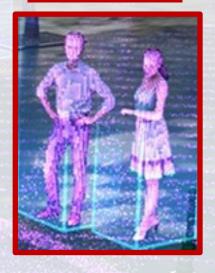
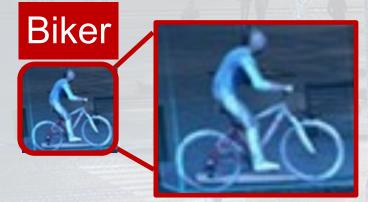
New Advances in (Adversarially) Robust and Secure Machine Learning

Hongyang Zhang Toyota Technological Institute at Chicago Carnegie Mellon University

Biker Pedestrian Sign

Persons





Green Traffic Light

Adversarial Perturbation Attack

Pedestrian Sign

(Minimal) Speed Limit Sign

Adversarial Rotation Attack

Adversarial Patch Attack

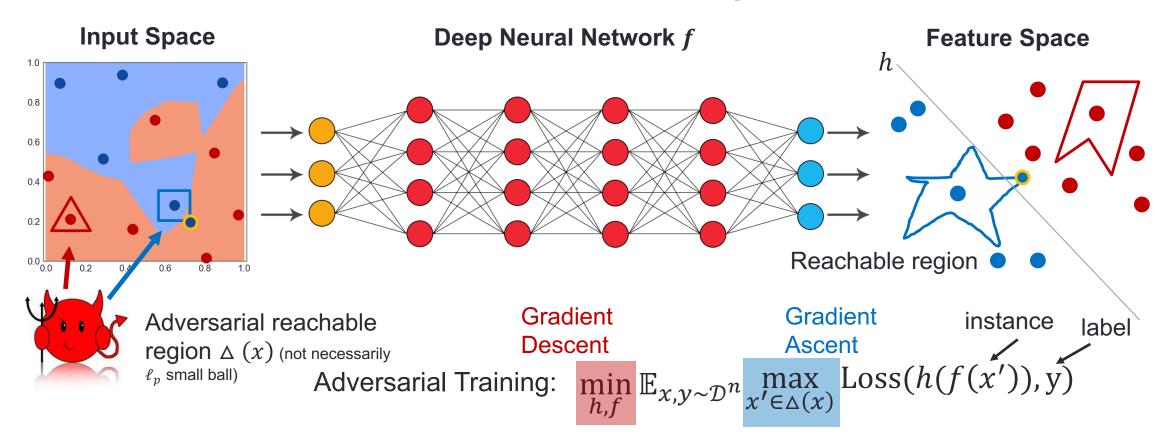
Training Scenario (night)

EOPLE KILLED IN CRASH, 2 PEOPLE HURT

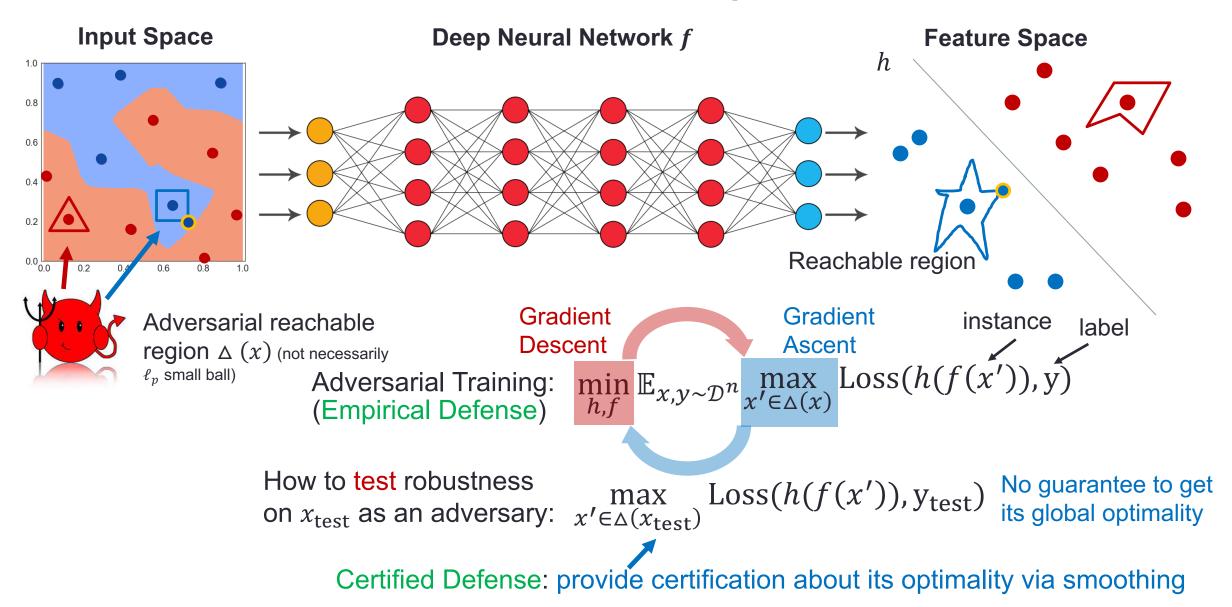
LIVE

Robust, Secure and Trustworthy functioning of machine learning is the foundation of autopilot systems and Allanding problems.

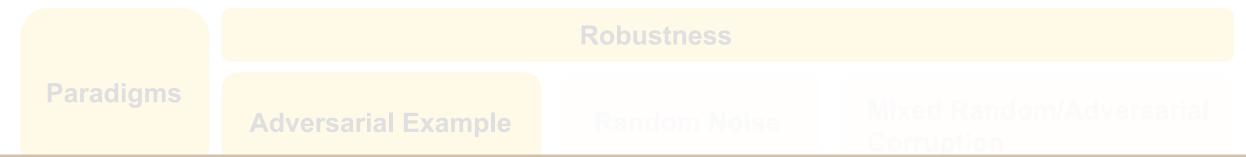
What causes adversarial examples?



What causes adversarial examples?



Overview of This Talk



Part I: Empirical Defense --- TRADES

Applications

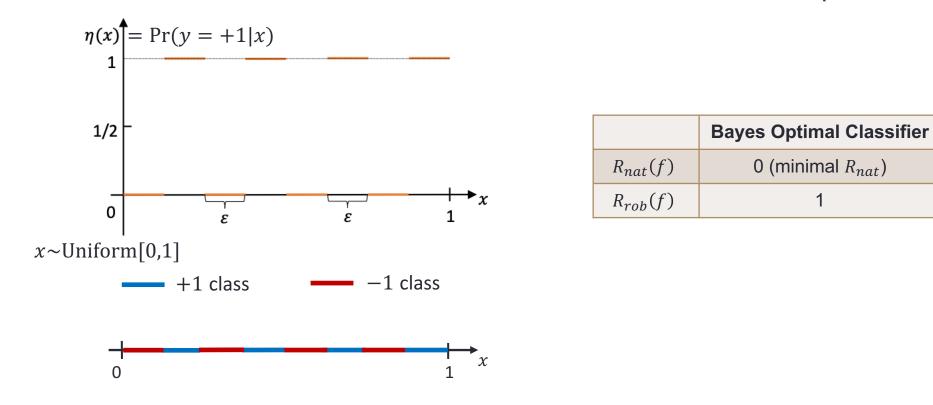
Unrestricted Adversarial Examples Challenge 🚥

A standardized benchmark for adversarial robustness

Trade-off between Robustness and Accuracy

 $R_{rob}(f) := \mathbb{E}_{x, y \sim \mathcal{D}} \mathbb{1}\{\exists x' \in \Delta(x) \text{ s.t. } f(x')y \leq 0\} \qquad y \in \{+1, -1\}, \text{ classifier } f : \mathcal{X} \to \mathbb{R}$ Indicator function $R_{nat}(f) := \mathbb{E}_{x, y \sim \mathcal{D}} \mathbb{1}\{f(x)y \leq 0\}$

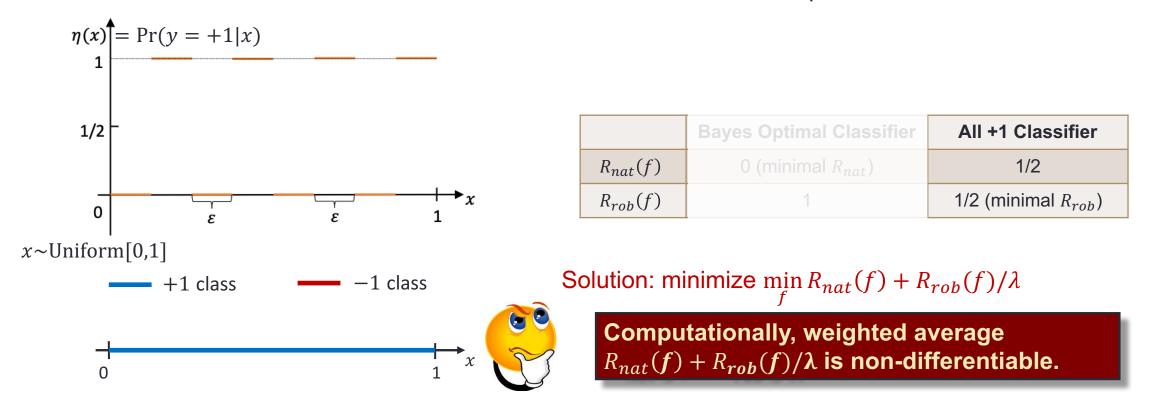
• An example of trade-off (for norm-bounded threat model when $\triangle(x) = \mathbb{B}_p(x, \varepsilon)$):



Trade-off between Robustness and Accuracy

 $R_{rob}(f) := \mathbb{E}_{x, y \sim \mathcal{D}} \mathbb{1}\{\exists x' \in \Delta(x) \text{ s.t. } f(x')y \leq 0\} \qquad y \in \{+1, -1\}, \text{ classifier } f : \mathcal{X} \to \mathbb{R}$ Indicator function $R_{nat}(f) := \mathbb{E}_{x, y \sim \mathcal{D}} \mathbb{1}\{f(x)y \leq 0\}$

• An example of trade-off (for norm-bounded threat model when $\triangle(x) = \mathbb{B}_p(x, \varepsilon)$):

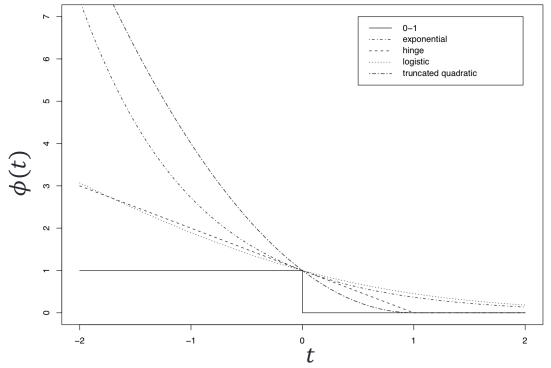


Classification-Calibrated Surrogate Loss

 $R_{rob}(f) := \mathbb{E}_{x, y \sim \mathcal{D}} \mathbb{1}\{\exists x' \in \Delta(x) \text{ s.t. } f(x')y \le 0\}$

Can we design a differentiable surrogate loss for the trade-off? $R_{nat}(f) := \mathbb{E}_{x,y\sim\mathcal{D}} 1\{f(x)y \le 0\}$ $R_{\phi}(f) := \mathbb{E}_{x,y\sim\mathcal{D}} \phi(f(x))$

[Bartlett et al.'06] approximate



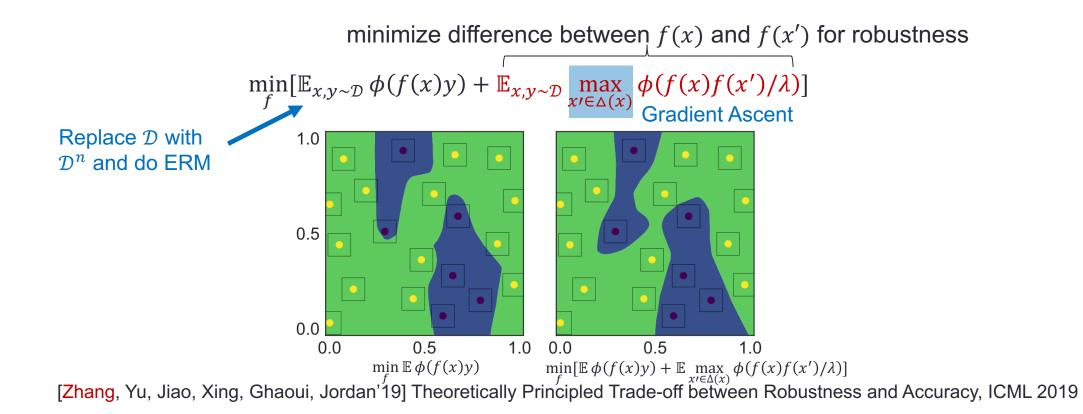
[Bartlett et al.'06] Convexity, Classification, and Risk Bounds, Journal of the American Statistical Association, 2006

 $R_{\phi}(f) := \mathbb{E}_{x, y \sim \mathcal{D}} \phi(f(x)y)$

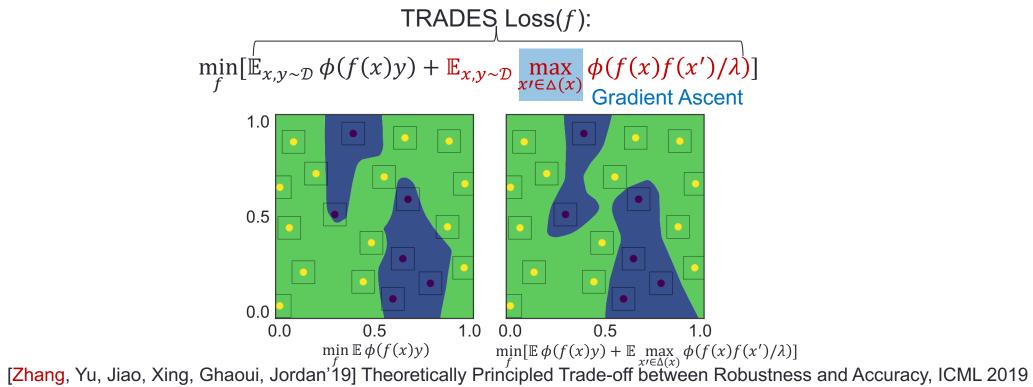
Our Methodology --- TRADES

minimize difference between f(x) and y for accuracy $\min_{f} \mathbb{E}_{x,y\sim\mathcal{D}} \phi(f(x)y) + \mathbb{E}_{x,y\sim\mathcal{D}} \max_{x'\in\Delta(x)} \phi(f(x)f(x')/\lambda)]$

Our Methodology --- TRADES



Our Methodology --- TRADES

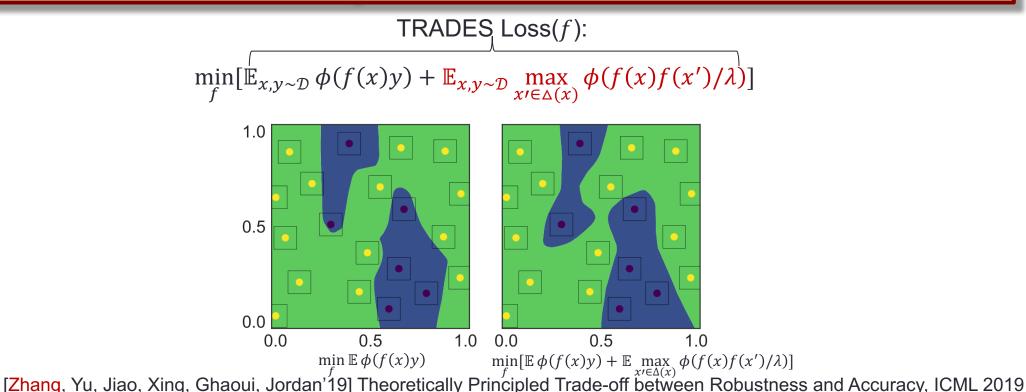


Theoretical Results

Theorem 1 (Informal, upper bound, Zhang et al.'19):

For any distribution \mathcal{D} , f, $\Delta(x)$ and $\lambda > 0$, we have $R_{rob}(f) - R_{nat}^* \leq \text{TRADES Loss}(f) - R_{\phi}^*$.

- $\square R_{nat}^*$: minimal value of $R_{nat}(f)$ over all classifiers f
- $\square R_{\phi}^*: \text{ minimal value of } R_{\phi}(f):=\mathbb{E}_{x,y\sim\mathcal{D}}\phi(f(x)y) \text{ over all classifiers } f$
- \Box ϕ : classification-calibrated surrogate loss



Theoretical Results

Theorem 1 (Informal, upper bound, Zhang et al.'19):

For any distribution \mathcal{D} , f, $\Delta(x)$ and $\lambda > 0$, we have $R_{rob}(f) - R_{nat}^* \leq \text{TRADES Loss}(f) - R_{\phi}^*$.

 \square R_{nat}^* : minimal value of $R_{nat}(f)$ over all classifiers f

 $\square R_{\phi}^*: \text{ minimal value of } R_{\phi}(f):=\mathbb{E}_{x,y\sim\mathcal{D}}\phi(f(x)y) \text{ over all classifiers } f$

 \Box ϕ : classification-calibrated surrogate loss

Theorem 2 (Informal, lower bound, Zhang et al.'19):

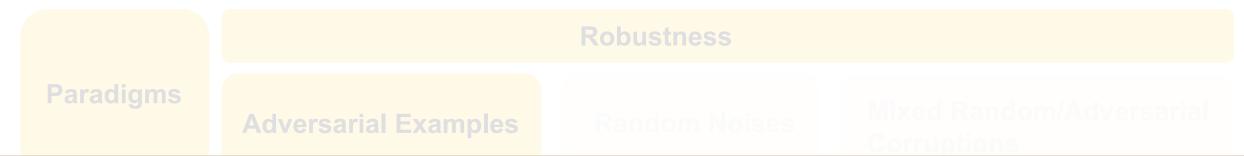
For any $\Delta(x)$, there exist a data distribution \mathcal{D} , a classifier f, and an $\lambda > 0$ such that $R_{rob}(f) - R_{nat}^* \ge \text{TRADES Loss}(f) - R_{\phi}^*$.

Experiments --- CIFAR10 with 8-intensity level attacks

					Natural Accuracy	Robust Accuracy
Defense	Defense type	Under which attack	Dataset	Distance	$\mathcal{A}_{\rm nat}(f)$	$\mathcal{A}_{\rm rob}(f)$
Buckman et al. (2018)	gradient mask	Athalye et al. (2018)	CIFAR10	$0.031 (\ell_{\infty})$	-	0%
Ma et al. (2018)	gradient mask	Athalye et al. (2018)	CIFAR10	$0.031 (\ell_{\infty})$	-	5%
Dhillon et al. (2018)	gradient mask	Athalye et al. (2018)	CIFAR10	$0.031 (\ell_{\infty})$	-	0%
Song et al. (2018)	gradient mask	Athalye et al. (2018)	CIFAR10	$0.031 (\ell_{\infty})$	-	9%
Na et al. (2017)	gradient mask	Athalye et al. (2018)	CIFAR10	$0.015(\ell_\infty)$	-	15%
Wong et al. (2018)	robust opt.	FGSM ²⁰ (PGD)	CIFAR10	$0.031 (\ell_{\infty})$	27.07%	23.54%
Madry et al. (2018)			CIFAR10	$0.031 (\ell_{\infty})$	87.30%	47.04%
	min f	$x'\in\mathbb{B}(x,\varepsilon)$		by Madry		
TRADES $(1/\lambda = 1.0)$	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 (\ell_{\infty})$	88.64%	49.14%
TRADES $(1/\lambda = 6.0)$	regularization	FGSM ²⁰ (PGD)	CIFAR10	$0.031 (\ell_{\infty})$	84.92%	56.61%
m J	$\inf[\mathbb{E}\phi(f(x))]$	$(y) + \mathbb{E} \max_{x' \in \mathbb{B}(x,\varepsilon)}$	$\phi(f(x))$	$f(x')/\lambda$] (ours)
TRADES $(1/\lambda = 6.0)$	regularization	LBFGSAttack	CIFAR10	$0.031 (\ell_{\infty})$	84.92%	81.58%
TRADES $(1/\lambda = 1.0)$	regularization	MI-FGSM	CIFAR10	$0.031 (\ell_{\infty})$	88.64%	51.26%
TRADES $(1/\lambda = 6.0)$	regularization	MI-FGSM	CIFAR10	$0.031 (\ell_{\infty})$	84.92%	57.95%
TRADES $(1/\lambda = 1.0)$	regularization	C&W	CIFAR10	$0.031 (\ell_{\infty})$	88.64%	84.03%
TRADES $(1/\lambda = 6.0)$	regularization	C&W	CIFAR10	$0.031 (\ell_{\infty})$	84.92%	81.24%
Samangouei et al. (2018)	gradient mask	Athalye et al. (2018)	MNIST	$0.005 (\ell_2)$	-	55%
Madry et al. (2018)	robust opt.	FGSM ⁴⁰ (PGD)	MNIST	$0.3(\ell_\infty)$	99.36%	96.01%
TRADES $(1/\lambda = 6.0)$	regularization	FGSM ⁴⁰ (PGD)	MNIST	$0.3(\ell_\infty)$	99.48%	96.07%
TRADES $(1/\lambda = 6.0)$	regularization	C&W	MNIST	$0.005 (\ell_2)$	99.48%	99.46%

Overview of This Talk

Appl



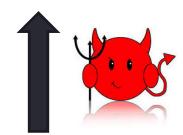
Significant Experimental Results via Case Study

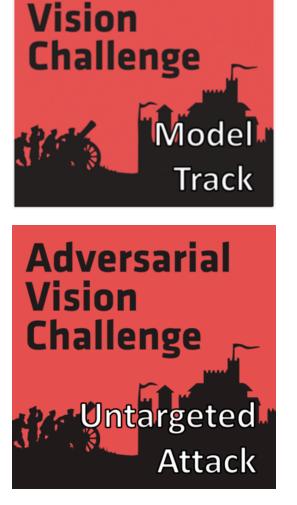
ications		Google Unrestricted Adversarial Examples Challenge	
		COROBUSTBENCH A standardized benchmark for adversarial robustness	

Case Study I: NeurIPS'18 Adversarial Vision Challenge

Adversarial

Ranking

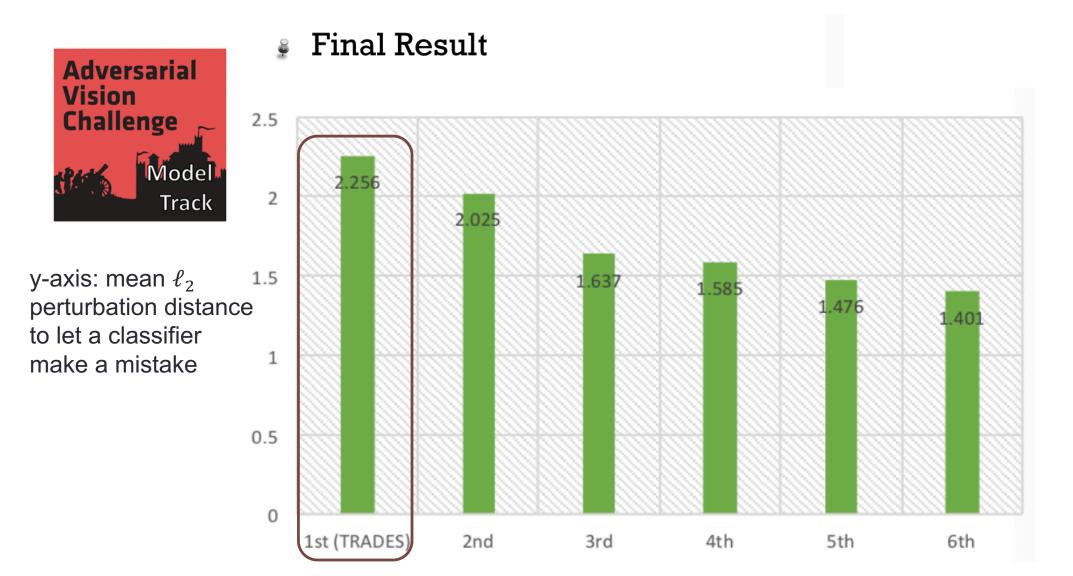




• Evaluation criterion

- 400+ teams, ~3,000 submissions
- ImageNet dataset
- Model Track and Attack Track
- Participants in the two tracks play against each other

Case Study I: NeurIPS'18 Adversarial Vision Challenge



21

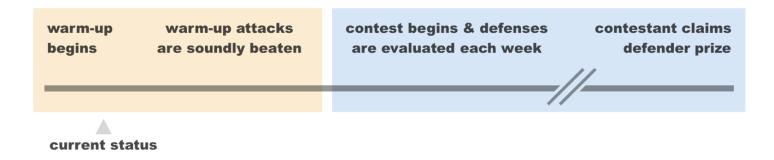
Google

Unrestricted Adversarial Examples Challenge Luid Passing

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean, unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are currently accepting defenses for the warm-up.

Warm-up & Contest Timeline



The class of bicycle

The class

of bird

Our methodology:

Google

 $\min_{f} \left[\mathbb{E} \phi(f(x)y) + \mathbb{E} \max_{x' \in \Delta(x)} \phi(f(x)f(x')/\lambda) \right]$

Choose the adversarial reachable region as the union of these threat models

24

Defense	ense Submitted Clean Common by data corruptions		Spatial grid attack	SPSA attack	Boundary attack	Submission Date		
Pytorch ResNet50 (trained on bird-or- bicycle extras)	ined on bird-or- TRADES 100.0% 100.0%		100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)	
Keras ResNet (trained on ImageNet)	ed on Brain Google 100.0%		99.2% 92.2%		1.6%	4.0%	Sept 29th, 2018	
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018	

Clean image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADES 100.0%		100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Clean image:

Corrupted image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	ned on bird-or- TRADES 100.0% 100.0%		100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain 100.0%		99.2%	92.2%		4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Clean image:

Corrupted image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date	
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADES	100.0% 100.0%		99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)	
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018	
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018	

Clean image:

Corrupted image:

Defense	Defense Submitted Clean Common by data corruptions		Spatial grid attack	SPSA attack	Boundary attack	Submission Date		
Pytorch ResNet50 (trained on bird-or- bicycle extras)	ed on bird-or- TRADES 100.0% 100		100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)	
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018	
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018	

Clean image:

Corrupted image:

Adversarial example around the decision boundary

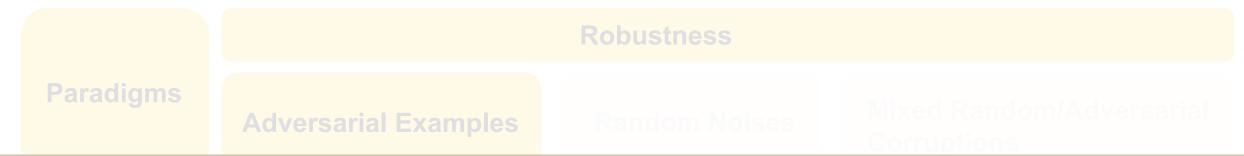
Defense	SubmittedCleanCommonbydatacorruptions		Spatial grid attack	SPSA attack	Boundary attack	Submission Date		
Pytorch ResNet50 (trained on bird-or- bicycle extras)	l-or- TRADES 100.0% 100.0%		100.0%	99.5%	100.0% 95.0%		Jan 17th, 2019 (EST)	
Keras ResNet (trained on ImageNet)	Google Brain	e 100.0% 99.2%		92.2%	1.6%	4.0%	Sept 29th, 2018	
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018	

Interpretability of TRADES --- Adversarial Examples by Boundary Attack

The class of bicycle

The class of bird

Overview of This Talk



Significant Impact of TRADES

Adversarial Defenses

Applications

Unrestricted Adversarial Examples Challenge 🚥

ROBUSTBENCH

A standardized benchmark for adversarial robustness

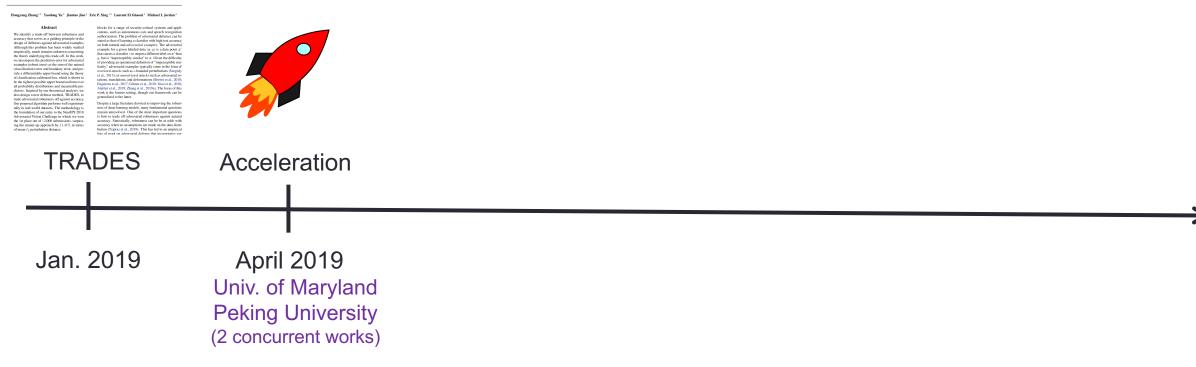
Theoretically Principled Trade-off between Robustness and Accuracy

Hongyang Zhang^{1,2} Yaodong Yu³ Jiantao Jiao⁴ Eric P. Xing^{1,5} Laurent El Ghaoui⁴ Michael L Jordan⁴

During Warman and a set of the set of t	block for a range of scority evident system and appri- cations, such as interments era and appreciations, the second seco
TRA	DES

Jan. 2019

Theoretically Principled Trade-off between Robustness and Accuracy



• Achieved 30x speed-up on ImageNet, almost as fast as natural training

Theoretically Principled Trade-off between Robustness and Accuracy

gyang Zhang^{1,2} Yaodong Yu³ Jiantao Jiao⁴ Eric P. Xing^{1,5} Laurent El Ghaoui⁴ Michael L Jord Abstrac trade-off between 0 TRADES Acceleration Semi-Supervision Jan. 2019 April 2019 June 2019 Stanford Univ. of Maryland DeepMind Peking University Peking University (2 concurrent works) (3 concurrent works)

• TRADES + 500K extra unlabeled data can improve robust accuracy by +5% on CIFAR10

Theoretically Principled Trade-off between Robustness and Accuracy

In the second sec

Jan. 2019April 2019June 2019Dec. 2019Univ. of MarylandStanfordGaTech, MicrosoftPeking University
(2 concurrent works)Peking University
(3 concurrent works)Pecking University
(3 concurrent works)

• Won 1st place in **CLUE** (on Dec. 9th, 2019), beating largest NLP T5 model of 11 billion parameters

	Rank	x Name	Model	URL	Score	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m MN	ILI-mm	QNLI	RTE	WNLI	АХ
+	1	Microsoft D365 AI & MSR AI	MT-DNN-SMART		89.9	69.5	97.5	93.7/91.6	92.9/92.5	73.9/90.2	91.0	90.8	99.2	89.7	94.5	50.2
	2	T5 Team - Google	Т5		89.7	70.8	<mark>97.1</mark>	91.9/89.2	92.5/92.1	74.6/90.4	92.0	<mark>91.7</mark>	96.7	92.5	93.2	53.1
	3	ALBERT-Team Google Langua	geALBERT (Ensemble)		89.4	69.1	97.1	93.4/91.2	92.5/92.0	74.2/90.5	91.3	<mark>91.0</mark>	99.2	89.2	91.8	50.2

[Jiang et al.'20] SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization, ACL 2020

Theoretically Principled Trade-off between Robustness and Accuracy



• Hyper-parameter tuning of TRADES can further improve robust accuracy by 5% on CIFAR-10

EBERHARD KARLS UNIVERSITÄT TÜBINGEN

PRINCETON UNIVERSITY

A standardized benchmark for adversarial robustness

Rank 🔺	Method	Standard accuracy	Robust accuracy	Extra data	Architecture	Venue
1		91.10%	65.87%	$\overline{\checkmark}$	WideResNet-70-16	arXiv, Oct 2020

AutoAttack performs slightly worse (65.88%).

5 out of top **5** and **9** out of top **10** methods use **TRADES** as their training algorithms.

AutoAttack performs slightly worse (6200%).

3	88.25%	60.04%		WideResNet-28-10	NeurIPS 2020
4	85.60%	59.78%	\checkmark	WideResNet-34-15	arXiv, Oct 2020
5	89.69%	59.53%	\checkmark	WideResNet-28-10	NeurIPS 2019

• TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on GitHub

Attack	Submitted by	Attack Model	Robust Acc	Time
PGD-20	(initial entry)	ℓ_{∞} , 8 intensity	56.61%	Jan 24, 2019
PGD-1,000	(initial entry)	ℓ_{∞} , 8 intensity	56.43%	Jan 24, 2019

• TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on GitHub

Attack	Submitted by	Attack Model	Robust Acc	Time
PGD-20	(initial entry)	ℓ_{∞} , 8 intensity	56.61%	Jan 24, 2019
PGD-1,000	(initial entry)	ℓ_{∞} , 8 intensity	56.43%	Jan 24, 2019
fab-attack	U. of Tubingen	ℓ_{∞} , 8 intensity	53.44%	Jun 7, 2019

• TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on GitHub

Attack	Submitted by	Attack Model	Robust Acc	Time
PGD-20	(initial entry)	ℓ_{∞} , 8 intensity	56.61%	Jan 24, 2019
PGD-1,000	(initial entry)	ℓ_{∞} , 8 intensity	56.43%	Jan 24, 2019
fab-attack	U. of Tubingen	ℓ_{∞} , 8 intensity	53.44%	Jun 7, 2019
MultiTargeted	DeepMind	ℓ_{∞} , 8 intensity	53.07%	Oct 31, 2019

• TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on GitHub

Attack	Submitted by	Attack Model	Robust Acc	Time
PGD-20	(initial entry)	ℓ_{∞} , 8 intensity	56.61%	Jan 24, 2019
PGD-1,000	(initial entry)	ℓ_{∞} , 8 intensity	56.43%	Jan 24, 2019
fab-attack	U. of Tubingen	ℓ_{∞} , 8 intensity	53.44%	Jun 7, 2019
MultiTargeted	DeepMind	ℓ_{∞} , 8 intensity	53.07%	Oct 31, 2019
ODI-PGD	Stanford	ℓ_{∞} , 8 intensity	53.01%	Feb 16, 2020

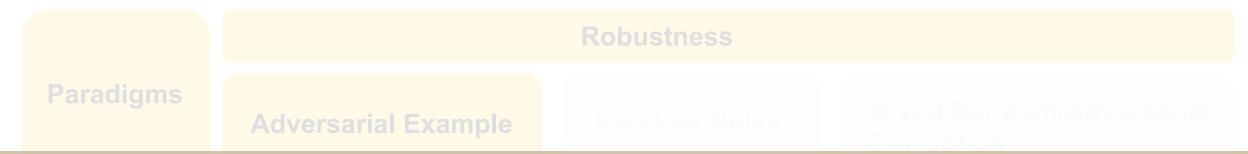
TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on GitHub

Attack	Submitted by	Attack Model	Robust Acc	Time
PGD-20	(initial entry)	ℓ_{∞} , 8 intensity	56.61%	Jan 24, 2019
PGD-1,000	(initial entry)	ℓ_{∞} , 8 intensity	56.43%	Jan 24, 2019
fab-attack	U. of Tubingen	ℓ_{∞} , 8 intensity	53.44%	Jun 7, 2019
MultiTargeted	DeepMind	ℓ_{∞} , 8 intensity	53.07%	Oct 31, 2019
ODI-PGD	Stanford	ℓ_{∞} , 8 intensity	53.01%	Feb 16, 2020
CAA	Xiaofeng Mao	ℓ_{∞} , 8 intensity	52.94%	Dec 14, 2020
EWR-PGD	Ye Liu	ℓ_{∞} , 8 intensity	52.92%	Dec 20, 2020

... ... Can we give a certified lower bound for the robust acc.?

Overview of This Talk



Part II: Hardness of Certified Defense against Adversarial Examples

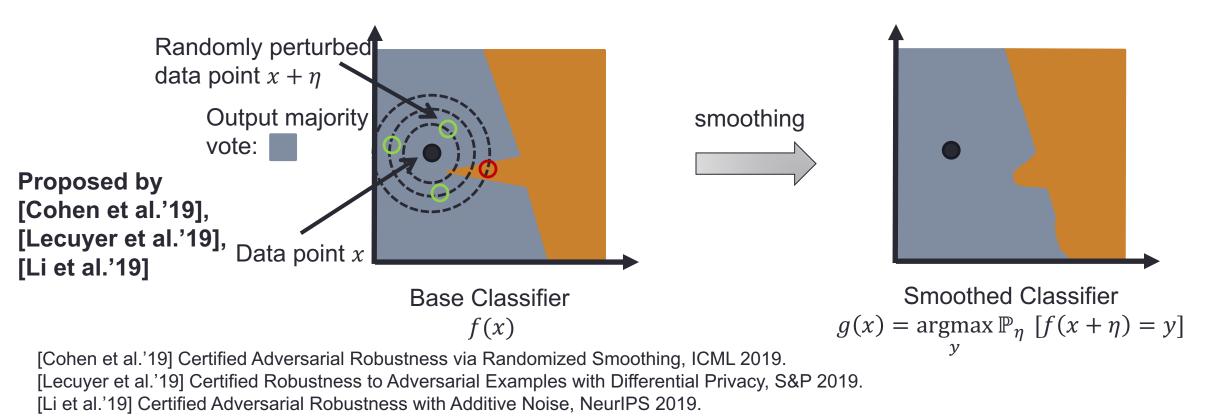
Applications			
		A standardized benchmark for adversarial robustness	

Random Smoothing --- A wrapper to robustify base classifier

Certified robust radius by [Cohen et al.'19]:

Confidence of majority vote

Given any input $x \in \mathbb{R}^d$, let η be Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ and $p = \max_y \mathbb{P}_{\eta}[f(x + \eta) = y]$. Then $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \Phi^{-1}(p)\sigma/\sqrt{d}$, where Φ is CDF of standard Gaussian.



Our Experiments on Random Smoothing

Certified robust radius by [Cohen et al.'19]:

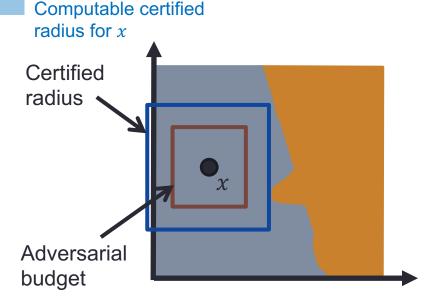
Confidence of majority vote

Given any input $x \in \mathbb{R}^d$, let η be Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ and $p = \max_y \mathbb{P}_{\eta}[f(x + \eta) = y]$. Then

 $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \Phi^{-1}(p)\sigma/\sqrt{d}$, where Φ is CDF of standard Gaussian.

Method	2/255 Certified Robust Acc.
Random Smoothing (TRADES)	62.6%
Random Smoothing (Adv. Training)	60.8%
Random Smoothing (Nat. Training)	50.0%
Zhang et al. (2020)	54.0%
Wong et al. (2018)	53.9%
Mirman et al. (2018)	52.2%
Gowal et al. (2018)	50.0%
Xiao et al. (2019)	45.9%

Table 1: Certified ℓ_{∞} robustness at a radius of 2/255 on the CIFAR-10 dataset.



Smoothed Classifier $g(x) = \underset{y}{\operatorname{argmax}} \mathbb{P}_{\eta} [f(x + \eta) = y]$

Our Experiments on Random Smoothing

Certified robust radius by [Cohen et al.'19]:

Confidence of majority vote

Given any input $x \in \mathbb{R}^d$, let η be Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ and $p = \max_y \mathbb{P}_{\eta}[f(x + \eta) = y]$. Then

 $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \Phi^{-1}(p)\sigma/\sqrt{d}$, where Φ is CDF of standard Gaussian.

Computable certified radius for *x*

Method 2/255 Certified Robust Acc. Random Smoothing (TRADES) 62.6% Random Smoothing (Adv. Training) 60.8% Random Smoothing (Nat. Training) 50.0% Zhang et al. (2020) 54.0% Wong et al. (2018) 53.9% Mirman et al. (2018) 52.2% Gowal et al. (2018) 50.0% Xiao et al. (2019) 45.9%

Table 1: Certified ℓ_{∞} robustness at a radius of 2/255 on the CIFAR-10 dataset.

8/255 Certified Robust Acc.

~10% (for random smoothing on all base classifiers)

Our Experiments on Random Smoothing

Certified robust radius by [Cohen et al.'19]:

Confidence of majority vote

Given any input $x \in \mathbb{R}^d$, let η be Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ and $p = \max_y \mathbb{P}_{\eta}[f(x + \eta) = y]$. Then

 $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \Phi^{-1}(p)\sigma/\sqrt{d}$, where Φ is CDF of standard Gaussian.

Computable certified radius for *x*

Method 2/255 Certified Robust Acc. Random Smoothing (TRADES) 62.6% Random Smoothing (Adv. Training) 60.8% Random Smoothing (Nat. Training) 50.0% Zhang et al. (2020) 54.0% Wong et al. (2018) 53.9% Mirman et al. (2018) 52.2% Gowal et al. (2018) 50.0% Xiao et al. (2019) 45.9%

Table 1: Certified ℓ_{∞} robustness at a radius of 2/255 on the CIFAR-10 dataset.

8/255 Certified Robust Acc.

~10% (for random smoothing on all base classifiers)

Random Smoothing with dimension-independent ℓ_{∞} radius?

Certified robust radius by [Cohen et al.'19]:

Confidence of majority vote

Given any input $x \in \mathbb{R}^d$, let η be Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ and $p = \max_y \mathbb{P}_{\eta}[f(x + \eta) = y]$. Then $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \Phi^{-1}(p)\sigma/\sqrt{d}$, where Φ is CDF of standard Gaussian.

Computable certified radius for x

Can we improve the σ/\sqrt{d} dependence by looking at other noise distributions or is it inevitable? Why?

Our Hardness Result concerning Random Smoothing

Certified robust radius by [Cohen et al.'19]:

Confidence of majority vote

Given any input $x \in \mathbb{R}^d$, let η be Gaussian noise $\mathcal{N}(0, \sigma^2 I)$ and $p = \max_y \mathbb{P}_{\eta}[f(x + \eta) = y]$. Then $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \Phi^{-1}(p)\sigma/\sqrt{d}$, where Φ is CDF of standard Gaussian.

Theorem 1 (Our hardness result, JMLR'20):

Given any input x, let η be noise from any distribution with variance of η_i being σ_i^2 . If $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \varepsilon$, then $\varepsilon < c_p \sigma_i / \sqrt{d}$ for 99% entries *i*.

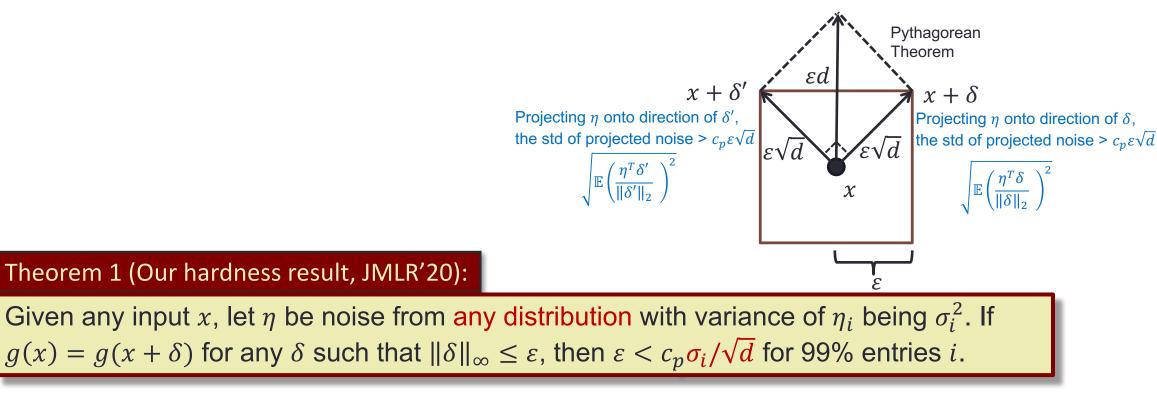
Intuition behind the Hardness Result **Reasonable question:** why $\varepsilon < c_p \sigma_i / \sqrt{d}$ is inevitable? Key intuition: The magnitude (std) of random noise **Step 1:** *d*-dimensional case in the direction should overwhelm that of adv. perturbation to cancel out its effect *d* such entries by def. $= \mathbb{E} \|\eta\|_2^2 > c_p \varepsilon^2 d_{\star}^2$ σ_d^2 σ_3^2 $+ \dots +$ + Pythagorean Theorem εd $x + \delta'$ $x + \delta$ $> c_p \varepsilon^2 d$ Projecting η onto direction of δ' Projecting η onto direction of δ , $\exists i$. the std of projected noise > $c_p \varepsilon \sqrt{d}$ the std of projected noise > $c_n \varepsilon \sqrt{d}$ $\varepsilon \sqrt{d}$ Theorem 1 (Our hardness result, JMLR'20): Given any input x, let η be noise from any distribution with variance of η_i being σ_i^2 . If $g(x) = g(x + \delta)$ for any δ such that $\|\delta\|_{\infty} \leq \varepsilon$, then $\varepsilon < c_p \sigma_i / \sqrt{d}$ for 99% entries *i*.

Intuition behind the Hardness Result

Reasonable question: why $\varepsilon < c_p \sigma_i / \sqrt{d}$ is inevitable?

Step 1: *d*-dimensional case

Step 2: repeat Step 1 for (d - 1)-dimensional case by projecting out dimension *i*



Intuition behind the Hardness Result

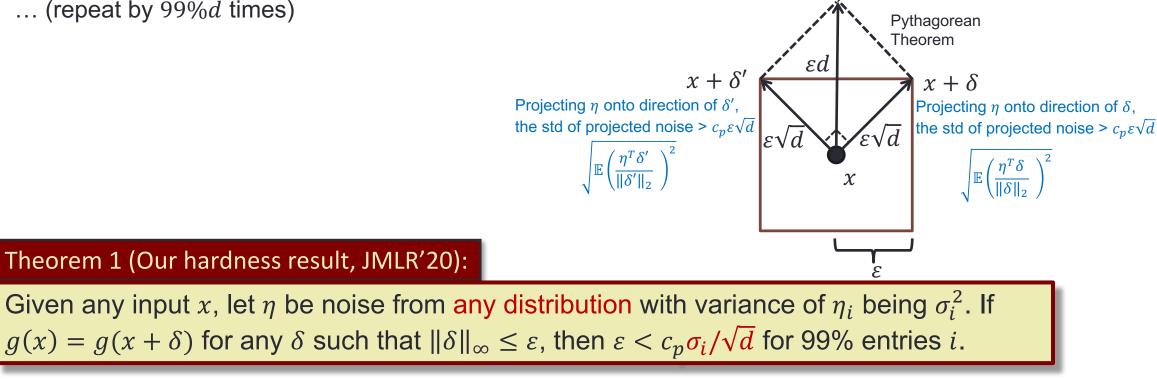
Reasonable question: why $\varepsilon < c_p \sigma_i / \sqrt{d}$ is inevitable?

Step 1: *d*-dimensional case

Step 2: repeat Step 1 for (d-1)-dimensional case by projecting out dimension i

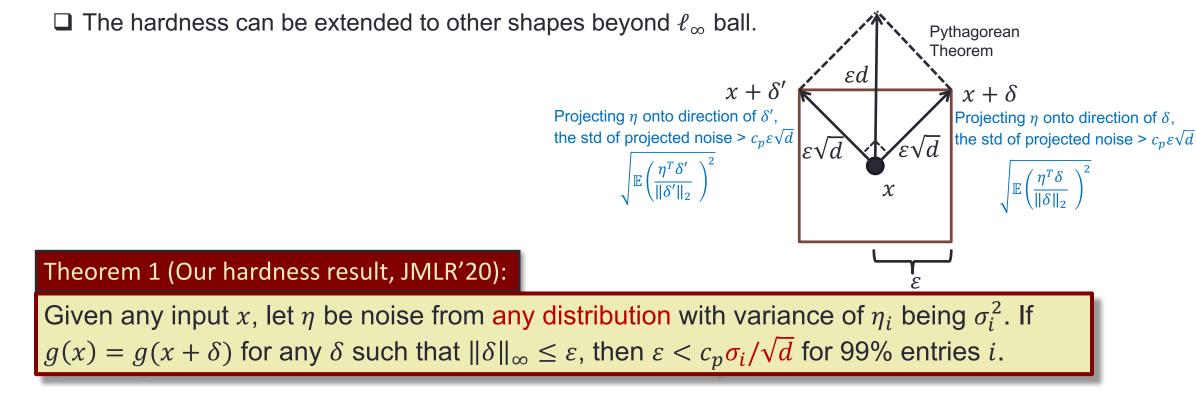
Step 3: repeat Step 2 for (d - 2)-dimensional case

... (repeat by 99%d times)

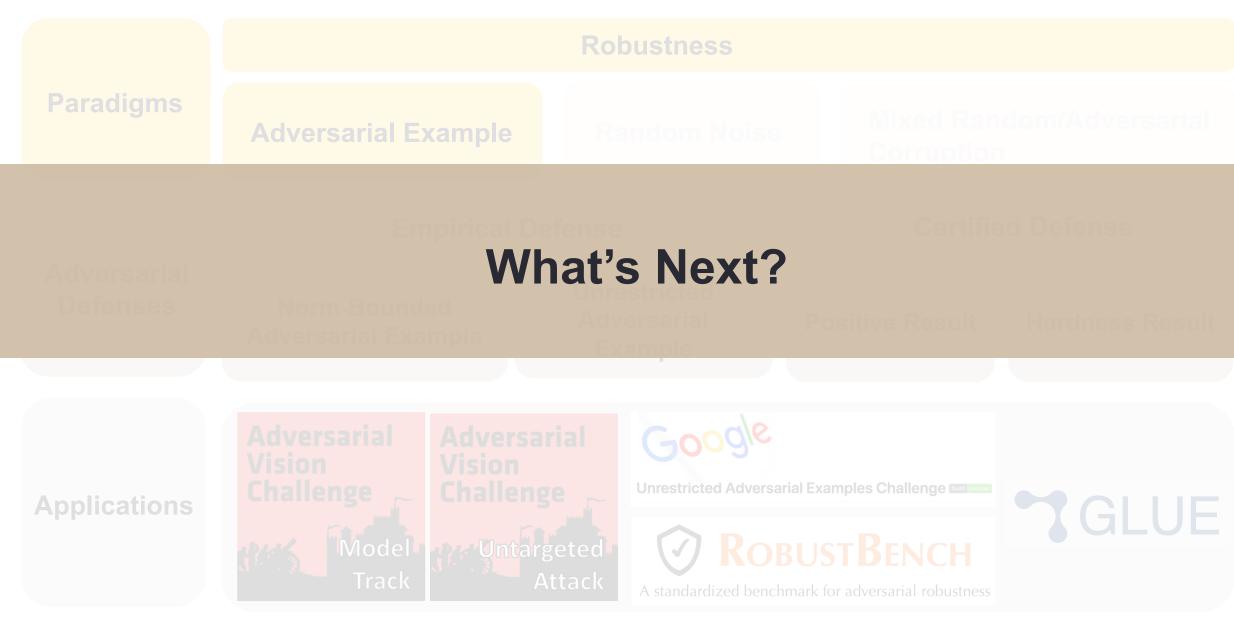


Take-Home Message from the Hardness Result

- □ The σ_i/\sqrt{d} dependence in the certified radius stems from the fact that the length of adversarial perturbation can be as large as $\varepsilon\sqrt{d}$ in the ℓ_{∞} ball.
- \Box (Current version of) random smoothing might be unable to certify ℓ_{∞} robustness.



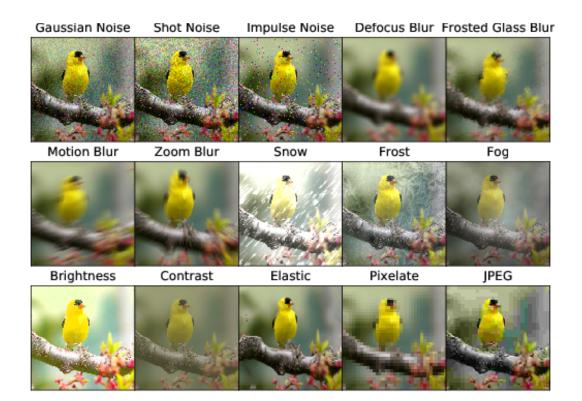
Overview of This Talk



What's next for robustness?

□ Certified robustness requires thinking beyond random smoothing

□ Major issue with curve fitting: training phase should "mimic" the test phase Out-of-distribution generalization (sample complexity) problem (ImageNet-C):



Training Phase:

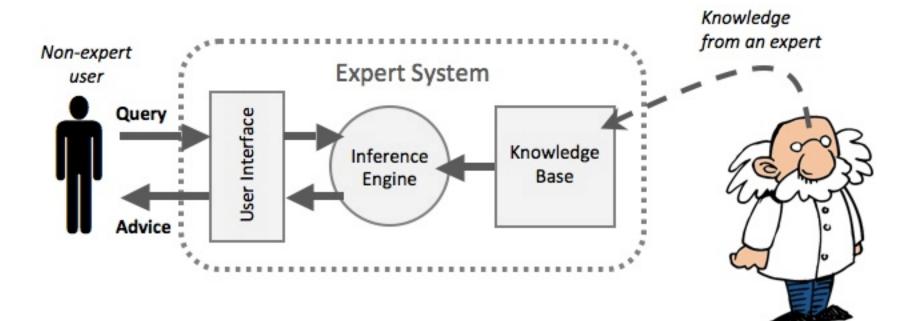
$$\min_{f} [\mathbb{E} \phi(f(x)y) + \mathbb{E} \max_{X' \in \Delta(x)} \phi(f(x)f(x')/\lambda)]$$

Impossible to mimic ALL corruptions

What's next for robustness?

□ Certified robustness requires thinking beyond random smoothing

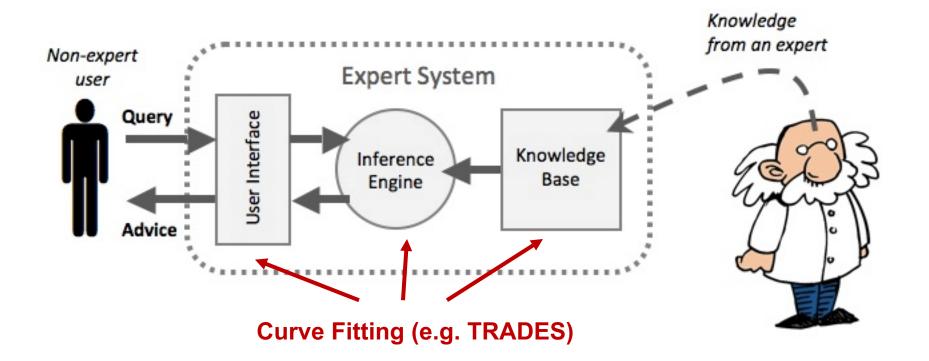
- □ Major issue with curve fitting: training phase should "mimic" the test phase
- **Expert system**: inference engine, knowledge base, human interface



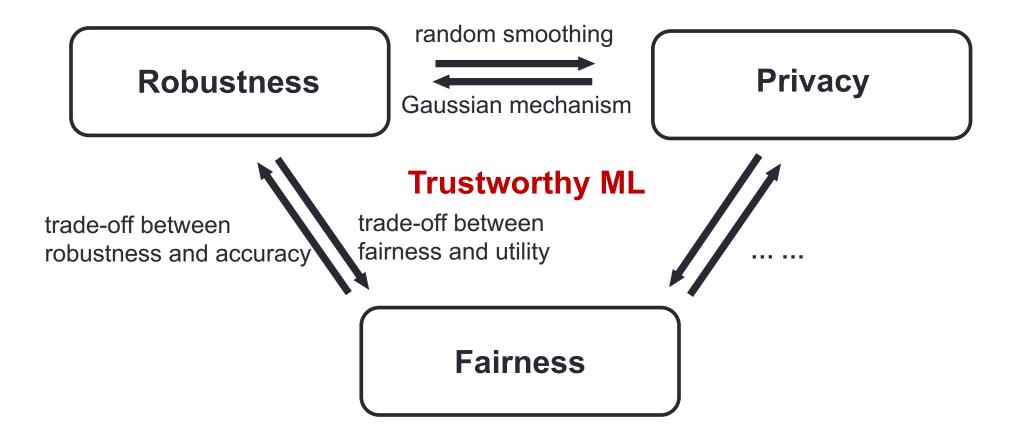
What's next for robustness?

□ Knowledge Base: a huge organized set of knowledge about a particular subject

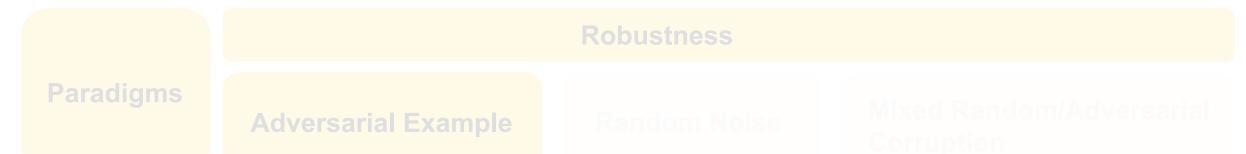
- □ Inference Engine: a set of rules on which to make decisions
- □ User Interface: human in the loop and human-computer interaction



Towards Trustworthy Machine Learning



Overview of This Talk



My Other Works on Machine Learning

Applications		Google Unrestricted Adversarial Examples Challenge
		A standardized benchmark for adversarial robu

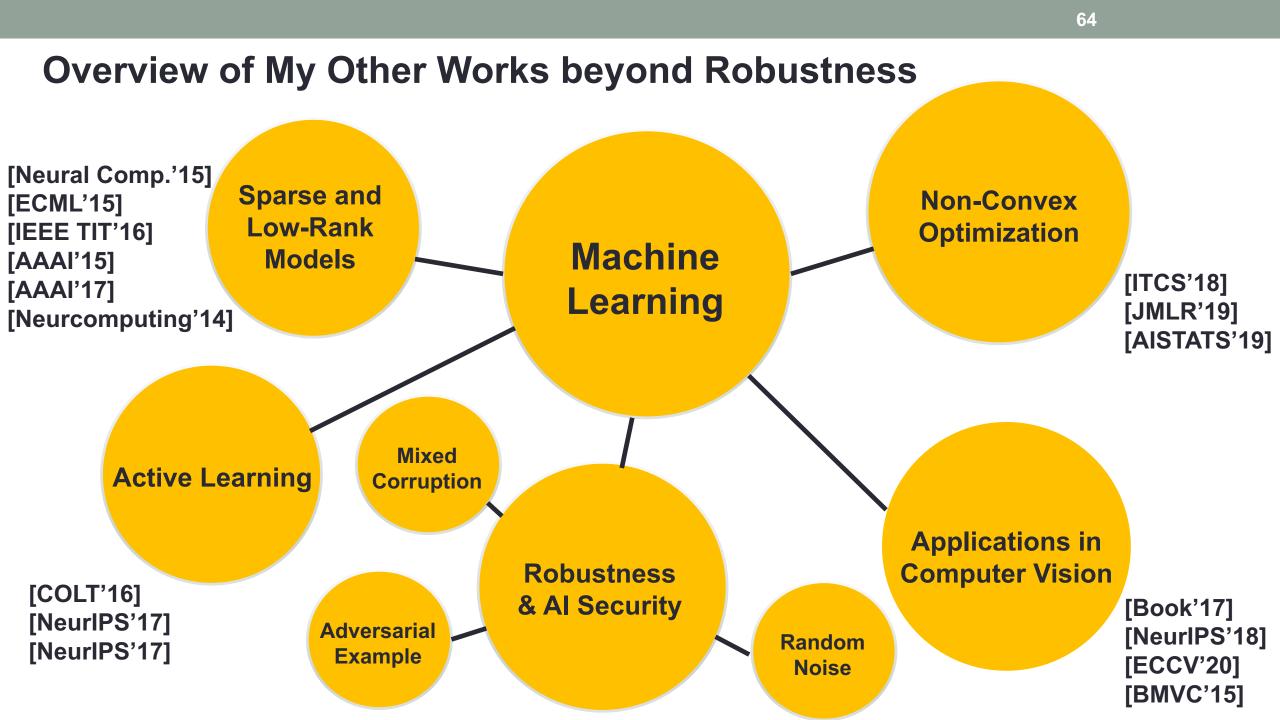
GLUE

		Robustness	
Paradigms	Adversarial Example		
Works	 [ICML'19] (TRADES) [JMLR'20] (hardness of random smoothing) [NeurIPS'18] (Adversarial Vision Challenge) [NeurIPS'20] (trade-off between robustness and accuracy) [ECCV'20] (adversarial patch attack) 		

		Robustness				
Paradigms	Adversarial Example	Random Noise				
Works	 [ICML'19] (TRADES) [JMLR'20] (hardness of random smoothing) [NeurIPS'18] (Adversarial Vision Challenge) [NeurIPS'20] (trade-off between robustness and accuracy) [ECCV'20] (adversarial patch attack) 	 [COLT'16] (learning with Massart noise) with Massart noise) [NeurIPS'17] (s-concave dist.) [NeurIPS'17] (power of comparison) [NeurIPS'20] (new DL training method) 				

Paradigms	Robustness		
	Adversarial Example	Random Noise	Mixed Random/Adversarial Corruption
Works	 [ICML'19] (TRADES) [JMLR'20] (hardness of random smoothing) [NeurIPS'18] (Adversarial Vision Challenge) [NeurIPS'20] (trade-off between robustness and accuracy) [ECCV'20] (adversarial patch attack) 	 [COLT'16] (learning with Massart noise) [NeurIPS'17] (s-concave dist.) [NeurIPS'17] (power of comparison) [NeurIPS'20] (new DL training method) 	 [JMLR'19], [ITCS'18] (strong duality of robust PCA) [SODA'19] (testing problem) [IEEE Trans. Info Theory'16] (exact recoverability of robust PCA) [NeurIPS'16] (online Robust PCA) [Proceeding of IEEE'18], [Book'17] (applications in CV)

Paradigms	Robustness			
	Adversarial Example	Random Noise	Mixed Random/Adversarial Corruption	
Works	 [ICML'19] (TRADES) [JMLR'20] (hardness of random smoothing) [NeurIPS'18] (Adversarial Vision Challenge) [NeurIPS'20] (trade-off between robustness and accuracy) [ECCV'20] (adversarial patch attack) 	 [COLT'16] (learning with Massart noise) [NeurIPS'17] (s-concave dist.) [NeurIPS'17] (power of comparison) [NeurIPS'20] (new DL training method) 	 [JMLR'19], [ITCS'18] (strong duality of robust PCA) [SODA'19] (testing problem) [IEEE Trans. Info Theory'16] (exact recoverability of robust PCA) [NeurIPS'16] (online Robust PCA) [Proceeding of IEEE'18], [Book'17] (applications in CV) 	
Other Works [NeurIPS'19], [NeurIPS'19], [AISTATS'19], [ICALP'18], [ICML'17], [AAAI'17], [AAAI'15], [Neural Computation'15], [ECML'15], [BMVC'15], [Neurcomputing'14] [ICML'20], [ICML'20], [ICML'19], [ICML'16], [ICML'16]				



Acknowledgements

Thank You!

hongyanz@ttic.edu