# New Paradigms and Global Optimality in Non-Convex Optimization

Hongyang Zhang, Machine Learning Dept., CMU Joint work with Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab Yingyu Liang, David P. Woodruff

**CMU** Theory Lunch

#### **Optimizations are Everywhere**



2

#### **Examples of Non-Convex Optimizations**

Non-linear mapping (deep neural networks)



#### **Examples of Non-Convex Optimizations**

Discrete loss (learning halfspace)



#### **Examples of Non-Convex Optimizations**

Coupling of variables (matrix factorization)



#### **Challenges in Non-Convex Problems**



#### **NP-hard in general!**

#### Tame Non-Convex Problems

#### 1. By good initialization



#### **Tame Non-Convex Problems**

1. By good initialization 2. By sequential convex probs.



#### **Tame Non-Convex Problems**

1. By good initialization 2. By sequential convex probs. 3. By landscape Part I Part II

the focus of this talk



#### Part I Learning of Halfspaces and 1-Bit Compressed Sensing (by sequential convex probs.)

#### Learning of Halfspaces and 1-bit CS



Goal: use emails seen so far to produce good prediction rule for future data.

### Learning of Halfspaces



What if we know the classifier is sparse? Is it possible that we require fewer samples?

[ABL] The Power of Localization for Efficiently Learning Linear Separators with Noise, JACM'17 [KLS] Learning halfspaces with malicious noise, JMLR'09 [KKMS] Agnostically learning halfspaces, FOCS'05

#### **1-Bit Compressed Sensing**



What if we know the classifier is sparse? Is it possible that we require fewer samples?

Difference with learning: Impose additional sparsity constraint

[PV] Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, IEEE TIT'13

### **Optimization Formulation**

No Noise: Easy – solve ERM via a linear program

Find w such that  $\forall i, y_i(w \cdot x_i) \ge 0$ 

With Noise: Solve a non-convex problem

 $\min_{w} \Pr_{(x,y)\sim \widetilde{D}}[\operatorname{sgn}(w \cdot x) \neq y], \text{ (s.t. } \|w\|_0 \leq t \text{ for 1-bit CS)} \text{ (log-concave dist.)}$ 

• Sparsity (1-bit CS): Use a number of samples poly(t, log(d/ $\delta$ ), 1/ $\epsilon$ )



Can we minimize the objective function to the accuracy of the information-theoretic limit under asymmetric noise model, although its formulation is non-convex?

The answer is affirmative!

### Part I Outline

- Motivation and examples
- Our settings
- Our algorithms
- Our hardness results
- Conclusions

#### Asymmetric Noise model – Bounded Noise



#### Asymmetric Noise model – Adversarial Noise

#### Adversarial Noise:

The adversary can flip any  $\tau$  fraction of labels of x.

- ♦ No result is known when  $w \in \Re^d$  is *t*-sparse
- Information-theoretic limit:  $OPT + \tau + \varepsilon$



### Part I Outline

- Motivation and examples
- Our settings
- Our algorithms
- Our hardness results
- Conclusions

Idea: Adaptively solve a sequence of convex programs



Sample unlabeled data and have an initial guess

Idea: Adaptively solve a sequence of convex programs



Ask some of labels in the band, fit a polynomial to constant error (require exp. time on 1/error)

Idea: Adaptively solve a sequence of convex programs



Label points in band by the polynomial, do hinge loss minimization to constant error, and obtain  $h_1$ 

Idea: Adaptively solve a sequence of convex programs



Halve the bandwidth around  $h_1$ , ask labels in the band, fit polynomial

Idea: Adaptively solve a sequence of convex programs



Halve the bandwidth around  $h_1$ , ask labels in the band, fit polynomial

Idea: Adaptively solve a sequence of convex programs



Label points in band by polynomial, do hinge loss minimization to constant error, and obtain  $h_2$ 

Idea: Adaptively solve a sequence of convex programs



Repeat  $log(1/\varepsilon)$  rounds

### Main Results

In  $\Re^d$ , for the log-concave dist. with polynomial time and probability at least 1-  $\delta$ :

Theorem 1 (Bounded Noise, Learning, ABHZ'16):

Label Complexity: poly(*d*, log( $1/\delta$ ), log( $1/\epsilon$ )) Guarantee: *OPT* +  $\epsilon$ 

Theorem 2 (Bounded Noise, 1-bit CS, ABHZ'16):

Label Complexity: poly(t, log( $d/\delta$ ),  $1/\epsilon$ ) Guarantee:  $OPT + \epsilon$ 

Theorem 3 (Adversarial Noise, 1-bit CS, ABHZ'16):

Label Complexity:  $O(t, \text{ polylog}(d/\delta), 1/\varepsilon)$ Guarantee:  $OPT + O(\tau) + \varepsilon$ 

#### Intuition and Analysis

Most of the errors are near the decision boundary:



## Intuition and Analysis

$$err(w) = \Pr[\ref{main}] + \Pr[\ref{main}]$$
$$\Pr[\ref{main}] = \Pr[\ref{main}] \times err_{band}(w)$$
$$\Pr[\ref{main}] \text{ small}$$

#### How to find w?

- Hinge loss minimization
- Works only when  $\eta \approx 10^{-6}$
- Poly Regression [Kalai et al.] with constant error
- Return a poly, rather than a halfspace
- Combine two together



### Part I Outline

- Motivation and examples
- Our settings
- Our algorithms
- Our hardness results
- Conclusions

### Hardness – One shot minimization

Continuous loss function on  $h_w$  satisfies:

- Symmetric w.r.t.  $h_w$
- The loss is larger if  $h_w$  is inconsistent with the true label

#### A couple of examples:

\*





#### Hardness – One shot minimization

#### Theorem 4 (bounded noise, ABHZ'16):

Any one-shot minimization of function satisfying above properties cannot achieve  $OPT + \varepsilon$  error under log-concave distribution with bounded noise.

### Part I Outline

- Motivation and examples
- Our settings
- Our algorithms
- Our hardness results
- Conclusions

### Part I Conclusions

- Learning of halfspaces and 1-bit CS
  - Polynomial-time algorithm
  - Noise-tolerant for bounded and adversarial noise models
  - Achieve information-theoretic limits
  - Solve a non-convex problem via a sequence of convex programs
- Hardness results
  - One-shot minimization does not work
- Future work
  - Explore the localization technique to the other applications

#### Part II Matrix Completion and Related Problems (by nice landscape)

34

### **Matrix Completion**



Goal: exactly recover the full matrix with #observations as small as possible

#### **Non-Convex Form of Matrix Completion**

|            |        |        | LINCOLN | <u>.</u> |      | Yee |       |     |
|------------|--------|--------|---------|----------|------|-----|-------|-----|
| _          | Action | Comedy | Histo   | orical   | Cart | oon | Magio | cal |
| 3          |        |        | 8       | 8        | 1    | 1   |       |     |
| X          |        |        | 8       | 8        | 1    | 1   |       |     |
| 2          |        |        | 4       | 4        | 2    | 2   |       |     |
| -          |        |        | 4       | 4        | 2    | 2   |       |     |
| 2          |        |        | 1       | 1        | 4    | 4   |       |     |
| Â          |        |        | 1       | 1        | 4    | 4   |       |     |
| <b>?</b> . |        |        | 0       | 0        | 8    | 8   |       |     |
|            |        |        | 0       | 0        | 8    | 8   |       |     |
|            |        |        |         |          |      |     |       |     |



#### What we have right now?

- the observed entries
- $rank(X) \leq r$

#### What if we solve the non-convex problem?

$$\min_{X,U,V} ||X||_F, s. t. P_{\Omega}(X) = P_{\Omega}(X^*),$$

$$X = UV.$$
(1)

#### Worst Case of Matrix Completion

|   | Act |   | Corr |   | Hieto |   | Cart | The second | Mac |   |   |   |
|---|-----|---|------|---|-------|---|------|------------|-----|---|---|---|
| - | 1   | 0 | 0    | 0 | 0     |   |      | 0          | 0   | 0 | _ | _ |
| ¥ | 0   | 0 | 0    | 0 | 0     | 0 | 0    | 0          | 0   | 0 |   |   |
| 2 | 0   | 0 | 0    | 0 | 0     | 0 | 0    | 0          | 0   | 0 |   |   |
| - | 0   | 0 | 0    | 0 | 0     | 0 | 0    | 0          | 0   | 0 |   |   |
| ľ | 0   | 0 | 0    | 0 | 0     | 0 | 0    | 0          | 0   | 0 |   |   |
| Â | 0   | 0 | 0    | 0 | 0     | 0 | 0    | 0          | 0   | 0 |   |   |
|   | 0   | 0 | 0    | 0 | 0     | 0 | 0    | 0          | 0   | 0 |   |   |
|   | 0   | 0 | 0    | 0 | 0     | 0 | 0    | 0          | 0   | 0 |   |   |

What we have right now?

- the observed entries
- $rank(X) \leq r$

What if we solve the non-convex problem?

$$\min_{X,U,V} ||X||_F, s. t. P_{\Omega}(X) = P_{\Omega}(X^*),$$

$$X = UV.$$
(1)



IJ

#### **Information-Theoretic Upper Bound**



Sample Complexity:  $O(\mu nr \log n)$  exactly match lower bound  $\Omega(\mu nr \log n)!$ Guarantee: Exact recovery by (1), under incoherence condition

What if we solve the non-convex problem?

$$\min_{X,U,V} ||X||_F, s. t. P_{\Omega}(X) = P_{\Omega}(X^*),$$

$$X = UV.$$
(1)

[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS'18



#### Theorem 1 (BLWZ'18):

Sample Complexity:  $O(\mu nr \log n)$  exactly match lower bound  $\Omega(\mu nr \log n)!$ Guarantee: Exact recovery by (1), under incoherence condition

What if we solve the non-convex problem?

$$\min_{X,U,V} ||X||_F, s. t. P_{\Omega}(X) = P_{\Omega}(X^*),$$

$$X = UV.$$
(1)



### Challenges



#### Our Methodology --- Strong Duality



common global optimality

# Our Methodology --- Strong Duality



[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS'18

#### **Proof Outline**

 $\min_{X,U,V} \frac{1}{2} \|X\|_F^2, \text{ s. t. } P_{\Omega}(X) = P_{\Omega}(X^*), X = UV.$ 

 $\min_{U,V} \frac{1}{2} ||UV||_F^2 + H(UV), \text{ where } H \text{ is the indicator function of } P_{\Omega}(X) = P_{\Omega}(X^*)$ Reduction to PCA:

$$F(U,V) = \frac{1}{2} ||UV||_F^2 + H(UV)$$
  

$$= \frac{1}{2} ||UV||_F^2 + H^{**}(UV) \qquad H(\cdot) \text{ is convex}$$
  

$$= \max_{\Lambda} \frac{1}{2} ||UV||_F^2 + \langle \Lambda, UV \rangle - H^*(\Lambda) \qquad \text{Def. of bi-conjugate}$$
  

$$= \max_{\Lambda} \frac{1}{2} ||-\Lambda - UV||_F^2 - \frac{1}{2} ||\Lambda||_F^2 - H^*(\Lambda) \qquad \text{PCA for fixed } \Lambda!!!$$

Find  $\tilde{\Lambda}$  by dual certificate:



 $\partial H(X^*) = \Omega$ 

#### Hardness results



 $\min_{U,V} F(U,V) = \frac{1}{2} \|UV\|_F^2 + H(UV),$ H is convex function

Theorem 3 (Hardness of matrix factorization, BLWZ'18):

Assume the hardness of 4-SAT. Any deterministic algorithm achieving  $(1 + \varepsilon)OPT$  requires  $2^{\Omega(n)}$  time.

[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS'18

#### Part II Conclusions

- Matrix Completion
  - Information-theoretic upper bound
  - A computationally efficient algorithm by strong duality
- Hardness results
  - Generic matrix factorization requires  $2^{\Omega(n)}$  time to get  $(1 + \varepsilon)OPT$
- Future work
  - Explore the strong duality of other problems, e.g., dictionary learning



**Thank You**