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Optimizations are Everywhere
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convex

non-convex



Examples of Non-Convex Optimizations
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• Non-linear mapping (deep neural networks)



Examples of Non-Convex Optimizations
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• Discrete loss (learning halfspace)
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Examples of Non-Convex Optimizations
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• Coupling of variables (matrix factorization)



Challenges in Non-Convex Problems
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NP-hard in general!



Tame Non-Convex Problems
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1. By good initialization

bad initialization

good initialization



Tame Non-Convex Problems
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1. By good initialization  2. By sequential convex probs.



Tame Non-Convex Problems
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2. By sequential convex probs.  3. By landscape1. By good initialization

the focus of this talk
Part I Part II



Part I
Learning of Halfspaces and
1-Bit Compressed Sensing
(by sequential convex probs.)
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Learning of Halfspaces and 1-bit CS
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Not Spam Spam

Goal: use emails seen so far to produce good prediction rule for future data.



Learning of Halfspaces
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What if we know the 
classifier is sparse?
Is it possible that we 

require fewer samples?
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[ABL] The Power of Localization for Efficiently Learning Linear Separators with Noise, JACM’17
[KLS] Learning halfspaces with malicious noise, JMLR’09
[KKMS] Agnostically learning halfspaces, FOCS’05



1-Bit Compressed Sensing

13

What if we know the 
classifier is sparse?
Is it possible that we 

require fewer samples?
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Difference with learning: Impose additional sparsity constraint

[PV] Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, IEEE TIT’13



Optimization Formulation
• No Noise: Easy – solve ERM via a linear program

• With Noise: Solve a non-convex problem

• Sparsity (1-bit CS): Use a number of samples poly(t, log(d/𝛿), 1/𝜀)
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Find w such that ∀𝑖, 𝑦((𝑤 + 𝑥() ≥ 0

min
3
Pr(6,7)~9:[sgn(𝑤 · 𝑥) ≠ y],  (s.t. 𝑤 B ≤ 𝑡 for 1-bit CS)

Can we minimize the objective function to the accuracy of 
the information-theoretic limit under asymmetric noise 
model, although its formulation is non-convex?

The answer is affirmative!

(log-concave dist.)



Part I Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions
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Asymmetric Noise model – Bounded Noise
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(𝑥, 𝑦)

For a fixed η ≤ ½, for each x, the adversary 
flips the label of x with probability η(x)≤η.

v Generalization of the RCN model
v Prior Result: η ≈ 10GH
v No result is known when              is t-sparse
v Information-theoretic limit: 𝑂𝑃𝑇 + 𝜀

Bounded	Noise	(a.k.a.	Massart Noise):

w.p. 0.1

w.p. 0.05

w.p. 0.03

w.p. 0.1

w.p. 0.04

𝑤

𝑤 ∈ ℜO



Asymmetric Noise model – Adversarial Noise
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The adversary can flip any 𝜏 fraction of 
labels of x.

Adversarial	Noise:

𝑤 ∈ ℜOv No result is known when               is t-sparse
v Information-theoretic limit: 𝑂𝑃𝑇 + 𝜏 + 𝜀



Part I Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions
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Algorithm

19

Sample unlabeled data 
and have an initial guess

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB



Algorithm
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Ask some of labels in the band, 
fit a polynomial to constant error

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB

(require exp. time on 1/error)



Algorithm
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Label points in band by the polynomial, 
do hinge loss minimization to constant 

error, and obtain ℎS

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎBℎS



Algorithm
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Halve the bandwidth around ℎS, ask 
labels in the band, fit polynomial

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎBℎS



Algorithm
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Halve the bandwidth around ℎS, ask 
labels in the band, fit polynomial

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎBℎS



Algorithm
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Label points in band by polynomial, do 
hinge loss minimization to constant 

error, and obtain ℎT

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB
ℎSℎT



Algorithm
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Repeat log	(1/𝜀) rounds

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB
ℎSℎTℎY…ℎ[



Main Results
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Label Complexity: O (t, polylog(d/𝛿), 1/𝜀)
Guarantee: 𝑂𝑃𝑇 + 𝑂(𝜏) + 𝜀

Theorem	3	(Adversarial	Noise,	1-bit	CS,	ABHZ’16):

Label Complexity: poly(d, log(1/𝛿), log(1/𝜀))
Guarantee: 𝑂𝑃𝑇 + 𝜀

Theorem	1	(Bounded	Noise,	Learning,	ABHZ’16):

In ℜO, for the log-concave dist. with polynomial time and probability at least 1- 𝛿:

Label Complexity: poly(t, log(d/𝛿), 1/𝜀)
Guarantee: 𝑂𝑃𝑇 + 𝜀

Theorem	2	(Bounded	Noise,	1-bit	CS,	ABHZ’16):

[ABHZ] Learning and 1-bit Compressed Sensing under Asymmetric Noise, COLT’16



Intuition and Analysis
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w

g

w*

Pr[ ] Pr[ ]<<

Most of the errors are near the decision boundary:



Intuition and Analysis
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wk-1

w*

err(w) =Pr[ ] + Pr[ ]
Pr[ ] = Pr[ ]⇥ errband(w)

Pr[ ] small

v Hinge loss minimization
v Works only when η ≈ 10GH
v Poly Regression [Kalai et al.] with constant error
v Return a poly, rather than a halfspace
v Combine two together

How to find 𝑤?   



Part I Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions
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Hardness – One shot minimization
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Continuous loss function on 𝒉𝒘 satisfies:

v Symmetric w.r.t. ℎ3

v The loss is larger if ℎ3 is inconsistent 
with the true label

A couple of examples:

v Hinge, Logistic, Square, Exponential Loss, etc.
E.g. Hinge: 



Hardness – One shot minimization
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Any one-shot minimization of function satisfying above properties 
cannot achieve 𝑂𝑃𝑇 + 𝜀 error under log-concave distribution with 
bounded noise.

Theorem	4	(bounded	noise,	ABHZ’16):

[ABHZ] Learning and 1-bit Compressed Sensing under Asymmetric Noise, COLT’16



Part I Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions
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Part I Conclusions
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• Learning of halfspaces and 1-bit CS
• Polynomial-time algorithm
• Noise-tolerant for bounded and adversarial noise models
• Achieve information-theoretic limits
• Solve a non-convex problem via a sequence of convex programs

• Hardness results
• One-shot minimization does not work

• Future work
• Explore the localization technique to the other applications



Part II
Matrix Completion and Related Problems
(by nice landscape)
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Matrix Completion

35

Goal: exactly recover the full matrix with #observations as small as possible

r

r



Non-Convex Form of Matrix Completion
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• the observed entries
• 𝑟𝑎𝑛𝑘(𝑋) ≤ 𝑟

What we have right now?   

What if we solve the non-convex problem?   

r

r

(1)
min
c,d,e

𝑋 f , 𝑠. 𝑡. 𝑃i 𝑋 = 𝑃i 𝑋∗ ,
𝑋 = 𝑈𝑉.



Worst Case of Matrix Completion
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What if we solve the non-convex problem?   

1 0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0

1
0
0
0
0
0
0
0

1  0  0  0  0  0  0  0  0   0

𝑈

𝑉

𝜇-Incoherence:

max	{ 𝑈q𝑒( T, 𝑉q𝑒( T} ≤
𝜇𝑟
𝑛

�

(1)
min
c,d,e

𝑋 f , 𝑠. 𝑡. 𝑃i 𝑋 = 𝑃i 𝑋∗ ,
𝑋 = 𝑈𝑉.

• the observed entries
• 𝑟𝑎𝑛𝑘(𝑋) ≤ 𝑟

What we have right now?   



Information-Theoretic Upper Bound
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What if we solve the non-convex problem?   

1 0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0
0     0     0    0    0     0    0     0    0    0

1
0
0
0
0
0
0
0

1  0  0  0  0  0  0  0  0   0

𝑈

𝑉q

𝜇-Incoherence:

max	{ 𝑈q𝑒( T, 𝑉q𝑒( T} ≤
𝜇𝑟
𝑛

�

Sample Complexity: O(𝜇𝑛𝑟 log 𝑛)
Guarantee: Exact recovery by (1), under incoherence condition

Theorem	1	(BLWZ’18):

exactly match lower bound Ω(𝜇𝑛𝑟 log 𝑛)!

(1)
min
c,d,e

𝑋 f , 𝑠. 𝑡. 𝑃i 𝑋 = 𝑃i 𝑋∗ ,
𝑋 = 𝑈𝑉.

[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS’18



Proof Idea
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What if we solve the non-convex problem?   

Sample Complexity: O(𝜇𝑛𝑟 log 𝑛)
Guarantee: Exact recovery by (1), under incoherence condition

Theorem	1	(BLWZ’18):

exactly match lower bound Ω(𝜇𝑛𝑟 log 𝑛)!

How to solve it 
efficiently?(1)

min
c,d,e

𝑋 f , 𝑠. 𝑡. 𝑃i 𝑋 = 𝑃i 𝑋∗ ,
𝑋 = 𝑈𝑉.

low-rank
matrices 𝐗∗

consistent
with obs



Challenges
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Our Methodology --- Strong Duality
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common global optimality



Our Methodology --- Strong Duality
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common global 
optimality

Sample Complexity: O(𝜅T𝜇𝑛𝑟 log 𝑛 logTx 𝑛)
Guarantee: Strong duality holds under incoherence condition

Theorem	2	(BLWZ’18):

min
c,d,e

1
2
𝑋 f

T ,	

																							s. t. 𝑃i 𝑋 = 𝑃i 𝑋∗ ,
𝑋 = 𝑈𝑉.

min
c

𝑋 {∗ ,	
																		s. t. 𝑃i 𝑋 = 𝑃i 𝑋∗ .

(non-convex) (convex)

share common global optimality

[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS’18



Proof Outline
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min
c,d,e

1
2
𝑋 f

T, s. t. 𝑃i 𝑋 = 𝑃i 𝑋∗ ,𝑋 = 𝑈𝑉.

min
d,e

S
T
𝑈𝑉 f

T + 𝐻(𝑈𝑉), where 𝐻 is the indicator function of 𝑃i 𝑋 = 𝑃i 𝑋∗

𝐹 𝑈, 𝑉 =
1
2
𝑈𝑉 f

T + 𝐻 𝑈𝑉

Reduction to PCA:

=
1
2
𝑈𝑉 f

T + 𝐻∗∗ 𝑈𝑉

= max
~

1
2
𝑈𝑉 f

T + Λ, 𝑈𝑉 −𝐻∗(Λ)

= max
~

1
2
−Λ − 𝑈𝑉 f

T −
1
2
Λ f

T −𝐻∗(Λ)

𝐻 + is	convex
Def.	of	bi-conjugate

PCA	for	fixed	Λ!!!

Find Λ:	by dual certificate: 	 !"#$%&%' = ψ	

*	

*+	

,%	
(dual	certificate)	

−,%	

$%&%	
	O	

small	 .	
large	

(1) Λ: ∈ 𝜕𝐻 𝑋∗ = Ω
(2) 𝑃q −Λ: = 𝑋∗

(3) 𝑃q�Λ: < 𝜎{(𝑋∗)
𝑋∗

𝜕𝐻(𝑋∗) = Ω

𝜃 is small as 
the samples 
grow



Hardness results
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Assume the hardness of 4-SAT. Any deterministic algorithm 
achieving 1 + 𝜀 𝑂𝑃𝑇 requires 2i(�) time.

Theorem	3	(Hardness	of	matrix	factorization,	BLWZ’18):

min
d,e

𝐹 𝑈, 𝑉 =
1
2
𝑈𝑉 f

T + 𝐻 𝑈𝑉 ,

𝐻 is	convex	function

[BLWZ] Matrix Completion and Related Problems via Strong Duality, ITCS’18



Part II Conclusions
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• Matrix Completion
• Information-theoretic upper bound
• A computationally efficient algorithm by strong duality

• Hardness results
• Generic matrix factorization requires 2i(�) time to get 1 + 𝜀 𝑂𝑃𝑇

• Future work
• Explore the strong duality of other problems, e.g., dictionary learning

	

Non-Convex	Problem	(1)	
(NP-hard	in	general)	

Randomness	

Geometric	
Analysis	

Construction	of	
Dual	Certificate	 Reduction	to	

Low-Rank	
Approximation	

Strong	Duality	

Exact	Recovery	by	Non-Convex	Problem	(1)	
with	Optimal	Sample	Complexity	

Exact	Recovery	by	Convex	
Problem	(2)	
	



Thank You
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