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Our Sampling Model

- Adaptive Sampling

« Scheme 1: Uniformly take the samples randomly (smaller sample complexity)
« Scheme 2: Request all entries of column from oracle (larger sample complexity)

- Network Tomo%?phy
- Gene Expression Analysis
- Recommendatigh System

e
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Goal: Keep Sample Complexity as small as possible

Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013



Our Approach
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Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013



Noisy Life-Long Matrix Completion

- Challenges in the noisy setting
- Noise might be adversarial
Noise propagates as the data comes along online
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Matrix Completion Background

- It is a global constraint

e Yoo - Data compression: mn — r(m+n-r)
" Effectiveness . Sjgnificantly reduces the degrees
do R i > of Low of freedom: mn — r(m+n-r)
I Ay % | % Rankness

- ix

We have to consider the correlation among rows and columns.




Matrix Completion Background (cont'd)

- Incoherence is necessary

X =

X
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- Any subset of entries that
misses the (1,1) component
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Want each entry to provide nearly the same amount of information.
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Related Work

- Matrix completion by nuclear norm.
- Candeés & Tao 2009, Recht 2011, Gross 2011, Zhang et al. 2016

- Matrix completion by alternating minimization
- Jain et al. 2012, Hardt et al. 2014, Sun & Luo 2015, Ge et al. 2016

- Matrix completion by adaptive sampling
- Krishnamurthy & Singh, 2013 & 2014

Very little analysis of noise-tolerant online matrix completion algorithm
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Noise Model

- Bounded Deterministic Noise
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Noise Model (cont'd)

- Sparse Random Noise
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Main Results --- Bounded Deterministic Noise

Theorem (Bounded Deterministic Noise)

Sample Complexity: O((ponr + mnke,oise) 10g2(§))
Output Error: M., — M| < © (2 v/kenoise )

Parameter: k number of bases, €,,;s. noise magnitude, r rank, p incoherence, é failure prob., d unif(d)
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Discussion --- Bounded Deterministic Noise

Theorem (Bounded Deterministic Noise)

Sample Complexity: O((ponr + mnkepoise) log(%))
Output Error: |[M,, — M| < © (2+v/kénoise )

Parameter: k number of bases, €,,;s. noise magnitude, r rank, w incoherence, é failure prob., d unif(d)

The error propagates only in the speed of \/k , low propagation rate
Sample Complexity O(u,nrlog’ n), if €,,,, = O(u,r/mk)
Incoherence assumption in only one direction



Why left incoherence is enough?

Not an Issue:
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Proof Sketch --- Bounded Deterministic Noise
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Main Results --- Sparse Random Noise

Theorem (Sparse Random Noise, Upper Bound)
Noise Sparsity: so < O(m)

Noise Magnitude: Arbitrarily large

Sample Complexity: O(pornlog (%))

Output Error: Exact Recovery

Theorem (Sparse Random Noise, Lower Bound)

Sample Complexity: Q (pornlog (%))
Output Error: Exact Recovery

Passive Sampling Adaptive Sampling
Complexity | O (ponrlog®(n/6))122] | O (uonrlog®(r/8))[191 O (ponrlog(r/s)) (Ours)
Lower bound | O (ugnrlog(n/d))[10] O (ponrlog(r/éd)) (Ours)




Main Results --- Mixture of Subspaces

Output Layer Output Layer
Hidden Layer
L J 1 )] |\ )
T ! 1

Hidden Layer

Underlying Space Subspace 1  Subspace 2
(a) Single Subspace (b) Mixture of Subspaces

Theorem (Mixture of Subspaces, Sparse Random Noise)

Noise Sparsity: so < O(m)
Noise Magnitude: Arbitrarily large

Sample Complexity: O(p,7*nlog(%)) (Single: O(pornlog(3)))
Outpur Error: Exact Recovery

Paramter: . incoherence of each subspace, T dimension upper bound of each subspace
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Experiment Results -—- Bounded Deterministic Noise
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Experiment Results --- Sparse Random Noise
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White Region: Nuclear norm minimization succeeds.
White and Gray Regions: Our algorithm succeeds.

Black Region: Our algorithm fails.



Experiment Results --- Mixture of Subspaces

Table 2: Life-long Matrix Completion on the first 5 tasks in Hopkins 155 database.

#Task || Motion Number | d=0.8m | d=08m | d=09m | d=0.95m
#1 2 94x1073 [ 6.0x1073 [ 34x1073 | 2.6 x 1073
#2 3 59 x 1073 | 44 x1073 | 24 x 1073 | 1.9 x 1073
#3 2 6.3x 1073 | 48 x 1073 [ 28 x 1073 | 7.2 x 1074
#4 2 71x1073 [ 6.8x1073 [ 6.1x1073 | 1.5 x 1073
#5 2 87x1073 [ 58x103 [3.1x103 ] 1.2x1073




Summary

- Life-Long Matrix Completion
- Online
- Noise Tolerant

- Sample Complexity
- Bounded Noise: As small as noiseless case

- Sparse Noise: Achieve lower bound in the worst case, better than
nuclear norm minimization method

- Mixture of Subspaces: Potential smaller sample complexity
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