
Testing Matrix Rank, Optimally
Hongyang Zhang, CMU

1

Nina Balcan (CMU) David P. Woodruff (CMU)Yi Li (NTU)

Era of Big Data

2

Era of Big Data

3

*Zettabyte = 35, bytes000,000,000,000,000,000,000

Netflix Challenge (low-rank data)

4

？

The user-movie matrix
is of low rank r.

Question:
• What is the true rank given a few observations? (Testing of Rank)

Need to know r in many
applications, e.g., in matrix
completion.

Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions

5

Property Testing of Rank

6

𝑯𝟎:

𝑯𝟏:

𝒓𝒂𝒏𝒌(𝑨) ≤ 𝒅

𝜺-far from 𝒓𝒂𝒏𝒌(𝑨) ≤ 𝒅:
One needs to change at least
an 𝜀-fraction of entries so that
the matrix becomes rank-d

v.s.

Goal: Design non-adaptive sampling scheme to distinguish 𝐻0 from 𝐻1
with sample complexity independent of size of matrix n, or even optimally

rank-d

𝜀-far
from
rank-d

𝜀-close to
rank-d(Do not care)

Previous Work

7

n

𝑑
𝜀

𝑑/𝜀

Algorithm [KS’03]:
• Randomly permute the row and

column indices of the matrix
• Sample top 𝑂(5

6
)×𝑂(5

6
) submatrix X

• If 𝑟𝑎𝑛𝑘(𝑋) ≤ 𝑑, output “𝐻0”;
otherwise, output “𝐻1”

[KS’03] Property testing of data dimensionality, SODA ’03

Problem of the algorithm (d=1, 𝐴 ∈ 𝐻1)

Sample complexity: 𝑂(5
?

6?
)

0 ≠ 0
≠ 0 ?

n

Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions

8

Our Methodology

9

n

n

𝑑
𝜀

𝑑/𝜀

Our algorithm:
• Randomly permute the row and

column indices of the matrix
• Sample the block region Q
• 𝑟:= min

H I/J ×[I/J]\N
𝑟𝑎𝑛𝑘(𝐴 O/6 ×[O/6])

• If 𝑟 ≤ 𝑑, output “𝐻0”; otherwise, output
“𝐻1”

Sample complexity: 𝑂P(5
?

6
)

𝑅1 ⊆ ⋯ ⊆ 𝑅T, 𝐶1 ⊇ ⋯ ⊇ 𝐶T
such that
𝑅W = 𝑂P(𝑑2W), 𝐶W = 𝑂P(𝑑/(𝜀2W))

𝑚 = log(1/𝜀)

𝑅1

𝐶1

𝑅T

𝐶T

Why does the Algorithm Work?

10

Proof Idea: Starting from an empty-by-empty matrix, augment the matrix
until finding a 𝑑 + 1 × 𝑑 + 1 full-rank matrix

When 𝐴 ∈ 𝐻0, 𝑟 ≤ 𝑑

• 𝑟:= min
H I/J ×[I/J]\N

𝑟𝑎𝑛𝑘(𝐴 O/6 ×[O/6])

• If 𝑟 ≤ 𝑑, output “𝐻0”; otherwise, output
“𝐻1”

Only need to show when 𝐴 ∈ 𝐻1, 𝑟 > 𝑑

𝑑
𝜀

𝑑/𝜀

Proof Sketch

11

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴d,ef 𝐴d,e
𝐴df,ef ? =

0 ≠ 0
𝐴df,ef ?

(𝑟, 𝑐′)

?

Challenge: Though the oracle lemma
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm
may not know it is full-rank due to
unobservations.≠ 0

Case I: 𝐴d,ef = 0

𝑑
𝜀

𝑑/𝜀

(Let’s say d=1)

Proof Sketch

12

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴d,ef 𝐴d,e
𝐴df,ef ?

= 0 ≠ 0
≠ 0 ?

(𝑟, 𝑐′)

?

≠ 0

Case I: 𝐴d,ef = 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm
may not know it is full-rank due to
unobservations.

𝑑
𝜀

𝑑/𝜀

Proof Sketch

13

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴d,ef 𝐴d,e
𝐴df,ef ? =

≠ 0 𝐴d,e
𝐴df,ef ?

(𝑟, 𝑐′)

?

≠ 0

Case II: 𝐴d,ef ≠ 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm
may not know it is full-rank due to
unobservations.

𝑑
𝜀

𝑑/𝜀

Proof Sketch

14

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴dg,ef 𝐴dg,eg
𝐴d,ef ? = 0 𝐴dg,eg

≠ 0 ?

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?

(𝑟0, 𝑐′)

≠ 0

Case I: 𝐴dg,ef = 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm
may not know it is full-rank due to
unobservations.

𝑑
𝜀

𝑑/𝜀

Proof Sketch

15

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

𝐴dg,ef 𝐴dg,eg
𝐴d,ef ? = 0 ≠ 0

≠ 0 ?

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?

(𝑟0, 𝑐′)

≠ 0

Case I: 𝐴dg,ef = 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm
may not know it is full-rank due to
unobservations.

𝑑
𝜀

𝑑/𝜀

Proof Sketch

16

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

≠ 0 𝐴dg,eg
𝐴d,ef ?

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?
𝐴dg,ef 𝐴dg,eg
𝐴d,ef ? =

(𝑟0, 𝑐′)

Case II: 𝐴dg,ef ≠ 0

≠ 0

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm
may not know it is full-rank due to
unobservations.

𝑑
𝜀

𝑑/𝜀

Proof Sketch

17

Oracle	Lemma:

(𝑟, 𝑐)

(𝑟′, 𝑐′)

(𝑟, 𝑐′)

?

(𝑟0, 𝑐0)

?

(𝑟0, 𝑐′)

𝐴dg,ef 𝐴dg,e
𝐴d,ef 𝐴d,e	

(𝑟0, 𝑐)

fully observed

For any 𝑡, we can augment any 𝑡×𝑡 full-rank matrix to a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix by an augmentation entry in the sampled region, as long as 𝐴 ∈ 𝐻1
and 𝑡 ≤ 𝑑.

Challenge: Though the oracle lemma
guarantees we find a (𝑡 + 1)×(𝑡 + 1) full-
rank matrix from hindsight, the algorithm
may not know it is full-rank due to
unobservations.

𝑑
𝜀

𝑑/𝜀

≠ 0

A Polynomial-Time Algorithm

18

Our algorithm:
• Randomly permute the row and

column indices of the matrix
• Sample the block region Q
• 𝑟:= min

H I/J ×[I/J]\N
𝑟𝑎𝑛𝑘(𝐴 O/6 ×[O/6])

• If 𝑟 ≤ 𝑑, output “𝐻0”; otherwise, output
“𝐻1”

1

2

2

4

3

4

6

8

✓

3

4

0

0

✕

1

✓

2

4

3

… … 𝑑
𝜀

𝑑/𝜀

Other Extensions

19

There is an algorithm which tests the stable rank by a constant
success probability with 𝑂P(𝑑i/𝜀j) samples.

Theorem	(Stable	Rank	Upper	Bounds):

srank 𝐴 =
𝐴 o

p

𝜎1p(𝐴)

stable version of matrix rank

Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions

20

Hardness --- Testing Matrix Rank

21

Any non-adaptive algorithm with constant success probability
requires at least Ωs(𝑑p/𝜀) samples over reals and finite fields.

Theorem	(Lower	Bounds):

𝑯𝟎: 𝑯𝟏:

𝑼𝑽𝑻 𝑼𝑽𝑻+𝒏w𝟏𝟒𝑮

𝑑z{ distance is a constant with small samples

𝑼, 𝑽~𝓖(𝒏, 𝒅) 𝑮~𝓖(𝒏, 𝒏)

Our positive result: 𝑂P	(5
?

6
) samples

Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions

22

Conclusions

23

• Property testing of rank
• Polynomial-time algorithm
• Rebasing argument
• Sample complexity 𝑂P(𝑑p/𝜀)
• Other extensions

• Hardness results
• Sample complexity Ωs(𝑑p/𝜀)

Thank You

24

Structure

25

