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Life-Long Matrix Completion 
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applications: 
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Matrix Completion 

What if the Signal is 2D? 
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What if the data 
comes online? 



Outline 
• Motivation and examples 
• Our goal and approach 
• Matrix completion background 
• Robustness Analysis 
• Experimental Results 
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Our Sampling Model 
•  Adaptive Sampling 
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Goal: Keep Sample Complexity as small as possible 
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We have to consider the correlation among rows and columns! 

•  Scheme 1: Uniformly take the samples randomly (smaller sample complexity) 
•  Scheme 2: Request all entries of column from oracle (larger sample complexity) 

•  Sampling scheme in the real world 
•  Network Tomography 
•  Gene Expression Analysis 
•  Recommendation System 

Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013   
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is noisy? 
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Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013   



Noisy Life-Long Matrix Completion 

•  Challenges in the noisy setting 
•  Noise might be adversarial 
•  Noise propagates as the data comes along online 
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Matrix Completion Background 
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What if the Signal is 2D? 
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We have to consider the correlation among rows and columns.  

Effectiveness 
of Low 

Rankness  

Effectiveness of Low Rankness 

• It is a global constraint 
– Significantly reduces the degrees of freedom: 
mn → r(m+n−r) 

• Data compression: mn → r(m+n-r) 

= 

× 

•  It is a global constraint 
•  Data compression: mn → r(m+n-r)  

•  Significantly reduces the degrees 
of freedom: mn → r(m+n−r) 



Matrix Completion Background (cont’d) 
•  Incoherence is necessary 
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•  Any subset of entries that 
misses the (1,1) component 
tells you nothing! 

•  Still need to see the entire 
first row 

Want each entry to provide nearly the same amount of information.  

  

    (left incoherence) 

    (right incoherence) 

 

Incoherence is necessary

• Any subset of entries that 
misses the (1,1) 
component tells you 
nothing!

• Still need to see the 
entire first row

• Want each entry to 
provide nearly the same 
amount of information

X =

X =

Incoherence is necessary

• Any subset of entries that 
misses the (1,1) 
component tells you 
nothing!

• Still need to see the 
entire first row

• Want each entry to 
provide nearly the same 
amount of information

X =

X =

X =UΣVT ,

UTei 2 ≤
µ0r
m

VTei 2 ≤
µ0r
n

rank(X) = r



Related Work 
•  Matrix completion by nuclear norm. 

•  Candès & Tao 2009, Recht 2011, Gross 2011, Zhang et al. 2016 
•  Matrix completion by alternating minimization 

•  Jain et al. 2012, Hardt et al. 2014, Sun & Luo 2015, Ge et al. 2016 
•  Matrix completion by adaptive sampling 

•  Krishnamurthy & Singh, 2013 & 2014 

Very little analysis of noise-tolerant online matrix completion algorithm 
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Outline 
• Motivation and examples 
• Our goal and approach 
• Matrix completion background 
• Robustness Analysis 
• Experimental Results 
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Noise Model (cont’d) 
• Sparse Random Noise 
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Main Results --- Bounded Deterministic Noise 
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Main Results

Theorem (Bounded Deterministic Noise)

Sample Complexity: O((µ
0

nr + mnk✏noise) log

2( r
� ))

Output Error: k bM:t � M:tk2

 ⇥
�m

d

p
k✏noise

�
Parameter: k number of bases, ✏noise noise magnitude, r rank, µ

0

incoherence, � failure prob., d unif(d)

Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling Hongyang Zhang, Yi Wei
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Theorem (Sparse Random Noise, Upper Bound)
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Table 1: Comparisons of our sample complexity with the best prior results in the noise-free setting.

Passive Sampling Adaptive Sampling
Complexity O �

µ0nr log
2
(n/�)

�
[22] O �

µ0nr log
2
(r/�)

�
[19] O (µ0nr log(r/�)) (Ours)

Lower bound O (µ0nr log(n/�))[10] O (µ0nr log(r/�)) (Ours)

dimensionality ⌧ ⌧ r. Our analysis leads to the following guarantee on the performance of above
algorithm. The proof is in the supplementary material.
Theorem 4 (Exact Recovery under Random Noise). Let r be the rank of the underlying matrix L
with µ0-incoherent column space. Suppose that the noise Es0 of size m ⇥ s0 are drawn from any
non-degenerate distribution, and that the underlying subspace Ur is identifiable. Then our algorithm
exactly recovers the underlying matrix L, the column space Ur, and the outlier Es0 with probability
at least 1� �, provided that d � cµ0r log (r/�) and s0  d� r � 1. The total sample complexity is
thus cµ0rn log (r/�), where c is a universal constant. 	

Underlying	Subspace	

(a) Identifiable Subspace

	

	

Underlying	Subspace	

(b) Unidentifiable Subspace

Figure 1: Identifiability.

Theorem 4 implies an immediate result in the noise-free setting
as ✏

noise

goes to zero. In particular, O (µ0nr log(r/�)) mea-
surements are sufficient so that our algorithm outputs a solution
that is exact with probability at least 1 � �. This sample com-
plexity improves over existing results of O �

µ0nr log
2
(n/�)

�
[22]

and O �
µ0nr3/2 log(r/�)

�
[18], and over O �

µ0nr log
2
(r/�)

�
of

Theorem 1 when ✏
noise

= 0. Indeed, our sample complexity
O (µ0nr log(r/�)) matches the lower bound, as shown by Theorem
5 (See Table 1 for comparisons of sample complexity). We notice
another paper of Gittens [14] which showed that Nsytr¨om method
recovers a positive-semidefinite matrix of rank r from uniformly sam-
pling O(µ0r log(r/�)) columns. While this result matches our sam-
ple complexity, the assumptions of positive-semidefiniteness and of
subsampling the columns are impractical in the online setting.

We compare Theorem 4 with prior methods on decomposing an in-
complete matrix as the sum of a low-rank term and a column-sparse
term. Probably one of the best known algorithms is Robust PCA via
Outlier Pursuit [25, 28, 27, 26]. Outlier Pursuit converts this problem
to a convex program:

min

L,E
kLk⇤ + �kEk2,1, s.t. P⌦M = P⌦(L+E), (2)

where k · k⇤ captures the low-rankness of the underlying subspace and k · k2,1 captures the column-
sparsity of the noise. Recent papers on Outlier Pursuit [26] prove that the solution to (2) exactly
recovers the underlying subspace, provided that d � c1µ2

0r
2
log

3 n and s0  c2d4n/(µ5
0r

5m3
log

6 n)
for constants c1 and c2. Our result definitely outperforms the existing result in term of the sample
complexity d, while our dependence of s0 is not always better (although in some cases better) when
n is large. Note that while Outlier Pursuit loads all columns simultaneously and so can exploit the
global low-rank structure, our algorithm is online and therefore cannot tolerate too much noise.

3.2.2 Lower Bound
We now establish a lower bound on the sample complexity. Our lower bound shows that in our
adaptive sampling setting, one needs at least ⌦ (µ0rn log (r/�)) many samples in order to uniquely
identify a certain matrix in the worst case. This lower bound matches our analysis of upper bound in
Section 3.2.1.
Theorem 5 (Lower Bound on Sample Complexity). Let 0 < � < 1/2, and ⌦ ⇠ Uniform(d) be the
index of the row sampling ✓ [m]. Suppose that Ur is µ0-incoherent. If the total sampling number
dn < cµ0rn log (r/�) for a constant c, then with probability at least 1� �, there is an example of M
such that under the sampling model of Section 2.1 (i.e., when a column arrives the choices are either
(a) randomly sample or (b) view the entire column), there exist infinitely many matrices L0 of rank r
obeying µ0-incoherent condition on column space such that L0

⌦: = L⌦:.

The proof can be found in the supplementary material. We mention several lower bounds on the
sample complexity for passive matrix completion. The first is the paper of Candès and Tao [10], that
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Theorem (Mixture of Subspaces, Sparse Random Noise)

Noise Sparsity: s
0

 O(m)
Noise Magnitude: Arbitrarily large
Sample Complexity: O(µ⌧⌧ 2n log( r

� )) (Single: O(µ
0

rn log( r
� )))

Outpur Error: Exact Recovery
Paramter: µ⌧ incoherence of each subspace, ⌧ dimension upper bound of each subspace
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gives a lower bound of ⌦(µ0nr log(n/�)) if the matrix has both incoherent rows and columns. Taking
a weaker assumption, Krishnamurthy and Singh [18, 19] showed that if the row space is coherent,
any passive sampling scheme followed by any recovery algorithm must have ⌦(mn) measurements.
In contrast, Theorem 5 demonstrates that in the absence of row-space incoherence, exact recovery of
the matrix is possible with only ⌦(µ0nr log(r/�)) samples, if the sampling scheme is adaptive.

3.2.3 Extension to Mixture of Subspaces

	

Hidden	Layer	

Output	Layer	

Underlying	Space	

(a) Single Subspace
	

Subspace	1	 Subspace	2	

Hidden	Layer	

Output	Layer	

(b) Mixture of Subspaces

Figure 2: Subspace structure.

Theorem 5 gives a lower bound on sample complexity in the worst
case. In this section, we explore the possibility of further reducing
the sample complexity with more complex common structure. We
assume that the underlying subspace is a mixture of h independent
subspaces3 [20], each of which is of dimension at most ⌧ ⌧ r. Such
an assumption naturally models settings in which there are really h
different categories of movies/news while they share a certain com-
monality across categories. We can view this setting as a network
with two layers: The first layer captures the overall subspace with
r metafeatures; The second layer is an output layer, consisting of
metafeatures each of which is a linear combination of only ⌧ metafea-
tures in the first layer. See Figures 2 for visualization. Our argument
shows that the sparse connections between the two layers significantly
improve the sample complexity.
Algorithmically, given a new column, we uniformly sample ˜O(⌧ log r)
entries as our observations. We try to represent those elements by
a sparse linear combination of only ⌧ columns in the basis matrix,
whose rows are truncated to those sampled indices; If we fail, we measure the column in full, add that
column into the dictionary, and repeat the procedure for the next arriving column. See supplementary
material for the detailed algorithm.
Regarding computational considerations, learning a ⌧ -sparse representation of a given vector w.r.t.
a known dictionary can be done in polynomial time if the dictionary matrix satisfies the restricted
isometry property [9], or trivially if ⌧ is a constant [2]. This can be done by applying `1 minimization
or brute-force algorithm, respectively. Indeed, many real datasets match the constant-⌧ assumption,
e.g., face image [6] (each person lies on a subspace of dimension ⌧ = 9), 3D motion trajectory [12]
(each object lies on a subspace of dimension ⌧ = 4), handwritten digits [16] (each script lies on a
subspace of dimension ⌧ = 12), etc. So our algorithm is applicable for all these settings.
Theoretically, the following theorem provides a strong guarantee for our algorithm. The proof can be
found in the supplementary material.
Theorem 6 (Mixture of Subspaces). Let r be the rank of the underlying matrix L. Suppose that the
columns of L lie on a mixture of identifiable and independent subspaces, each of which is of dimension
at most ⌧ . Denote by µ

⌧

the maximal incoherence over all ⌧ -combinations of L. Let the noise model
be that of Theorem 4. Then our algorithm exactly recovers the underlying matrix L, the column space
Ur, and the outlier Es0 with probability at least 1� �, provided that d � cµ

⌧

⌧2 log (r/�) for some
global constant c and s0  d� ⌧ � 1. The total sample complexity is thus cµ

⌧

⌧2n log (r/�).
As a concrete example, if the incoherence parameter µ

⌧

is a global constant and the dimension ⌧ of
each subspace is far less than r, the sample complexity of O(µ

⌧

n⌧2 log(r/�)) is significantly better
than the complexity of O(µ0nr log(r/�)) for the structure of a single subspace in Theorem 4. This
argument shows that the sparse connections between the two layers improve the sample complexity.

4 Experimental Results
Bounded Deterministic Noise: We verify the estimated error of our algorithm in Theorem 1 under
bounded deterministic noise. Our synthetic data are generated as follows. We construct 5 base
vectors {u

i

}5
i=1 by sampling their entries from N (0, 1). The underlying matrix L is then generated

by L =

h
u11T

200,
P2

i=1 ui

1T

200,
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i=1 ui

1T

200,
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i=1 ui

1T

200,
P5
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1T

1,200

i
2 R100⇥2,000, each

column of which is normalized to the unit `2 norm. Finally, we add bounded yet unstructured noise
to each column, with noise level ✏

noise

= 0.6. We randomly pick 20% entries to be unobserved. The
left figure in Figure 3 shows the comparison between our estimated error4 and the true error by our

3h linear subspaces are independent if the dimensionality of their sum is equal to the sum of their dimensions.
4The estimated error is up to a constant factor.
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Figure 3: Left Figure: Approximate recovery under bounded deterministic noise with estimated error.
Right Two Figures: Exact recovery under sparse random noise with varying rank and sample size.
White Region: Nuclear norm minimization (passive sampling) succeeds. White and Gray Regions:
Our algorithm (adaptive sampling) succeeds. Black Region: Our algorithm fails. It shows that the
success region of our algorithm strictly contains that of the passive sampling method.
algorithm. The result demonstrates that empirically, our estimated error successfully predicts the
trend of the true algorithmic error.
Sparse Random Noise: We then verify the exact recoverability of our algorithm under sparse random
noise. The synthetic data are generated as follows. We construct the underlying matrix L = XY
as a product of m ⇥ r and r ⇥ n i.i.d. N (0, 1) matrices. The sparse random noise is drawn from
standard Gaussian distribution such that s0  d � r � 1. For each size of problem (50⇥ 500 and
100⇥ 1, 000), we test with different rank ratios r/m and measurement ratios d/m. The experiment is
run by 10 times. We define that the algorithm succeeds if kbL� Lk

F

 10

�6, rank(bL) = r, and the
recovered support of the noise is exact for at least one experiment. The right two figures in Figure 3
plots the fraction of correct recoveries: white denotes perfect recovery by nuclear norm minimization
approach (2); white+gray represents perfect recovery by our algorithm; black indicates failure for
both methods. It shows that the success region of our algorithm strictly contains that of the prior
approach. Moreover, the phase transition of our algorithm is nearly a linear function w.r.t r and d.
This is consistent with our prediction d = ⌦(µ0r log(r/�)) when � is small, e.g., poly(1/n).
Mixture of Subspaces: To test the performance of our algorithm for the mixture of subspaces, we
conduct an experiment on the Hopkins 155 dataset. The Hopkins 155 database is composed of 155
matrices/tasks, each of which consists of multiple data points drawn from two or three motion objects.
The trajectory of each object lie in a subspace. We input the data matrix to our algorithm with varying
sample sizes. Table 2 records the average relative error kbL� Lk

F

/kLk
F

of 10 trials for the first five
tasks in the dataset. It shows that our algorithm is able to recover the target matrix with high accuracy.
Another experiment comparing the sample complexity of single subspace v.s. mixture of subspaces
can be found in the supplementary material.

Table 2: Life-long Matrix Completion on the first 5 tasks in Hopkins 155 database.
#Task Motion Number d = 0.8m d = 0.85m d = 0.9m d = 0.95m

#1 2 9.4⇥ 10

�3
6.0⇥ 10

�3
3.4⇥ 10

�3
2.6⇥ 10

�3

#2 3 5.9⇥ 10

�3
4.4⇥ 10

�3
2.4⇥ 10

�3
1.9⇥ 10

�3

#3 2 6.3⇥ 10

�3
4.8⇥ 10

�3
2.8⇥ 10

�3
7.2⇥ 10

�4

#4 2 7.1⇥ 10

�3
6.8⇥ 10

�3
6.1⇥ 10

�3
1.5⇥ 10

�3

#5 2 8.7⇥ 10

�3
5.8⇥ 10

�3
3.1⇥ 10

�3
1.2⇥ 10

�3

5 Conclusions
In this paper, we study life-long matrix completion that aims at online recovering an m⇥ n matrix of
rank r under two realistic noise models — bounded deterministic noise and sparse random noise. Our
result advances the state-of-the-art work and matches the lower bound under sparse random noise. In
a more benign setting where the columns of the underlying matrix lie on a mixture of subspaces, we
show that a smaller sample complexity is possible to exactly recover the target matrix. It would be
interesting to extend our results to other realistic noise models, including random classification noise
or malicious noise previously studied in the context of supervised classification [1, 3]

Acknowledgements. This work was supported in part by grants NSF-CCF 1535967, NSF CCF-
1422910, NSF CCF-1451177, a Sloan Fellowship, and a Microsoft Research Fellowship.
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Bounded Deterministic Noise: We verify the estimated error of our algorithm in Theorem 1 under
bounded deterministic noise. Our synthetic data are generated as follows. We construct 5 base
vectors {u

i

}5
i=1 by sampling their entries from N (0, 1). The underlying matrix L is then generated

by L =

h
u11T

200,
P2

i=1 ui

1T

200,
P3

i=1 ui

1T

200,
P4

i=1 ui

1T

200,
P5

i=1 ui

1T

1,200

i
2 R100⇥2,000, each

column of which is normalized to the unit `2 norm. Finally, we add bounded yet unstructured noise
to each column, with noise level ✏
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gives a lower bound of ⌦(µ0nr log(n/�)) if the matrix has both incoherent rows and columns. Taking
a weaker assumption, Krishnamurthy and Singh [18, 19] showed that if the row space is coherent,
any passive sampling scheme followed by any recovery algorithm must have ⌦(mn) measurements.
In contrast, Theorem 5 demonstrates that in the absence of row-space incoherence, exact recovery of
the matrix is possible with only ⌦(µ0nr log(r/�)) samples, if the sampling scheme is adaptive.

3.2.3 Extension to Mixture of Subspaces

	

Hidden	Layer	

Output	Layer	

Underlying	Space	

(a) Single Subspace
	

Subspace	1	 Subspace	2	

Hidden	Layer	

Output	Layer	

(b) Mixture of Subspaces

Figure 2: Subspace structure.

Theorem 5 gives a lower bound on sample complexity in the worst
case. In this section, we explore the possibility of further reducing
the sample complexity with more complex common structure. We
assume that the underlying subspace is a mixture of h independent
subspaces3 [20], each of which is of dimension at most ⌧ ⌧ r. Such
an assumption naturally models settings in which there are really h
different categories of movies/news while they share a certain com-
monality across categories. We can view this setting as a network
with two layers: The first layer captures the overall subspace with
r metafeatures; The second layer is an output layer, consisting of
metafeatures each of which is a linear combination of only ⌧ metafea-
tures in the first layer. See Figures 2 for visualization. Our argument
shows that the sparse connections between the two layers significantly
improve the sample complexity.
Algorithmically, given a new column, we uniformly sample ˜O(⌧ log r)
entries as our observations. We try to represent those elements by
a sparse linear combination of only ⌧ columns in the basis matrix,
whose rows are truncated to those sampled indices; If we fail, we measure the column in full, add that
column into the dictionary, and repeat the procedure for the next arriving column. See supplementary
material for the detailed algorithm.
Regarding computational considerations, learning a ⌧ -sparse representation of a given vector w.r.t.
a known dictionary can be done in polynomial time if the dictionary matrix satisfies the restricted
isometry property [9], or trivially if ⌧ is a constant [2]. This can be done by applying `1 minimization
or brute-force algorithm, respectively. Indeed, many real datasets match the constant-⌧ assumption,
e.g., face image [6] (each person lies on a subspace of dimension ⌧ = 9), 3D motion trajectory [12]
(each object lies on a subspace of dimension ⌧ = 4), handwritten digits [16] (each script lies on a
subspace of dimension ⌧ = 12), etc. So our algorithm is applicable for all these settings.
Theoretically, the following theorem provides a strong guarantee for our algorithm. The proof can be
found in the supplementary material.
Theorem 6 (Mixture of Subspaces). Let r be the rank of the underlying matrix L. Suppose that the
columns of L lie on a mixture of identifiable and independent subspaces, each of which is of dimension
at most ⌧ . Denote by µ

⌧

the maximal incoherence over all ⌧ -combinations of L. Let the noise model
be that of Theorem 4. Then our algorithm exactly recovers the underlying matrix L, the column space
Ur, and the outlier Es0 with probability at least 1� �, provided that d � cµ

⌧

⌧2 log (r/�) for some
global constant c and s0  d� ⌧ � 1. The total sample complexity is thus cµ

⌧

⌧2n log (r/�).
As a concrete example, if the incoherence parameter µ

⌧

is a global constant and the dimension ⌧ of
each subspace is far less than r, the sample complexity of O(µ

⌧

n⌧2 log(r/�)) is significantly better
than the complexity of O(µ0nr log(r/�)) for the structure of a single subspace in Theorem 4. This
argument shows that the sparse connections between the two layers improve the sample complexity.
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Bounded Deterministic Noise: We verify the estimated error of our algorithm in Theorem 1 under
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Figure 3: Left Figure: Approximate recovery under bounded deterministic noise with estimated error.
Right Two Figures: Exact recovery under sparse random noise with varying rank and sample size.
White Region: Nuclear norm minimization (passive sampling) succeeds. White and Gray Regions:
Our algorithm (adaptive sampling) succeeds. Black Region: Our algorithm fails. It shows that the
success region of our algorithm strictly contains that of the passive sampling method.
algorithm. The result demonstrates that empirically, our estimated error successfully predicts the
trend of the true algorithmic error.
Sparse Random Noise: We then verify the exact recoverability of our algorithm under sparse random
noise. The synthetic data are generated as follows. We construct the underlying matrix L = XY
as a product of m ⇥ r and r ⇥ n i.i.d. N (0, 1) matrices. The sparse random noise is drawn from
standard Gaussian distribution such that s0  d � r � 1. For each size of problem (50⇥ 500 and
100⇥ 1, 000), we test with different rank ratios r/m and measurement ratios d/m. The experiment is
run by 10 times. We define that the algorithm succeeds if kbL� Lk

F

 10

�6, rank(bL) = r, and the
recovered support of the noise is exact for at least one experiment. The right two figures in Figure 3
plots the fraction of correct recoveries: white denotes perfect recovery by nuclear norm minimization
approach (2); white+gray represents perfect recovery by our algorithm; black indicates failure for
both methods. It shows that the success region of our algorithm strictly contains that of the prior
approach. Moreover, the phase transition of our algorithm is nearly a linear function w.r.t r and d.
This is consistent with our prediction d = ⌦(µ0r log(r/�)) when � is small, e.g., poly(1/n).
Mixture of Subspaces: To test the performance of our algorithm for the mixture of subspaces, we
conduct an experiment on the Hopkins 155 dataset. The Hopkins 155 database is composed of 155
matrices/tasks, each of which consists of multiple data points drawn from two or three motion objects.
The trajectory of each object lie in a subspace. We input the data matrix to our algorithm with varying
sample sizes. Table 2 records the average relative error kbL� Lk

F

/kLk
F

of 10 trials for the first five
tasks in the dataset. It shows that our algorithm is able to recover the target matrix with high accuracy.
Another experiment comparing the sample complexity of single subspace v.s. mixture of subspaces
can be found in the supplementary material.

Table 2: Life-long Matrix Completion on the first 5 tasks in Hopkins 155 database.
#Task Motion Number d = 0.8m d = 0.85m d = 0.9m d = 0.95m

#1 2 9.4⇥ 10

�3
6.0⇥ 10

�3
3.4⇥ 10

�3
2.6⇥ 10

�3

#2 3 5.9⇥ 10

�3
4.4⇥ 10

�3
2.4⇥ 10

�3
1.9⇥ 10

�3

#3 2 6.3⇥ 10

�3
4.8⇥ 10

�3
2.8⇥ 10

�3
7.2⇥ 10

�4

#4 2 7.1⇥ 10

�3
6.8⇥ 10

�3
6.1⇥ 10

�3
1.5⇥ 10

�3

#5 2 8.7⇥ 10

�3
5.8⇥ 10

�3
3.1⇥ 10

�3
1.2⇥ 10

�3

5 Conclusions
In this paper, we study life-long matrix completion that aims at online recovering an m⇥ n matrix of
rank r under two realistic noise models — bounded deterministic noise and sparse random noise. Our
result advances the state-of-the-art work and matches the lower bound under sparse random noise. In
a more benign setting where the columns of the underlying matrix lie on a mixture of subspaces, we
show that a smaller sample complexity is possible to exactly recover the target matrix. It would be
interesting to extend our results to other realistic noise models, including random classification noise
or malicious noise previously studied in the context of supervised classification [1, 3]
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White Region: Nuclear norm minimization succeeds. 
White and Gray Regions: Our algorithm succeeds. 
Black Region: Our algorithm fails. 
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Figure 3: Left Figure: Approximate recovery under bounded deterministic noise with estimated error.
Right Two Figures: Exact recovery under sparse random noise with varying rank and sample size.
White Region: Nuclear norm minimization (passive sampling) succeeds. White and Gray Regions:
Our algorithm (adaptive sampling) succeeds. Black Region: Our algorithm fails. It shows that the
success region of our algorithm strictly contains that of the passive sampling method.
algorithm. The result demonstrates that empirically, our estimated error successfully predicts the
trend of the true algorithmic error.
Sparse Random Noise: We then verify the exact recoverability of our algorithm under sparse random
noise. The synthetic data are generated as follows. We construct the underlying matrix L = XY
as a product of m ⇥ r and r ⇥ n i.i.d. N (0, 1) matrices. The sparse random noise is drawn from
standard Gaussian distribution such that s0  d � r � 1. For each size of problem (50⇥ 500 and
100⇥ 1, 000), we test with different rank ratios r/m and measurement ratios d/m. The experiment is
run by 10 times. We define that the algorithm succeeds if kbL� Lk

F

 10

�6, rank(bL) = r, and the
recovered support of the noise is exact for at least one experiment. The right two figures in Figure 3
plots the fraction of correct recoveries: white denotes perfect recovery by nuclear norm minimization
approach (2); white+gray represents perfect recovery by our algorithm; black indicates failure for
both methods. It shows that the success region of our algorithm strictly contains that of the prior
approach. Moreover, the phase transition of our algorithm is nearly a linear function w.r.t r and d.
This is consistent with our prediction d = ⌦(µ0r log(r/�)) when � is small, e.g., poly(1/n).
Mixture of Subspaces: To test the performance of our algorithm for the mixture of subspaces, we
conduct an experiment on the Hopkins 155 dataset. The Hopkins 155 database is composed of 155
matrices/tasks, each of which consists of multiple data points drawn from two or three motion objects.
The trajectory of each object lie in a subspace. We input the data matrix to our algorithm with varying
sample sizes. Table 2 records the average relative error kbL� Lk

F

/kLk
F

of 10 trials for the first five
tasks in the dataset. It shows that our algorithm is able to recover the target matrix with high accuracy.
Another experiment comparing the sample complexity of single subspace v.s. mixture of subspaces
can be found in the supplementary material.

Table 2: Life-long Matrix Completion on the first 5 tasks in Hopkins 155 database.
#Task Motion Number d = 0.8m d = 0.85m d = 0.9m d = 0.95m

#1 2 9.4⇥ 10

�3
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5 Conclusions
In this paper, we study life-long matrix completion that aims at online recovering an m⇥ n matrix of
rank r under two realistic noise models — bounded deterministic noise and sparse random noise. Our
result advances the state-of-the-art work and matches the lower bound under sparse random noise. In
a more benign setting where the columns of the underlying matrix lie on a mixture of subspaces, we
show that a smaller sample complexity is possible to exactly recover the target matrix. It would be
interesting to extend our results to other realistic noise models, including random classification noise
or malicious noise previously studied in the context of supervised classification [1, 3]
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•  Life-Long Matrix Completion 
•  Online 
•  Noise Tolerant 

•  Sample Complexity 
•  Bounded Noise: As small as noiseless case 
•  Sparse Noise: Achieve lower bound in the worst case, better than 

nuclear norm minimization method 
•  Mixture of Subspaces: Potential smaller sample complexity 
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