Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling

Hongyang Zhang Joint work with Maria-Florina Balcan Machine Learning Department, CMU

Machine Learning Lunch

Life-Long Matrix Completion

Outline

- Motivation and examples
- Our goal and approach
- Matrix completion background
- Robustness Analysis
- Experimental Results

Our Sampling Model

Adaptive Sampling

- Scheme 1: Uniformly take the samples randomly (smaller sample complexity)
- Scheme 2: Request all entries of column from oracle (larger sample complexity)

Goal: Keep Sample Complexity as small as possible

Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013

Krishnamurthy and Singh, Low-Rank Matrix and Tensor Completion via Adaptive Sampling, NIPS 2013

Noisy Life-Long Matrix Completion

- Challenges in the noisy setting
 - Noise might be adversarial

Noise propagates as the data comes along online

Appro R	Representable?	
Basis Set	Arrived Columns	Coming Columns
**		*
☆☆ ☆		
$\overset{\bigstar}{\overset{\bigstar}}$		

Outline

- Motivation and examples
- Our goal and approach
- Matrix completion background
- Robustness Analysis
- Experimental Results

Matrix Completion Background

Effectiveness

of Low
Rankness

- It is a global constraint
- Data compression: $mn \rightarrow r(m+n-r)$
 - Significantly reduces the degrees of freedom: $mn \rightarrow r(m+n-r)$

We have to consider the correlation among rows and columns.

Matrix Completion Background (cont'd)

Incoherence is necessary

Want each entry to provide nearly the same amount of information.

Related Work

- Matrix completion by nuclear norm.
 - Candès & Tao 2009, Recht 2011, Gross 2011, Zhang et al. 2016
- Matrix completion by alternating minimization
 - Jain et al. 2012, Hardt et al. 2014, Sun & Luo 2015, Ge et al. 2016
- Matrix completion by adaptive sampling
 - Krishnamurthy & Singh, 2013 & 2014

Very little analysis of noise-tolerant online matrix completion algorithm

Outline

- Motivation and examples
- Our goal and approach
- Matrix completion background
- Robustness Analysis
- Experimental Results

Noise Model

Bounded Deterministic Noise

Noise Model (cont'd)

Sparse Random Noise

Main Results ---- Bounded Deterministic Noise

Theorem (Bounded Deterministic Noise)

```
Sample Complexity: O((\mu_0 nr + mnk\epsilon_{noise}) \log^2(\frac{r}{\delta}))
```

Output Error: $\|\widehat{\mathbf{M}}_{:t} - \mathbf{M}_{:t}\|_{2} \leq \Theta\left(\frac{m}{d}\sqrt{k\epsilon_{noise}}\right)$

Parameter: k number of bases, ϵ_{noise} noise magnitude, r rank, μ_0 incoherence, δ failure prob., d unif(d)

Discussion ---- Bounded Deterministic Noise

Theorem (Bounded Deterministic Noise)

Sample Complexity: $O((\mu_0 nr + mnk\epsilon_{noise})\log^2(\frac{r}{\delta}))$ Output Error: $\|\widehat{\mathbf{M}}_{:t} - \mathbf{M}_{:t}\|_2 \leq \Theta(\frac{m}{d}\sqrt{k\epsilon_{noise}})$ Parameter: k number of bases, ϵ_{noise} noise magnitude, r rank, μ_0 incoherence, δ failure prob., d unif(d)

- The error propagates only in the speed of \sqrt{k} , low propagation rate
- Sample Complexity $O(\mu_0 nr \log^2 n)$, if $\varepsilon_{noise} \le O(\mu_0 r/mk)$
- Incoherence assumption in only one direction

Why left incoherence is enough?

Avoid by
$$\left\| U^T e_i \right\|_2 \le \sqrt{\frac{\mu_0 r}{m}}$$
 (left incoherence)

Not an Issue:

Proof Sketch ---- Bounded Deterministic Noise

Main Results --- Sparse Random Noise

Theorem (Sparse Random Noise, Upper Bound)

Noise Sparsity: $s_0 \le O(m)$ Noise Magnitude: Arbitrarily large Sample Complexity: $O(\mu_0 rn \log\left(\frac{r}{\delta}\right))$ Output Error: Exact Recovery

Theorem (Sparse Random Noise, Lower Bound)

Sample Complexity: $\Omega\left(\mu_0 rn \log\left(\frac{r}{\delta}\right)\right)$ Output Error: Exact Recovery

	Passive Sampling	Adaptive Sampling		
Complexity	$\mathcal{O}\left(\mu_0 nr \log^2(n/\delta)\right)$ [22]	$\mathcal{O}\left(\mu_0 nr \log^2(r/\delta)\right)$ [19] $\mathcal{O}\left(\mu_0 nr \log(r/\delta)\right)$ (Ours)		
Lower bound	$\mathcal{O}(\mu_0 nr \log(n/\delta))[10]$	$\mathcal{O}\left(\mu_0 nr \log(r/\delta)\right)$ (Ours)		

Output Layer 19

Hidden Layer

Main Results --- Mixture of Subspaces

Underlying Space

(a) Single Subspace

(b) Mixture of Subspaces

Theorem (Mixture of Subspaces, Sparse Random Noise)

Noise Sparsity: $s_0 \leq Patheta$ aver Noise Sparsity: $s_0 \leq Patheta$ aver Noise Magnitude: Arbitrarily large Sample Complexity: $O(\mu_{\tau}\tau^2 n \log(\frac{r}{\delta}))$ (Single: $O(\mu_0 rn \log(\frac{r}{\delta}))$) Outpur Error: Exact Recovery Paramter: μ_{τ} incoherence of each subspace, τ dimension upper bound of each subspace

Outline

- Motivation and examples
- Our goal and approach
- Matrix completion background
- Robustness Analysis
- Experimental Results

Ex

$$\mathbf{L} = \left[\mathbf{u}_{1} \mathbf{1}_{200}^{T}, \sum_{i=1}^{2} \mathbf{u}_{i} \mathbf{1}_{200}^{T}, \sum_{i=1}^{3} \mathbf{u}_{i} \mathbf{1}_{200}^{T}, \sum_{i=1}^{4} \mathbf{u}_{i} \mathbf{1}_{200}^{T}, \sum_{i=1}^{5} \mathbf{u}_{i} \mathbf{1}_{1,200}^{T} \right] \in \mathbb{R}^{100 \times 2,000}$$

Noise Magnitude: $\epsilon_{noise} = 0.6$

Experiment Results --- Sparse Random Noise

White Region: Nuclear norm minimization succeeds. White and Gray Regions: Our algorithm succeeds. Black Region: Our algorithm fails.

Experiment Results --- Mixture of Subspaces

Table 2: Life-long Matrix	Completion on th	he first 5 tasks in H	opkins 155 database.

#Task	Motion Number	d = 0.8m	d = 0.85m	d = 0.9m	d = 0.95m
#1	2	9.4×10^{-3}	6.0×10^{-3}	3.4×10^{-3}	2.6×10^{-3}
#2	3	5.9×10^{-3}	4.4×10^{-3}	2.4×10^{-3}	1.9×10^{-3}
#3	2	6.3×10^{-3}	4.8×10^{-3}	2.8×10^{-3}	7.2×10^{-4}
#4	2	7.1×10^{-3}	6.8×10^{-3}	6.1×10^{-3}	1.5×10^{-3}
#5	2	8.7×10^{-3}	5.8×10^{-3}	3.1×10^{-3}	1.2×10^{-3}

Summary

- Life-Long Matrix Completion
 - Online
 - Noise Tolerant
- Sample Complexity
 - Bounded Noise: As small as noiseless case
 - Sparse Noise: Achieve lower bound in the worst case, better than nuclear norm minimization method
 - Mixture of Subspaces: Potential smaller sample complexity

Thank You