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Learning of Halfspaces and 1-bit CS
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Not Spam Spam

Goal: use emails seen so far to produce good prediction rule for future data.



Learning of Halfspaces
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What if we know the 
classifier is sparse?
Is it possible that we 

require fewer samples?
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[ABL] The Power of Localization for Efficiently Learning Linear Separators with Noise, JACM’17
[KLS] Learning halfspaces with malicious noise, JMLR’09
[KKMS] Agnostically learning halfspaces, FOCS’05



1-Bit Compressed Sensing
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What if we know the 
classifier is sparse?
Is it possible that we 

require fewer samples?
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Difference with learning: Impose additional sparsity constraint

[PV] Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, IEEE TIT’13



Optimization Formulation
• No Noise: Easy – solve ERM via a linear program

• With Noise: Solve a non-convex problem

• Sparsity (1-bit CS): Use a number of samples poly(t, log(d/𝛿), 1/𝜀)
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Find w such that ∀𝑖, 𝑦((𝑤 + 𝑥() ≥ 0

min
3
Pr(6,7)~9:[sgn(𝑤 · 𝑥) ≠ y],  (s.t. 𝑤 B ≤ 𝑡 for 1-bit CS)

Can we minimize the objective function to the accuracy of 
the information-theoretic limit under asymmetric noise 
model, although its formulation is non-convex?

The answer is affirmative!

(log-concave dist.)



Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions
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Asymmetric Noise model – Bounded Noise
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(𝑥, 𝑦)

For a fixed η ≤ ½, for each x, the adversary 
flips the label of x with probability η(x)≤η.

v Generalization of the RCN model
v Prior Result: η ≈ 10GH
v No result is known when              is t-sparse
v Information-theoretic limit: 𝑂𝑃𝑇 + 𝜀

Bounded	Noise	(a.k.a.	Massart Noise):

w.p. 0.1

w.p. 0.05

w.p. 0.03

w.p. 0.1

w.p. 0.04

𝑤

𝑤 ∈ ℜO



Asymmetric Noise model – Adversarial Noise
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The adversary can flip any 𝜏 fraction of 
labels of x.

Adversarial	Noise:

𝑤 ∈ ℜOv No result is known when               is t-sparse
v Information-theoretic limit: 𝑂𝑃𝑇 + 𝜏 + 𝜀



Outline
• Motivation and examples
• Our settings
• Our algorithms
• Our hardness results
• Conclusions
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Algorithm
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Sample unlabeled data 
and have an initial guess

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB



Algorithm
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Ask some of labels in the band, 
fit a polynomial to constant error

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB

(require exp. time on 1/error)



Algorithm
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Label points in band by the polynomial, 
do hinge loss minimization to constant 

error, and obtain ℎS

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎBℎS



Algorithm
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Halve the bandwidth around ℎS, ask 
labels in the band, fit polynomial

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎBℎS



Algorithm
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Halve the bandwidth around ℎS, ask 
labels in the band, fit polynomial

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎBℎS



Algorithm
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Label points in band by polynomial, do 
hinge loss minimization to constant 

error, and obtain ℎT

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB
ℎSℎT



Algorithm
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Repeat log	(1/𝜀) rounds

v Idea: Adaptively solve a sequence of convex programs

ℎ3∗ ℎB
ℎSℎTℎY…ℎ[



Main Results
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Label Complexity: O (t, polylog(d/𝛿), 1/𝜀)
Guarantee: 𝑂𝑃𝑇 + 𝑂(𝜏) + 𝜀

Theorem	3	(Adversarial	Noise,	1-bit	CS):

Label Complexity: poly(d, log(1/𝛿), log(1/𝜀))
Guarantee: 𝑂𝑃𝑇 + 𝜀

Theorem	1	(Bounded	Noise,	Learning):

In ℜO, for the log-concave dist. with polynomial time and probability at least 1- 𝛿:

Label Complexity: poly(t, log(d/𝛿), 1/𝜀)
Guarantee: 𝑂𝑃𝑇 + 𝜀

Theorem	2	(Bounded	Noise,	1-bit	CS):



Intuition and Analysis
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w*

Pr[ ] Pr[ ]<<

Most of the errors are near the decision boundary:



Intuition and Analysis
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wk-1

w*

err(w) =Pr[ ] + Pr[ ]
Pr[ ] = Pr[ ]⇥ errband(w)

Pr[ ] small

v Hinge loss minimization
v Works only when η ≈ 10GH
v Poly Regression [Kalai et al.] with constant error
v Return a poly, rather than a halfspace
v Combine two together

How to find 𝑤?   
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Hardness – One shot minimization
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Continuous loss function on 𝒉𝒘 satisfies:

v Symmetric w.r.t. ℎ3

v The loss is larger if ℎ3 is inconsistent 
with the true label

A couple of examples:

v Hinge, Logistic, Square, Exponential Loss, etc.
E.g. Hinge: 



Hardness – One shot minimization
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Any one-shot minimization of function satisfying above 
properties cannot achieve 𝑂𝑃𝑇 + 𝜀 error under log-concave 
distribution with bounded noise.

Theorem	4	(for	bounded	noise):
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Conclusions
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• Learning of halfspaces and 1-bit CS
• Polynomial-time algorithm
• Noise-tolerant for bounded and adversarial noise models
• Achieve information-theoretic limits
• Solve a non-convex problem via a sequence of convex programs

• Hardness results
• One-shot minimization does not work

• Future Work
• Explore the localization technique to the other applications



Thank You
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