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Deep networks are unsafe
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Deep networks are unsafe

Adversarial Noise

-

“panda” “gibbon”

Adversarial Rotation

N
-

“vulture” “orangutan”

Adversarial Photographer

A -

“not hotdog” “hotdog”

[BCZOCG'18] Unrestricted Adversarial Example, 2018



Why are there adversarial examples?

« We use a wrong loss function
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Trade-off between Robustness and Accuracy

Rron (F): = Ecx v)-p1{3X" € B(X, &) s.t. f(X")Y < 0}
Ruat(f):=Exy)~p 1{f (X)Y < 0}

* An example of trade-off:

= Pr(y = +11X = x)
1

Bayes Optimal Classifier ~All-One Classifier
1/2[ Ruat 0 (optlmal) 1/2
Rerob 1 1/2 (optimal)
S— — —>
0 £ £ 1
X~U[0,1]

Solution: minimize weighted average R,,,;(f) + R,op(f)/A!

Computationally, weighted average
R,..:(f) + R.op(f)/A is non-differentiable.




Surrogate Loss

+ Classification-calibrated loss ¢:

H(n):= yeiﬂgg(n¢(a) + (A —n¢(—a))

H™(n):= min _(np(a)+ (1 -n¢(-a))

:a(2n—-1)=<0

Definition (classification-calibrated loss):

¢ is classification-calibrated loss, if foranyn = 1/2, H-(n) > H(n).

Intuitive explanation:
« Think about n as n(x) = Pr[Y = +1|X = x], and a as score of positive class by f

« Then H(n) = mfin Ry (f)
H (n) = mfin Ry (f) s.t. fisinconsistent with Bayes optimal classifier

« Classification-calibrated loss: wrong classifier leads to larger loss for all n(x)

[BJM’06] Convexity, Classification, and Risk Bounds, 2006



Surrogate Loss

Zero-one loss
Hinge loss

Log loss

Squared hinge loss
Modified Huber loss

~
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[BJM’06] Convexity, Classification, and Risk Bounds, 2006



Main Results

Theorem 1 (Informal, upper bound, YJIXGJ'19):
We have Ryop(f) — Rpar S Rp(f) =Ry + E_max o(f(X')f(X)/D).

X1eB(X,¢e)

Proof Sketch:
* An important decomposition: R,,, (f) = Ryq:(f) + Rpay (f)

where Ry, (f) = E(xy)~p1{3X € € neighbour of f s.t. f(X)Y > 0}

'l - f - f

[ZYJIXGJ'19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019



Main Results

Theorem 1 (Informal, upper bound, YJIXGJ'19):
We have Ryop(f) — Rpar S Rp(f) =Ry + E_max o(f(X')f(X)/D).

X1eB(X,¢e)

Proof Sketch:
* Animportant decomposition: R,,, (f) = Ruqe(f) + Rpay ()

where Ry, (f) = E(xy)~p1{3X € € neighbour of f s.t. f(X)Y > 0}
Rrob(f) — Rpat = Rnat(f) — Rpae + Rbdy (f)
Rnat(f) — Ruar < Rp(f) — Ry by [BJM'06]

* Rpay(f) <E max 1(f(X)f(X) <0)<E max ¢(f(X)f(X)/1)

XreB(X,¢€) XreB(X,e)

[BJM’06] Convexity, Classification, and Risk Bounds, 2006
[ZYJIXGJ'19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019



Main Results

Theorem 1 (Informal, upper bound, YJIXGJ'19):
We have Ryop (f) — Riae < Ry (f) = Ry + E_max_¢(f(X)f(X)/A).

X1eB(X,¢e)

Theorem 2 (Informal, lower bound, " YJIXGJ’'19):

There exist a data distribution, a classifier f, and an 4 > 0 such that
Rrop(f) = Ruat Z Rp(f) =Ry + E_max ¢(f(X)f(X)/2).

X1eB(X,¢)

[ZYJIXGJ'19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019



Main Results

Theorem 1 (Informal, upper bound, "YJXGJ'19):
We have Ry, (f) — Rpat < Ry (f) — Ry + E

max ¢(f(X)f(X)/4).

X1eB(X,¢e)

* New Surrogate Loss (TRADES):
min[E ¢(Yf(0) + B max ¢ (f(Of(X)/D]

1.0

0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0
min E ¢(Y£ (X)) min[E $(Y/ () +E max  ¢(f(fXD/D)]

[ZYJIXGJ'19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019



Significant Experimental Results



. N
Experiments --- CIFAR10

Defense | “Defense type | Under which attack | Dataset | Distance | Anat(f) | Arob(f)
[BRRG18] gradient mask [ACW18] CIFARI10 | 0.031 (¢s0) - 0%
[MLW 18] gradient mask [ACW18] CIFARI10 | 0.031 (¢s0) - 5%
[DALT18] gradient mask [ACW18] CIFARI10 | 0.031 (¢s0) - 0%
[SKNT18] gradient mask [ACW18] CIFARI10 | 0.031 (¢s0) - 9%
[NKM17] gradient mask [ACW18] CIFARI10 | 0.015 (¢s) - 15%
[WSMK18] robust opt FGSM?° (PGD) | CIFAR10 | 0.031 (£..) | 27.07% | 23.54%
[MMS*18] robust opt. FGSM?° (PGD) CIFARI10 | 0.031 (¢s,) | 87.30% | 47.04%

min max YF(X' by Madry et al.

TRADES (1/\ = 1) || regularization | FGSM“’ (PGD) | CIFARI10 | 0.031 (/) | 88.64% | 49.14%
TRADES (1/\ = 6) || regularization | FGSM?’ (PGD) | CIFARI10 | 0.031 (/) | 84.92% | 56.61%

mfin[IE d(Yf(X)) +E max (f)fFX))/A]  (ours)

X1€B¢(X)
TRADES (1/\ = 6) || regularization | LBFGSAttack | CIFAR10 | 0.031 ({) | 84.92% | 81.58%
TRADES (1/\ = 1) || regularization MI-FGSM CIFAR10 | 0.031 ({so) | 88.64% | 51.26%
TRADES (1/\ = 6) || regularization MI-FGSM CIFARI10 | 0.031 ({oo) | 84.92% | 57.95%
TRADES (1/\ = 1) || regularization C&W CIFARI10 | 0.031 (o) | 88.64% | 84.03%
TRADES (1/\ = 6) || regularization C&W CIFARI10 | 0.031 (£s) | 84.92% | 81.24%
[SKC18] gradient mask [ACW18] MNIST | 0.005 (43) - 55%

[MMST18] robust opt. FGSM*’ (PGD) MNIST | 0.3 ({s) | 99.36% | 96.01%
TRADES (1/) = 6) || regularization | FGSM“ (PGD) | MNIST | 0.3 (o) | 99.48% | 96.07%
TRADES (1/\ = 6) || regularization C&W MNIST | 0.005 (42) | 99.48% | 99.46%




Interpretability

(a) clean example (b) adversarial example by boundary at- (a) clean example (b) adyersarial examp}e by boundary at-
tack with random spatial transformation tack with random spatial transformation

the class
of bicycle

the class
of bird

(c) clean example (d) adversarial example by boundary at- (c) clean example (d) adversarial example by boundary at-
tack with random spatial transformation tack with random spatial transformation

(e) clean example (D) adversarial example by boundary at- (e) clean example (f) adversarial example by boundary at-
tack with random spatial transformation tack with random spatial transformation



Competition: NeurlPS 2018 Adversarial Vision Challenge

 Evaluation criterion

Model o
400+ teams, ~2,000 submissions
Track  Tiny ImageNet dataset
* Model Track and Attack Track
« Participants in the two tracks play
against each other

Wintargeted
Attack




Competition: NeurlPS 2018 Adversarial Vision Challenge

¢ Final Result

1st (TRADES) 2nd
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Recent Developments of TRADES

Acceleration [SNG+19,7Z|+19].

« Achieve 30x speed-up, almost as fast as natural training

Semi-supervised learning/unlabel data [CRS+19,SFK+19]:
« TRADES + self-training (500K) improves robustness by +5% on CIFAR10

Applications [JHC+19]:
« 1stplace in Glue leaderboard (up until Dec. 9th) in NLP --- SMART

Theoretical understanding (upcoming):

« Benefits of local Lipschitzness
* Provabile certification of TRADES by random smoothing

[SNG+19] Adversarial training for free, 2019. [ZZL+19] You only propagate once, 2019.
[CRS+19] Unlabel data improves adversarial robustness, 2019.

[SFK+19] Are labels requires for improving adversarial robustness?, 2019.
[JHC+19] SMART, 2019.



Conclusions

- Adversarial Robustness
- Trade-off matters in the adversarial defense
- Matching upper and lower bounds on R,,,(f) — Rpqt
- New surrogate loss for adversarial defense
- Winners of NeurlPS 2018 Adversarial Vision Challenge
- Some recent developments



Thank You



Trade-off between Robustness and Accuracy

» Our goal: Find a classifier f such that R,.,,(f) < OPT +§

OPT: = n}in Ryop (f), s. L. Rpat(f) S Rpge + 6

N

suffice to show EQTO” (f) — R;‘mt]s )




PyTorch Package

* New Surrogate Loss:
min[E ¢ (Yf (X)) + E max ¢(f00f(X)/2)]

Natural training: Adversarial training by TRADES:

To apply TRADES, cd into the directo t 'trades.py' to the directory.
def train(args, model, device, train_loader, optimizer, epoch): PRl S cdi ! Y, pu Py ! ¥

model.train()

for batch_idx, (data, target) in enumerate(train_loader): from trades import trades_loss
data, target = data.to(device), target.to(device)
optimizer.zero_grad() def train(args, model, device, train_loader, optimizer, epoch):
| loss = F.cross_entropy(model(data), target) | model.train()
1oss.backward($ B for batch_idx, (data, target) in enumerate(train_loader):
optimizer.step() data, target = data.to(device), target.to(device)

optimizer.zero_grad()
# calculate robust loss - TRADES loss

(!5%5 = trades_loss(model=model, “\\

x_natural=data,

y=target,
rEEF)IEi(:EE optimizer=optimizer,
step_size=args.step_size,
epsilon=args.epsilon,
perturb_steps=args.num_steps,
batch_size=args.batch_size,
beta=args.beta,

distance='1l_inf"') A‘/)

loss.backward()
optimizer.step()

« Link: https://github.com/yaodongyu/TRADES



Competition II: Unrestricted Adversarial Example

Go0Q%

Unrestricted Adversarial Examples Challenge

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are
expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean,
unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are
currently accepting defenses for the warm-up.

Warm-up & Contest Timeline

warm-up warm-up attacks contest begins & defenses contestant claims
begins are soundly beaten are evaluated each week defender prize

Za

current status



Competition II: Unrestricted Adversarial Example
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Defense Submitted Clean Common priclj SPSA Boundary = Submission
by data corruptions 9 attack attack Date
attack
Pytorch ResNet50 Jan 17th
(trained on bird-or- TRADESv2 100.0% 100.0% 99.5% 100.0%  95.0% 2019 (ES,T)
bicycle extras)
Keras ResNet
Google Sept 29th,
(trained on .g 100.0% 99.2% 92.2% 1.6% 4.0% -
Brain 2018
ImageNet)
Pytorch ResNet
y <.)rc es .e Google Oct 1st,
(trained on bird-or- . 98.8% 74.6% 49.5% 2.5% 8.0%
Brain 2018

bicycle extras)



Competition Il: Unrestricted Adversarial Example

GO g\e :' <.

tial
Defense Submitted Clean Common Sp:;\iclla SPSA Boundary = Submission
by data corruptions a?tack attack attack Date

Pytorch ResNet50

Jan 17th

(trained on bird-or-  TRADESV2 ~ 100.0%  100.0% 99.5% 100.0%  95.0% 22:9 o
bicycle extras)
Keras ResNet

Googl Sept 29th,
(trained on gl 100.0%  99.2% 92.2% 1.6% 4.0% £

Brain 2018
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Pytorch ResNet
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(trained on bird-or- .g 98.8% 74.6% 49.5% 2.5% 8.0%

Brain 2018

bicycle extras)



Competition Il: Unrestricted Adversarial Example

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADESv2

Google
Brain

Google
Brain

100.0%

100.0%

98.8%

Common
corruptions

100.0%

99.2%

74.6%

grid
attack

99.5%

92.2%

49.5%

SPSA
attack

100.0%

1.6%

2.5%

Boundary
attack

95.0%

4.0%

8.0%

Submission
Date

Jan 17th,
2019 (EST)

Sept 29th,
2018

Oct 1st,
2018



Competition Il: Unrestricted Adversarial Example
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Spatial
Defense Submitted Clean Common priclj SPSA Boundary = Submission
by data corruptions 9 attack attack Date
attack
Pytorch ResNet50 Jan 17th
(trained on bird-or- TRADESv2 100.0% 100.0% 99.5% 100.0%  95.0% 2019 (ES’T)
bicycle extras)
Keras ResNet
Googl Sept 29th,
(trained on Sl 100.0%  99.2% 92.2% 16%  4.0% i
Brain 2018
ImageNet)
Pytorch ResNet
Google Oct 1st,
(trained on bird-or- .g 98.8% 74.6% 49.5% 2.5% 8.0%
Brain 2018

bicycle extras)



Competition Il: Unrestricted Adversarial Example

Go0Q%

Spatial
Defense Submitted Clean Common priclj SPSA Boundar Submission
by data corruptions 9 attack attack Date
attack
Pytorch ResNet50 Jan 17th
(trained on bird-or- TRADESv2 100.0% 100.0% 99.5% 100.0%  95.0% 2019 (ES’T)
bicycle extras)
Keras ResNet
Googl| Sept 29th,
(trained on g€ 100.0%  99.2% 92.2% 16%  4.0% o
Brain 2018
ImageNet)
Pytorch ResNet
Google Oct 1st,
(trained on bird-or- .g 98.8% 74.6% 49.5% 2.5% 8.0%
Brain 2018

bicycle extras)



Future Directions about Robustness

- Computational and Statistical Theory
- Understand the optimization principal of new surrogate loss
- (Tight) sample complexity of adversarial learning
- Applications of Al Security
- Robotics, autonomous cars
- Medical diagnose
- Extensions with other frameworks

- Self-supervised/semi-supervised learning
- Neural ODE



