/A = 1.0) regularization MI-FGSM CIFARI10 | 0.031 (/) | 88.64% | 51.26%

TRADES (1/\ = 6.0) regularization MI-FGSM CIFARIO | 0.031 (/) | 84.92% | 57.95%

TRADES (1/A = 1.0) regularization C&W CIFARIO | 0.031 (/s) | 88.64% | 84.03%

TRADES (1/A = 6.0) regularization C&W CIFARI10 | 0.031 ({s) | 84.92% | 81.24%
Samangouei et al. (2018) || gradient mask | Athalye et al. (2018) | MNIST 0.005 (¢2) - 55%

Madry et al. (2018) robust opt. FGSM*’ (PGD) MNIST 0.3(/s) | 99.36% | 96.01%

TRADES (1/\ = 6.0) regularization | FGSM*’ (PGD) MNIST | 0.3 ({s) | 99.48% | 96.07%

TRADES (1/A = 6.0) regularization C&W MNIST 0.005 () | 99.48% | 99.46%







Model
Track

Wintargeted
Attack

 Evaluation criterion

400+ teams, ~3,000 submissions

* ImageNet dataset

 Model Track and Attack Track

« Participants in the two tracks play
against each other



Case Study |: NeurlPS’'18 Adversarial Vision Challenge

2.5
Model

Track 2

y-axis: mean ¥, 1.5

perturbation distance
to let a classifier
make a mistake 1

0.5

¢ Final Result

1st (TRADES”

2nd 3rd 4th S5th 6th



Case Study ll: Unrestricted Adversarial Examples Challenge

Go0Q%

Unrestricted Adversarial Examples Challenge

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are
expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean,
unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are
currently accepting defenses for the warm-up.

Warm-up & Contest Timeline

warm-up warm-up attacks contest begins & defenses contestant claims
begins are soundly beaten are evaluated each week defender prize

Za

current status



Case Study lI: Unrestricted Adversarial Examples Challenge

The class
of bicycle

The class
of bird
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Case Study ll: Unrestricted Adversarial Examples Challenge

O

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADES

Google
Brain

Google
Brain

Our methodology:
min[E ¢ (f ()y) + E max, ¢(f (f ()/A)]

Clean
data

100.0%

100.0%

98.8%

Common
corruptions

100.0%

99.2%

74.6%

Spatial
grid
attack

99.5%

92.2%

49.5%

SPSA
attack

100.0%

1.6%

2.5%

Choose the adversarial
reachable region as the union
of these threat models

Boundary = Submission

attack Date
sou
4.0% 2;:; 29th,
8.0% gg:;St'



Case Study ll: Unrestricted Adversarial Examples Challenge

O

Spatial
Defense Submitted Clean Common priclj SPSA Boundary = Submission
by data corruptions 9 attack attack Date
attack
Pytorch ResNet50 Jan 17th
(trained on bird-or- TRADES 100.0%  100.0% 99.5% 100.0%  95.0% 2019 (ES’T)
bicycle extras)
Keras ResNet
Googl Sept 29th,
(trained on e 100.0%  99.2% 92.2% 16%  4.0% i
Brain 2018
ImageNet)
Pytorch ResNet
Google Oct 1st,
(trained on bird-or- .g 98.8% 74.6% 49.5% 2.5% 8.0%
Brain 2018

bicycle extras)
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Case Study Il: Unrestricted Adversarial Examples Challenge

O

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Corrupted
image:
. Spatial .
Submitted Clean Common rid SPSA Boundary = Submission
by data corruptions 9 attack attack Date
attack
Jan 17th
TRADES 100.0%  100.0% 99.5% 100.0%  95.0% '
2019 (EST)
Google o o o o o Sept 29th,
Brain 100.0% 99.2% 92.2% 1.6% 4.0% 2018
Google o o o o o Oct 1st,
Brain 98.8% 74.6% 49.5% 2.5% 8.0% 2018



Case Study II: Unrestricted Adversarial Examples Challenge

Clean Corrupted
G \e image: image:
. Spatial .
Defense Submitted Clean Common rid SPSA Boundary = Submission
by data corruptions 9 attack attack Date
attack
Pytorch ResNet50 Jan 17th
(trained on bird-or- TRADES 100.0%  100.0% 99.5% 100.0%  95.0% '
) 2019 (EST)
bicycle extras)
Keras ResNet
Googl Sept 29th,
(trained on el 100.0%  99.2% 92.2% 16%  4.0% i
Brain 2018
ImageNet)
Pytorch ResNet
Googl Oct 1st,
(trained on bird-or- - o9¢ 98.8%  74.6% 49.5% 25%  80% s
Brain 2018

bicycle extras)



Case Study Il: Unrestricted Adversarial Examples Challenge

O

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADES

Google
Brain

Google
Brain

Clean
data

100.0%

100.0%

98.8%

Common
corruptions

100.0%

99.2%

74.6%

Corrupted
image:

tial
Sp:;\iclla SPSA Boundary = Submission
9 attack attack Date
attack

Jan 17th
99.5% 100.0%  95.0% '
2019 (EST)
Sept 29th,
2.2% 1.6% 4.0%
9 - < 2018
Oct 1st
49.5% 2.5% 0% !
9.5 5 8.0 2018
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Case Study Il: Unrestricted Adversarial Examples Challenge

O

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADES

Google
Brain

Google
Brain

100.0%

100.0%

98.8%

Common
corruptions

100.0%

99.2%

74.6%

Corrupted
image:

Adversarial / R

example around the
decision boundary

Sp?:cllal SPSA Boundar Submission
9 attack attack Date
attack

Jan 17th
99.5% 100.0%  95.0% '
2019 (EST)
Sept 29th,
2.2% 1.6% 4.0%
9 - < 2018
Oct 1st
49.5% 2.5% 0% !
9.5 5 8.0 2018



Interpretability of TRADES --- Adversarial Examples by Boundary Attack

The class
of bicycle

The class
of bird
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A standardized benchmark for adversarial robustness



Significant Impact of TRADES

‘Theore

lly Principled Trade-off between Robusts

and Accuracy

Hongyang Zhang'* Yaodong ¥u' Jiantao Jiao' Eric P Xing* Laurent EI Ghaoui ! Michael I. Jordan"

Abstract
‘We denify a rade-off between robustness and
accuracy that serves . guiding principl in the
design of defenses agains adversarial examples.

vide a diffreniabl uppe bound using the theory
of clssifcaton-calibeated loss, which s shown o

blocks for a range of security-critical systems and appli-
i ‘awtonomous cars and nition
authorization. The problem of adversaria defenses can be
Sated s thatofIeaming  clasiir with high test accuracy
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exampie for a given labeled data (z. ) i a data point 2'

that causes  classife o output a diferent label on 2/ than
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L 01s: 1. 2018:

al probabilty disributions and measurable pre-
dictors. Inspi we
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of mean £ perturbation disance.
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bution (Tsipras et al., 2019). This hs led 0 an empirical
linn o sk i adveesarial dafran thas mceervatos vt

TRADES

Jan. 2019



Significant Impact of TRADES

‘Theoretically Principled Trade-off between Robustnes

and Accuracy

Hongyang Zhang'* Yaodong ¥u' Jiantao Jiao' Eric P Xing* Laurent EI Ghaoui ! Michael I. Jordan"

Abstract
‘We denify a rade-off between robustness and

urscy that serves a a guiding priciple in the
design of defenses agains adversarial examples.
Although this problem has becn widely studicd
empiricaly, much remains unknown concerning.

vide a diffreniabl upper bound using the theor
of clssifcaton-calibeated loss, which s shown o

blocks for a range of security-critical systems and appli-

exampie for a given labeled data (z. ) i a data point 2'
that causes  classife o output a diferent label on 2/ than
. butis “imperceptibly similar”t . Given the diffculty
of providing an opeational definion o “mpercepibie sim-
ilaity.” adversarial examples typically come in the form of
resrcted attacks soch as -bounded perturbations (S7cgedy
etal, 2013),or unmestricted atacks such as adversarial o-
ations, ransatons, and deformations (Brown et L., 2015:
E L o

al probabilty disributions and measurable pre-
dictors. Inspired by our theoretical analysis, we.
also design a new defense method. TRADES, to

1. 2018:
Alaifar tal 019: Zhang el 2019, The focus of this
work is the former seting. though our framework can be

the foundation of our ety 1 the NeurlPS 2018
Adversaial Vision Challenge in which we won
the It lace out of -2

ing the unncr-up approach by 11.41% in terms
of mean £ perturbation disance.
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TRADES

Acceleration

Jan. 2019

« Achieved 30x speed-up on ImageNet, almost as fast as natural training

April 2019
Univ. of Maryland
Peking University
(2 concurrent works)



Significant Impact of TRADES

‘Theoretically Principled Trade-off between Robustness and Accuracy

TRADES Acceleration  Semi-Supervision
I I I
| | | >
Jan. 2019 April 2019 June 2019
Univ. of Maryland Stanford

Peking University DeepMind
(2 concurrent works) Peking University
(3 concurrent works)

« TRADES + 500K extra unlabeled data can improve robust accuracy by +5% on CIFAR10



Significant Impact of TRADES

‘Theoretically Principled Trade- off between Robustness and Accuracy

*IGLUE

TRADES Acceleration  Semi-Supervision ~ NLP Champion
| | | |
| | | | >
Jan. 2019 April 2019 June 2019 Dec. 2019
Univ. of Maryland Stanford GaTech, Microsoft

Peking University DeepMind
(2 concurrent works) Peking University
(3 concurrent works)

« Won 1stplace in *I GLUE (on Dec. 9t, 2019), beating largest NLP T5 model of 11 billion parameters

Rank Name SST-2 MRPC STSB QQP MNLI-m MNLI.mm QNLI
+ 1 Microsoft D365 Al & MSR Al MT-DNN-SMART 8 89.9 695 975 93.7/91.6 929/925 73.9/90.2 91.0 908 992 897 945 502
2 T5Team - Google T5 C),' 89.7 708 971 91.9/89.2 925/921 746/90.4 92,0 917 967 925 932 531
3 ALBERT-Team Google LanguageALBERT (Ensemble) C),' 89.4 69.1 971 93.4/91.2 925/920 742/905 913 910 992 892 918 502

[Jiang et al.’20] SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization, ACL 2020



Significant Impact of TRADES

‘Theoretically Principled Trade-off between Robustness and Accuracy

Hyperparameter
Tuning

*IGLUE

G

TRADES Acceleration  Semi-Supervision NLP Champion Hyper-Parameters
I I I I I
| | | | | >
Jan. 2019 April 2019 June 2019 Dec. 2019 Sep. 2020
Univ. of Maryland Stanford GaTech, Microsoft DeepMind
Peking University DeepMind Tsinghua University
(2 concurrent works) Peking University (2 concurrent works)

(3 concurrent works)

* Hyper-parameter tuning of TRADES can further improve robust accuracy by 5% on CIFAR-10
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A standardized benchmark for adversarial robustness

5 out of top 5 and 9 out of top 10 methods use TRADES
as their training algorithms.
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Significant Impact of TRADES (based on Our CIFAR Challenge)

« TRADES motivates new attacks:
*Powered by TRADES CIFAR-10 Challenge on— ‘GitHub

Attack Submitted by | Attack Model | Robust Acc Time
PGD-20 (initial entry) ? -, 8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) £, 8 intensity 56.43% Jan 24, 2019

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.”19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.
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*Powered by TRADES CIFAR-10 Challenge on & GitHub

Attack Submitted by | Attack Model | Robust Acc Time

PGD-20 (initial entry) ? -, 8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) £, 8 intensity 56.43% Jan 24, 2019
fab-attack U. of Tubingen | ¢, 8 intensity 53.44% Jun 7, 2019

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.”19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.
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Significant Impact of TRADES (based on Our CIFAR Challenge)

« TRADES motivates new attacks:

“Powered by TRADES CIFAR-10 Challenge on GitHub

Attack Submitted by | Attack Model | Robust Acc Time
PGD-20 (initial entry) ? -, 8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) £, 8 intensity 56.43% Jan 24, 2019
fab-attack U. of Tubingen | ¢, 8 intensity 53.44% Jun 7, 2019
MultiTargeted DeepMind ? -, 8 intensity 53.07% Oct 31, 2019

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.”19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.
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Significant Impact of TRADES (based on Our CIFAR Challenge)

« TRADES motivates new attacks:
*Powered by TRADES CIFAR-10 Challenge on GitHub

Attack Submitted by | Attack Model | Robust Acc Time
PGD-20 (initial entry) ? -, 8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) £, 8 intensity 56.43% Jan 24, 2019
fab-attack U. of Tubingen | ¢, 8 intensity 53.44% Jun 7, 2019
MultiTargeted DeepMind ? -, 8 intensity 53.07% Oct 31, 2019
ODI-PGD Stanford ? -, 8 intensity 53.01% Feb 16, 2020

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.’19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.
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Significant Impact of TRADES (based on Our CIFAR Challenge)

« TRADES motivates new attacks:
*Powered by TRADES CIFAR-10 Challenge on GitHub

Attack Submitted by | Attack Model | Robust Acc Time
PGD-20 (initial entry) ? -, 8 intensity 56.61% Jan 24, 2019
PGD-1,000 (initial entry) £, 8 intensity 56.43% Jan 24, 2019
fab-attack U. of Tubingen | ¢, 8 intensity 53.44% Jun 7, 2019
MultiTargeted DeepMind ? -, 8 intensity 53.07% Oct 31, 2019
ODI-PGD Stanford ? -, 8 intensity 53.01% Feb 16, 2020
CAA Xiaofeng Mao | 4., 8 intensity 52.94% Dec 14, 2020
EWR-PGD Ye Liu ?, 8 intensity 52.92% Dec 20, 2020

...... Can we give a certified lower bound for the robust acc.?

[Croce et al.’20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al.’19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.






Random Smoothing -—- A wrapper to robustify base classifier

Certified robust radius by [Cohen et al.”19]:

Confidence of majority vote

Given any input x € R?, let n be Gaussian noise N'(0,0%I) and p = max P, [f(x + 1) = y] . Then
y
g(x) = g(x + &) for any & such that ||6]|, < @ 1(p)a/Vd, where @ is CDF of standard Gaussian.

Randomly perturbe
data point x + n

Output majority

vote: [
Proposed by
[Cohen et al.’19],
[Lecuyer et al.’19],
[Li et al.’19]

smoothing

—p

Data point x

Base Classifier Smoothed Classifier
f(x) g(x) = argmax P, [f(x +7n) =y]
y

[Cohen et al.’19] Certified Adversarial Robustness via Randomized Smoothing, ICML 2019.
[Lecuyer et al.’19] Certified Robustness to Adversarial Examples with Differential Privacy, S&P 2019.
[Li et al.’19] Certified Adversarial Robustness with Additive Noise, NeurlPS 2019.



Our Experiments on Random Smoothing

Certified robust radius by [Cohen et al.”19]:

Confidence of majority vote

Given any input x € R, let n be Gaussian noise N (0,02%I)and p = mfx P,[f(x+n) =y].Then
g(x) = g(x + &) for any § such that ||6]|. < @ (p)a/r/d, where & is CDF of standard Gaussian.

Method | 2/255 Certified Robust Acc.
Random Smoothing (TRADES) 62.6%
Random Smoothing (Adv. Training) 60.8%
Random Smoothing (Nat. Training) 50.0%
Zhang et al. (2020) 54.0%
Wong et al. (2018) 53.9%
Mirman et al. (2018) 52.2%
Gowal et al. (2018) 50.0%
Xiao et al. (2019) 45.9%

Table 1: Certified ¢, robustness at a radius of 2/255 on the CIFAR-10 dataset.

Computable certified
radius for x

Certified
radius

Adversarial
budget

Smoothed Classifier
g(x) = argmax P, [f(x +n) =y]
y
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Random Smoothing with dimension-independent £, radius?

Certified robust radius by [Cohen et al.”19]:

Confidence of majority vote

Given any input x € R?, let n be Gaussian noise N'(0,5%I) and p = max P, [f(x + 1) = y] . Then
y

g(x) = g(x + &) for any § such that ||6]|. < @ L(p)a/i/d, where & is CDF of standard Gaussian.

Computable certified
radius for x

other noise distributions or is it inevitable? Why?

@ Can we improve the ¢/+/d dependence by looking at




Our Hardness Result concerning Random Smoothing

Certified robust radius by [Cohen et al.”19]:

Confidence of majority vote

Given any input x € R?, let n be Gaussian noise N'(0,5%I) and p = max P, [f(x + 1) = y] . Then
y
g(x) = g(x + &) for any § such that ||6]|. < @ L(p)a/i/d, where & is CDF of standard Gaussian.

Theorem 1 (Our hardness result, IMLR’20):

Given any input x, let n be noise from any distribution with variance of n; being 7. If
g(x) = g(x + &) for any & such that [|§]|., < &, then & < ¢,0;/Vd for 99% entries i.

[Blum, Dick, Manoj, Zhang (a-£)'20] Random Smoothing Might be Unable to Certify £.,, Robustness, JMLR 2020



Intuition behind the Hardness Result

Reasonable question: why ¢ < cpai/\/a is inevitable?

_ _ Key intuition: The magnitude (std) of random noise
Step 1: d-dimensional case in the direction should overwhelm that of adv.

perturbation to cancel out its effect

d such entries

A
| \by def.
72 74 74 2 2 292
o- + a- + 0' + ...... + o' - AN
1 2 3 d E ”77 ” 2 > Cpé Cf/ /}\\ Pythagorean
JRe S, Theorem
4 \
! e N

x+906 x+ 68

=1 a-l? > cpezd Projecting n onto direction of ¢§’, Projecting n onto direction of &,
J . .
the std of projected noise > c,eVd A the std of projected noise > c,eVd

oo P eVd XTeVd Prol ¢

TS \2
*(f5 )
167112

TS \?
*(ar. )
1511,

X

E
Given any input x, let n be noise from any distribution with variance of n; being 7. If
g(x) = g(x + §) for any & such that [|§]|., < &, then & < ¢,0;/Vd for 99% entries i.
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Reasonable question: why ¢ < cpai/\/a is inevitable?
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Reasonable question: why ¢ < cpai/\/a is inevitable?
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Take-Home Message from the Hardness Result

Q The o,/+/d dependence in the certified radius stems from the fact that the length of
adversarial perturbation can be as large as £Vd in the £, ball.

O (Current version of) random smoothing might be unable to certify £, robustness.
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Model Untargeted
Track Attack

A standardized benchmark for adversarial robustness



What's next for robustness?

O Certified robustness requires thinking beyond random smoothing

O Major issue with curve fitting: training phase should “mimic” the test phase
Out-of-distribution generalization (sample complexity) problem (ImageNet-C):

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Training Phase:

min[E¢(f(x)y) + E max d(f(0)f (x)/2)]

X1EA(%)
Impossible to mimic

Motion Blur Zoom Blur now Frost _ Fog ALL corruptions




What's next for robustness?

O Certified robustness requires thinking beyond random smoothing

O Major issue with curve fitting: training phase should “mimic” the test phase

O Expert system: inference engine, knowledge base, human interface
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What's next for robustness?

O Knowledge Base: a huge organized set of knowledge about a particular subject

O Inference Engine: a set of rules on which to make decisions

O User Interface: human in the loop and human-computer interaction
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Towards Trustworthy Machine Learning

random smoothing

e——> .

Robustness — Privacy
Gaussian mechanism

Trustworthy ML

trade-off between trade-off between
robustness and accuracy fairnessand utility /£ 4 ... ...

[ Fairness ]
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Overview of My Other Works beyond Robustness
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