Active Learning of Linear Separators under Asymmetric Noise

Hongyang Zhang, Carnegie Mellon University With Pranjal Awasthi, Maria-Florina Balcan, and Nika Haghtalab

Asilomar Conference on Signals, Systems, and Computers

Learning of Halfspaces and 1-bit CS

Goal: use emails seen so far to produce good prediction rule for future data.

Learning of Halfspaces

What if we know the classifier is sparse? Is it possible that we require fewer samples?

[ABL] The Power of Localization for Efficiently Learning Linear Separators with Noise, JACM'17 [KLS] Learning halfspaces with malicious noise, JMLR'09 [KKMS] Agnostically learning halfspaces, FOCS'05

3

1-Bit Compressed Sensing

What if we know the classifier is sparse? Is it possible that we require fewer samples?

Difference with learning: Impose additional sparsity constraint

[PV] Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach, IEEE TIT'13

Optimization Formulation

No Noise: Easy – solve ERM via a linear program

Find w such that $\forall i, y_i(w \cdot x_i) \ge 0$

With Noise: Solve a non-convex problem

 $\min_{w} \Pr_{(x,y)\sim \widetilde{D}}[\operatorname{sgn}(w \cdot x) \neq y], \text{ (s.t. } \|w\|_0 \leq t \text{ for 1-bit CS)} \text{ (log-concave dist.)}$

• Sparsity (1-bit CS): Use a number of samples poly(t, log(d/δ), $1/\epsilon$)

Can we minimize the objective function to the accuracy of the information-theoretic limit under asymmetric noise model, although its formulation is non-convex?

The answer is affirmative!

Outline

Motivation and examples

Our settings

- Our algorithms
- Our hardness results
- Conclusions

Asymmetric Noise model – Bounded Noise

Asymmetric Noise model – Adversarial Noise

Adversarial Noise:

The adversary can flip any τ fraction of labels of x.

- ♦ No result is known when $w \in \Re^d$ is *t*-sparse
- Information-theoretic limit: $OPT + \tau + \varepsilon$

Outline

- Motivation and examples
- Our settings
- Our algorithms
- Our hardness results
- Conclusions

Idea: Adaptively solve a sequence of convex programs

Sample unlabeled data and have an initial guess

Idea: Adaptively solve a sequence of convex programs

Ask some of labels in the band, fit a polynomial to constant error (require exp. time on 1/error)

Idea: Adaptively solve a sequence of convex programs

Label points in band by the polynomial, do hinge loss minimization to constant error, and obtain h_1

Idea: Adaptively solve a sequence of convex programs

Halve the bandwidth around h_1 , ask labels in the band, fit polynomial

Idea: Adaptively solve a sequence of convex programs

Halve the bandwidth around h_1 , ask labels in the band, fit polynomial

Idea: Adaptively solve a sequence of convex programs

Label points in band by polynomial, do hinge loss minimization to constant error, and obtain h_2

Idea: Adaptively solve a sequence of convex programs

Repeat $log(1/\varepsilon)$ rounds

Main Results

In \Re^d , for the log-concave dist. with polynomial time and probability at least 1- δ :

Theorem 1 (Bounded Noise, Learning):

Label Complexity: poly(d, log($1/\delta$), log($1/\epsilon$)) Guarantee: $OPT + \epsilon$

Theorem 2 (Bounded Noise, 1-bit CS):

Label Complexity: poly(*t*, log(d/δ), $1/\epsilon$) Guarantee: $OPT + \epsilon$

Theorem 3 (Adversarial Noise, 1-bit CS):

Label Complexity: $O(t, \text{ polylog}(d/\delta), 1/\epsilon)$ Guarantee: $OPT + O(\tau) + \epsilon$

Intuition and Analysis

Most of the errors are near the decision boundary:

Intuition and Analysis

$$err(w) = \Pr[\ref{main}] + \Pr[\ref{main}]$$
$$\Pr[\ref{main}] = \Pr[\ref{main}] \times err_{band}(w)$$
$$\Pr[\ref{main}] \text{ small}$$

How to find w?

- Hinge loss minimization
- Works only when $\eta \approx 10^{-6}$
- Poly Regression [Kalai et al.] with constant error
- Return a poly, rather than a halfspace
- Combine two together

Outline

- Motivation and examples
- Our settings
- Our algorithms
- Our hardness results
- Conclusions

Hardness – One shot minimization

Continuous loss function on h_w satisfies:

- Symmetric w.r.t. h_w
- The loss is larger if h_w is inconsistent with the true label

A couple of examples:

*

Hardness – One shot minimization

Theorem 4 (for bounded noise):

Any one-shot minimization of function satisfying above properties cannot achieve $OPT + \varepsilon$ error under log-concave distribution with bounded noise.

Outline

- Motivation and examples
- Our settings
- Our algorithms
- Our hardness results
- Conclusions

Conclusions

- Learning of halfspaces and 1-bit CS
 - Polynomial-time algorithm
 - Noise-tolerant for bounded and adversarial noise models
 - Achieve information-theoretic limits
 - Solve a non-convex problem via a sequence of convex programs
- Hardness results
 - One-shot minimization does not work
- Future Work
 - Explore the localization technique to the other applications

Thank You