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Era of Big Data
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*Zettabyte = 35,                                                  bytes000,000,000,000,000,000,000



Netflix Challenge (low-rank data)
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？

The user-movie matrix 
is of low rank r.

Question:
• What is the true rank given a few observations? (Testing of Rank)

Need to know r in many 
applications, e.g., in matrix 
completion.
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Property Testing of Rank
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𝑯𝟎:

𝑯𝟏:

𝒓𝒂𝒏𝒌(𝑨) ≤ 𝒅

𝜺-far from 𝒓𝒂𝒏𝒌(𝑨) ≤ 𝒅:
One needs to change at least 
an 𝜀-fraction of entries so that 
the matrix becomes rank-d

v.s.

Goal: Design non-adaptive sampling scheme to distinguish 𝐻0 from 𝐻1
with sample complexity independent of size of matrix n, or even optimally

rank-d

𝜀-far 
from 
rank-d

𝜀-close to 
rank-d(Do not care)



Previous Work
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n

𝑑
𝜀

𝑑/𝜀

Algorithm [KS’03]:
• Randomly permute the row and 

column indices of the matrix
• Sample top 𝑂(5

6
)×𝑂(5

6
) submatrix X

• If 𝑟𝑎𝑛𝑘(𝑋) ≤ 𝑑, output “𝐻0”; 
otherwise, output “𝐻1”

[KS’03] Property testing of data dimensionality, SODA ’03

Problem of the algorithm (d=1, 𝐴 ∈ 𝐻1)

Sample complexity: 𝑂(5
?

6?
)

0 ≠ 0
≠ 0 ?

n
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Our Methodology
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n

n

𝑑
𝜀

𝑑/𝜀

Our algorithm:
• Randomly permute the row and 

column indices of the matrix
• Sample the block region Q
• 𝑟:= min

H I/J ×[I/J]\N
𝑟𝑎𝑛𝑘(𝐴 O/6 ×[O/6])

• If 𝑟 ≤ 𝑑, output “𝐻0”; otherwise, output 
“𝐻1”

Sample complexity: 𝑂P(5
?

6
)

𝑅1 ⊆ ⋯ ⊆ 𝑅T, 𝐶1 ⊇ ⋯ ⊇ 𝐶T
such that
𝑅W = 𝑂P(𝑑2W), 𝐶W = 𝑂P(𝑑/(𝜀2W))

𝑚 = log(1/𝜀)

𝑅1

𝐶1

𝑅T

𝐶T



Why does the Algorithm Work?
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Proof Idea: Starting from an empty-by-empty matrix, augment the matrix 
until finding a 𝑑 + 1 × 𝑑 + 1 full-rank matrix

When 𝐴 ∈ 𝐻0, 𝑟 ≤ 𝑑

• 𝑟:= min
H I/J ×[I/J]\N

𝑟𝑎𝑛𝑘(𝐴 O/6 ×[O/6])

• If 𝑟 ≤ 𝑑, output “𝐻0”; otherwise, output 
“𝐻1”

Only need to show when 𝐴 ∈ 𝐻1, 𝑟 > 𝑑

𝑑
𝜀

𝑑/𝜀



Proof Sketch
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For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴d,ef 𝐴d,e
𝐴df,ef ? = 

0 ≠ 0
𝐴df,ef ?

(𝑟, 𝑐′)

?

Challenge: Though the oracle lemma 
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm 
may not know it is full-rank due to 
unobservations.≠ 0

Case I: 𝐴d,ef = 0

𝑑
𝜀

𝑑/𝜀

(Let’s say d=1)



Proof Sketch

12

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴d,ef 𝐴d,e
𝐴df,ef ?

= 0 ≠ 0
≠ 0 ?

(𝑟, 𝑐′)

?

≠ 0

Case I: 𝐴d,ef = 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma 
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm 
may not know it is full-rank due to 
unobservations.

𝑑
𝜀

𝑑/𝜀



Proof Sketch
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Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴d,ef 𝐴d,e
𝐴df,ef ? =

≠ 0 𝐴d,e
𝐴df,ef ?

(𝑟, 𝑐′)

?

≠ 0

Case II: 𝐴d,ef ≠ 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma 
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm 
may not know it is full-rank due to 
unobservations.

𝑑
𝜀

𝑑/𝜀



Proof Sketch
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Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴dg,ef 𝐴dg,eg
𝐴d,ef ? = 0 𝐴dg,eg

≠ 0 ?

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?

(𝑟0, 𝑐′)

≠ 0

Case I: 𝐴dg,ef = 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma 
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm 
may not know it is full-rank due to 
unobservations.

𝑑
𝜀

𝑑/𝜀



Proof Sketch
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Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴dg,ef 𝐴dg,eg
𝐴d,ef ? = 0 ≠ 0

≠ 0 ?

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?

(𝑟0, 𝑐′)

≠ 0

Case I: 𝐴dg,ef = 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma 
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm 
may not know it is full-rank due to 
unobservations.

𝑑
𝜀

𝑑/𝜀



Proof Sketch
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Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

≠ 0 𝐴dg,eg
𝐴d,ef ?

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?
𝐴dg,ef 𝐴dg,eg
𝐴d,ef ? =

(𝑟0, 𝑐′)

Case II: 𝐴dg,ef ≠ 0

≠ 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma 
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm 
may not know it is full-rank due to 
unobservations.

𝑑
𝜀

𝑑/𝜀



Proof Sketch
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Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?

(𝑟0, 𝑐′)

𝐴dg,ef 𝐴dg,e
𝐴d,ef 𝐴d,e	

(𝑟0, 𝑐)

fully observed

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma 
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm 
may not know it is full-rank due to 
unobservations.

𝑑
𝜀

𝑑/𝜀

≠ 0



A Polynomial-Time Algorithm
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Our algorithm:
• Randomly permute the row and 

column indices of the matrix
• Sample the block region Q
• 𝑟:= min

H I/J ×[I/J]\N
𝑟𝑎𝑛𝑘(𝐴 O/6 ×[O/6])

• If 𝑟 ≤ 𝑑, output “𝐻0”; otherwise, output 
“𝐻1”

1

2

2

4

3

4

6

8

✓

3

4

0

0

✕

1

✓

2

4

3

… … 𝑑
𝜀

𝑑/𝜀



Other Extensions
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There is an algorithm which tests the stable rank by a constant 
success probability with 𝑂P(𝑑i/𝜀j) samples.

Theorem	(Stable	Rank	Upper	Bounds):

srank 𝐴 =
𝐴 o

p

𝜎1p(𝐴)

stable version of matrix rank
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Hardness --- Testing Matrix Rank
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Any non-adaptive algorithm with constant success probability 
requires at least Ωs(𝑑p/𝜀) samples over reals and finite fields.

Theorem	(Lower	Bounds):

𝑯𝟎: 𝑯𝟏:

𝑼𝑽𝑻 𝑼𝑽𝑻+𝒏w𝟏𝟒𝑮

𝑑z{ distance is a constant with small samples

𝑼, 𝑽~𝓖(𝒏, 𝒅) 𝑮~𝓖(𝒏, 𝒏)

Our positive result: 𝑂P	(5
?

6
) samples
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Conclusions
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• Property testing of rank
• Polynomial-time algorithm
• Rebasing argument
• Sample complexity 𝑂P(𝑑p/𝜀)
• Other extensions

• Hardness results
• Sample complexity Ωs(𝑑p/𝜀)



Thank You
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Structure
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