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Optimizations are Everywhere




Examples of Non-Convex Optimizations

- Non-linear mapping (deep neural networks)
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Examples of Non-Convex Optimizations

- Discrete loss (learning halfspace)



Examples of Non-Convex Optimizations

- Coupling of variables (matrix factorization)




Challenges in Non-Convex Problems

NP-hard in general!



Tame Non-Convex Problems

1. By good initialization

bad initialization

good initialization



Tame Non-Convex Problems

1. By good initialization 2. By sequential convex probs.




Tame Non-Convex Problems

1. By good initialization 2. By sequential convex probs. 3. By landscape
Part | Part Il

the focus of this talk
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Learning of Halfspaces and

1-Bit Compressed Sensing
(by sequential convex probs.)



Learning of Halfspaces and 1-bit CS

ece All Mailboxes (Found 3 matches for search)
=R U @ & &« > |~ Q_#Row~ A. 2017 Notifications
I Maiboxes _ search: D Inbos - cs.cmu.edu _Inbox - zhydzhi23@163.com v Sent v Drafts v
Mailbores Sort by Dato v ©
v 63 Inbox Asilomar 2017 Notifications  7/7/17 Asilomar 2017 Notifications iy 7,207 at 1:4
& zhydzn2. (el R ot 1 Asilomar 2017 Review Results for paper #1019 Details
To: PRANJAL AWASTHIGRUTGERS.EDU, NINAMF@CS.CMUEDU, NHAGHTAL@CS.CMUEDU & 1more
62 he
ongyan...
Asilomar 2017 Papers apany
~ P
ceicmu.e-> Asilomar 2017 Pa... Inbox - cs.cmu.edu Date: Friday, July 07, 2017
£ pku.edu.cn This email was automatically sent to Paper ID: 1019
you upon submission of Extended Su... Title: Active Learing of Linear Separators under Asymmetric Noise
& Google Session: TAdb-2: Adaptive Sensing (Invted)
Asilomar 2017 Papers apany
» A Sent Asilomar 2017 Pa... Inbox - cs.cmu.edu Dear Pranjal Awasthi, Maria-| Nika Haghtalab, H he
Tris emal s automatcalysent o .
> & Junk ended S0 On behalf of the 515t Asilomar Conference on Signals, Systems and Computers, we are pleased to inform you that the above paper has been selected
this years , which will be held October 20 - November 1, 2017, at the Asllomar Conference Grounds, Pacific
» I Trash Grove, California, and you are invited to present wur ‘work at participants. Please note that the
5 Allall Go Conference Technical eferee reports i ved
X AUTHOR AND PUBLIGATION INFORMATION
Smart Mailboxes Author and publication information [ ne website,
N S ek v 6.l 8 sl comesa et o phone s (651) S15.4001.
On My Mac
B Recovered.. For your paper to be published in the Asilomar Conference Proceedings, you wil need:
1) To register and being p v
2hydzh23@163.com N authors of e given paper wil ot 5e publisned
[=hac: 103 fo upload an your paper as per instructions ,2017). The
B mmxis Papers over five pages In length will be charged § That . or
amangements be made with the Conference Registrar, Ms. Sue Netzorg. = is issue o the
be made with the Conference R Ws. Sue Netzorg. s insure thi i
3 Toamtr last day of , as only Wil be printed if are not paid.
hongyanz@andrew... CONFERENGE AND HOTEL REGISTRATION
i) can be found at
3 sent
2 i , s fist prioriy s given to full ime hotel guests and there are a imited number of
B3 rash
cs.cmu.edu 3) We strongly encourage attendoes to register early with the Canference hotel registration staff to insure the type of accommodation they wish to select
3 sent Wil be availeble if they wish to stay on-grounds.
[ spam LETTER OF INVITATION

Goal: use emails seen so far to pro

ece Junk (223 messages)
L= H 0 W & & >~ Q Search
[ Mailooxes  Inbox - zhydzh123@163.com v  Sent v Drafts v
Sllssi Sortby Datel ® 7 Mail thinks this message is Junk Mail. Load Remote Content  Move to Inbox
v 2 Inbox
62 zhydzh12... FuEniE B 8j9/17 TR B9 Junk - pku.edu.cn  August 7, 2017 at 22:22 @
& hongyan.. 205 HAHFR, .. Junk - plasedu.cn (EBEH) 2385, EARMBNREE!
To: hy_zh@pku.edu.cn,
3 cs.cmu.e Reply-To: info@cyagen.com
2 phueducn | csAE2017 B 81817
© Google Invitation from CSA... Junk - pkuedu.cn
» 4 sent
» & Junk SAl Conferences B 81817 cyagen phone
International Confe... Junk - pkuedu.cn
» [ Trash
= All Mail (Go... I35 e A HICH I PE,_Sik EE
St aibores o BISIR, METH, SRAREB2E5E, WRST, LR
On My Mac
5 Recovered... Eisnis =
shydzm23@163.com dnepne
B3 resuer =
B mimscise 8717 FRES  WIME RERE RfTHE EahtE (t/RRA)
&5 o s pedien SEMEAR 1MEK  7-OR  ZORCASPRARISIE
hongyanz@andrew... BEAE 23a —om | zam AR
oy: Coursera & a7 ERMIE 2308 7-97  Z3RCRISPR-ARKIINE
5 sent DAMFORE dunk - phueducn ———— " o
B Trash ERMIE 250 7-9F  Z3RCRISPR-ARIIRINE 21800
D TIANGEN-KiRE [ 8/6/17
5 sent HRRFEEFH... Junk - phueducn
L seam

duce good prediction rule for future data.



Learning of Halfspaces
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[ABL] The Power of Localization for Efficiently Learning Linear Separators with Noise, JACM'17
[KLS] Learning halfspaces with malicious noise, JMLR’09
[KKMS] Agnostically learning halfspaces, FOCS’05



1-Bit Compressed Sensing
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Difference with learning: Impose additional sparsity constraint

[PV] Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, |IEEE TIT'13



Optimization Formulation

- No Noise: Easy — solve ERM via a linear program
Find w such that Vi, y;(w-x;) =0
- With Noise: Solve a non-convex problem

mMi]n Pricy)~plsgn(w - x) #y], (s.t. [[wllg <t for 1-bit CS) (log-concave dist.)

- Sparsity (1-bit CS): Use a number of samples poly(t, log(d/s), 1/¢)

Can we minimize the objective function to the accuracy of

the information-theoretic limit under asymmetric noise
model, although its formulation is non-convex?

The answer is affirmative!
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- Motivation and examples
- Our settings

- Our algorithms

- Our hardness results

- Conclusions



Asymmetric Noise model — Bounded Noise

Bounded Noise (a.k.a. Massart Noise):

For a fixed 5 < /2, for each x, the adversary o 0
flips the label of x with probability #(x)=<n. R N _-p- :

+
~
+ = ~
< Generalization of the RCN model w.p. 0.1 _ ~ o
< Prior Result: 7 ~ 107° - = <
< No result is known when w € R4is t-sparse (x,y)

X4

Information-theoretic limit; OPT + ¢

00



Asymmetric Noise model — Adversarial Noise

Flip O(t) labels
1
by

h

Adversarial Noise:

The adversary can flip any 7 fraction of
labels of x.

/

s No result is known when € R4 is t-sparse

/

+» Information-theoretic limit: OPT + 7 + ¢
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- Qur settings

- Our algorithms

- Our hardness results

- Conclusions
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% ldea: Adaptively solve a sequence of convex programs

Sample unlabeled data
and have an initial guess
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% ldea: Adaptively solve a sequence of convex programs

Ask some of labels in the band,

fit a polynomial to constant error
(require exp. time on 1/error)
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% ldea: Adaptively solve a sequence of convex programs

hW* ../" h hO

/- Label points in band by the polynomial,
' do hinge loss minimization to constant
error, and obtain h,
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% ldea: Adaptively solve a sequence of convex programs

/
Ay “h
w Y, }/10

Halve the bandwidth around h,, ask
labels in the band, fit polynomial
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% ldea: Adaptively solve a sequence of convex programs

/
by

© ,./ ‘ Halve the bandwidth around h,, ask

labels in the band, fit polynomial

==

/@@




I S
Algorithm

/

% ldea: Adaptively solve a sequence of convex programs

Label points in band by polynomial, do

hinge loss minimization to constant

/ @ @ error, and obtain h,
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* |dea: Adaptively solve a sequence of convex programs

hW* h4h3 hz h]_
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Main Results

In R?, for the log-concave dist. with polynomial time and probability at least 1- &:

Theorem 1 (Bounded Noise, Learning, ABH ’16):

Label Complexity: poly(d, log(1/5), log(1/¢))
Guarantee: OPT + ¢

Theorem 2 (Bounded Noise, 1-bit CS, ABH '16):

Label Complexity: poly(t, log(d/5), 1/¢)
Guarantee: OPT + ¢

Theorem 3 (Adversarial Noise, 1-bit CS, ABH ’16):

Label Complexity: O (t, polylog(d/5), 1/¢)
Guarantee: OPT + O(t) + ¢

[ABHZ] Learning and 1-bit Compressed Sensing under Asymmetric Noise, COLT’16



Intuition and Analysis

Most of the errors are near the decision boundary:

]




Intuition and Analysis

err(w) =Pr[{ ] +Pr{{ ]
Pr[&\\\\x] — PI’K\\\\\\%] X errband(w)

Pr[\ | small

How to find w?

% Hinge loss minimization
» Works only when  ~ 107°
Poly Regression [Kalai et al.] with constant error
Return a poly, rather than a halfspace
Combine two together

2

// 2
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Hardness — One shot minimization

Continuous loss function on h,, satisfies: >

R/

% Symmetric w.r.t. h,,
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% The loss is larger if h,, is inconsistent
with the true label

A couple of examples:

/

* Hinge, Logistic, Square, Exponential Loss, etc.
E.g. Hinge:

Margin Margin I

A 4
L (Zu @) }

A N

0 zwsin 0 2y, Sing,,




Hardness — One shot minimization

Theorem 4 (bounded noise, ABH "16):

Any one-shot minimization of function satisfying above properties
cannot achieve OPT + ¢ error under log-concave distribution with
bounded noise.

[ABHZ] Learning and 1-bit Compressed Sensing under Asymmetric Noise, COLT’16
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Part | Conclusions

- Learning of halfspaces and 1-bit CS

- Polynomial-time algorithm

- Noise-tolerant for bounded and adversarial noise models

- Achieve information-theoretic limits

- Solve a non-convex problem via a sequence of convex programs
- Hardness results

- One-shot minimization does not work
- Future work

- Explore the localization technique to the other applications



Part I

Matrix Completion and Related Problems
(by nice landscape)



Matrix Completion

Comedy Historical Cartoon Maglcal
8 8 1

Actnon
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Goal: exactly recover the full matrix with #observations as small as possible



Non Convex Form of Matrix Completion
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What we have right now? r
- the observed entries
crank(X) <r

What if we solve the non-convex problem?

}1;1:1(}}1}1/”)(”1:,5 L. P_Q(X) = PQ(X ),
X =UV.

(1)



Worst Case of Matrlx Completion

el 2 T e
Action Comedy Historical

%1 0 000 00 00 O
o 0 000 00 00 O
{0 0 000 00 0 0 O
40 0 000 00 0 0 0
Yo o0 o000 0O OOS O ™ p-Incoherence:
-
R EREE: max(U el IVTerlz} < 5
20 0 000 00 00 O 0
What we have right now? U

- the observed entries
crank(X) <r

What if we solve the non-convex problem?

)1;1:1(}’1‘1/”)(”1;',5 L. P_Q(X) = PQ(X ),
X =UV.

(1)



Informatlon-Theoretlc Upper Bound

Actlon Comedy Historical

%1 0 000 00 0 0 O

o 0 000 00 00 O

t/0 0 000 0O 0 0O

40 0 000 00 0 0 0 mmm

go O 000 00O 0O 0 ™ u-Incoherence:

20 0 000 0O O0O0O T . i
o 0 000 00 00 0 max{lU”e I, IV7ell) < o
20 0000 00 0O O

Theorem 1 (BLW ’18):

Sample Complexity: O(unrlogn) exactly match lower bound Q(unrlogn)!
Guarantee: Exact recovery by (1), under incoherence condition

What if we solve the non-convex problem?

)gpl}gl,llelp,s- t. Po(X) = Po(X7™),

(1)
X=UV.
[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS’18



Proof Idea

low-ran
matrices

consistent
with obs

Theorem 1 (BLW . ’18):

Sample Complexity: O(unrlogn) exactly match lower bound Q(unr logn)!
Guarantee: Exact recovery by (1), under incoherence condition

What if we solve the non-convex problem?

min||X||z,s.t. Po(X) = Py (X™), How to solve it
minIXlly5.£Pa(0) = PaX), @ How o sol
X=UV.
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Challenges



.
Our Methodology --- Strong Duality

common global optimality



2
Our Methodology --- Strong Duality

Work Sample Complexity
[INS13] @) (K4/,t27‘4 5n(1) logny)log ( ))
[Har14] O (,urn(l)(r+log( (1)||X ||F) ||x ||i=
[GLM16] O(max{p’x10r ,u4n47"6}n(1) log n(l)
[SL15] O(rn(1)k* max {ulogn(g) oo —(L 2y 4}
[ZL16] O(prn(pyk? max(p, log ny)))
[GLZ17] () ((,u rik +urlog(-|%np))n( )log(” “lr ))
[ZWL15] @) (ur n( logn(y log( ))
[KMO10a] O (n@yr n( W k2 max { plog niyy, ur ?,&
common global (/i s wr i)
. ) [Groll] (’)(urn(l)log na)
optimality [Chel5] O(urng logZn (1))
O(prnq) logn))
Ours
O(K*prny) log(n(y)) logy, (n(1)))

Theorem 2 (BLW . ’18):

Lower Bound' [CT10] | Q(prng) logn(y)

Sample Complexity: O(k?unrlognlog,, n)
Guarantee: Strong duality holds under incoherence condition

min = || X||%, min|[ X[,

X,UV 2 share common global optimality — x .
5.t Po(X) = Pg(x*xd S-LPa(X) = Pa(X7).

X =UV.
(non-convex) (convex)

[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS’18



Proof Outline

1
in — 2 = * =
g}}’r‘llz 1X||5,s.t. Po(X) = Po(X*),X = UV.

!

r(r]n‘p% |UVI||2 + H(UV), where H is the indicator function of Py (X) = Py (X*)
Reduction to PCA:
1
F(U,V) = UV + HUV)

2
— %HUI;H% + H*(UV) H(-) is convex
= maxz NUVI||Z + (A, UV) — H*(A) Def. of bi-conjugate
= me% |l—A—UV||% — % IAllZ — H*(A) PCA for fixed A!l!
Find A by dual certificate: ) . HEY =0
+ A

(1) A€ 0H(X*) = Q

2) Pr(-A) = X* ‘,\ X*T
3) ||PriA|| < or(X™) jarge 0 is small as
the samples

grow
(dual certificate)



Hardness results

- 1
L] . . _ 2
N R min F(U,V) = - UVIlz + H(UV),

H is convex function

Theorem 3 (Hardness of matrix factorization, BLW.’18):

Assume the hardness of 4-SAT. Any deterministic algorithm
achieving (1 + €)OPT requires 2% time.

[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS’18



Part Il Conclusions

- Matrix Completion
- Information-theoretic upper bound
- A computationally efficient algorithm by strong duality
- Hardness results
- Generic matrix factorization requires 2™ time to get (1 + €)OPT
- Future work
- Explore the strong duality of other problems, e.g., dictionary learning

Geometric Exact Recovery by Non-Convex Problem (1) |
Analysis . . .
with Optimal Sample Complexity
Non-Convex Problem (1) Exact Recovery by Convex
(NP-hard in general) % — Problem (2)
Randomness .
Construct.lc.)n of Strong Duality
Dual Certificate poquction to

Low-Rank -
Approximation
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