Robust Physical-World Attacks on Deep Learning Models

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song

CVPR 2018

• DNNs are vulnerable to human-imperceptible adversarial perturbations.

 $+.007 \times$

 $m{x} + \epsilon \operatorname{sign}(
abla_{m{x}} J(m{ heta}, m{x}, y))$ "gibbon" 99.3 % confidence

"panda" 57.7% confidence

 \boldsymbol{x}

sign $(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$ "nematode" 8.2% confidence

[1] Explaining and Harnessing Adversarial Examples, Goodfellow et al. 2015

• *Objective*: construct robust adversarial perturbations in the physical world.

- *Objective*: construct robust adversarial perturbations in the physical world.
- *Experimental setting*: Construct printable stickers that can be cut out and placed on physical road signs to cause a DNN classifier to misclassify the road sign.

- *Objective*: construct robust adversarial perturbations in the physical world.
- *Experimental setting*: Construct printable stickers that can be cut out and placed on physical road signs to cause a DNN classifier to misclassify the road sign.
- *Adversarial setting*: The proposed method is a targeted white-box attack.

Robust physical-world adversarial examples must satisfy the following properties:

1. Robust to varying environmental conditions (lighting/distance/angle/weather)

- 1. Robust to varying environmental conditions (lighting/distance/angle/weather)
- 2. Account for spatial constraints of the adversarial perturbation

- 1. Robust to varying environmental conditions (lighting/distance/angle/weather)
- 2. Account for spatial constraints of the adversarial perturbation
- 3. Imperceptible to humans, but perceptible to cameras

- 1. Robust to varying environmental conditions (lighting/distance/angle/weather)
- 2. Account for spatial constraints of the adversarial perturbation
- 3. Imperceptible to humans, but perceptible to cameras
- 4. Account for fabrication errors (e.g., error introduced when printing the perturbation)

General Attack Method

• Constrained Optimization Problem:

$$\min ||\delta||_p \text{ s.t. } f_{\theta}(x+\delta) = y^*$$

General Attack Method

• Constrained Optimization Problem:

$$\min ||\delta||_p \text{ s.t. } f_{\theta}(x+\delta) = y^*$$

• Lagrangian-relaxed form:

$$\underset{L-p \text{ norm of } \delta}{\operatorname{argmin}} \lambda ||\delta||_{p} + \underbrace{J(f_{\theta}(x+\delta), y^{*})}_{\operatorname{L-p norm of } \delta}$$

Robustness to varying environmental conditions (lighting/distance/angle/weather)

Robustness to varying environmental conditions (lighting/distance/angle/weather)

- Collect set of images *X^V* of object class *o* (e.g., stop sign) consisting of:
 - *Physical transformations*: real-world images in varying physical conditions, such as lighting, distance, angle and weather
 - *Synthetic transformations:* random crops, varying brightness levels

Robustness to varying environmental conditions (lighting/distance/angle/weather)

- Collect set of images *X^V* of object class *o* (e.g., stop sign) consisting of:
 - *Physical transformations*: real-world images in varying physical conditions, such as lighting, distance, angle and weather
 - *Synthetic transformations:* random crops, varying brightness levels

$$\underset{\delta}{\operatorname{argmin}} \lambda ||\delta||_{p} + J(f_{\theta}(x+\delta), y^{*})$$

$$\{\overbrace{\mathfrak{m}} \ \overbrace{\mathfrak{m}} \ \underset{\operatorname{transformation}}{\operatorname{Alignment}}$$

$$\operatorname{argmin}_{\delta} \lambda ||\delta||_{p} + \mathbb{E}_{x_{i} \sim X^{V}} J(f_{\theta}(x_{i}+T_{i}(\delta)), y^{*})$$

Accounting for spatial constraints and limits of physical perceptibility

Accounting for spatial constraints and limits of physical perceptibility

• Utilize a mask $M_x \in \mathbb{R}^d$ to constrain the region of the image where the perturbation can exist.

• Motivated by graffiti on road signs, perturbations hidden "in the human psyche".

Accounting for spatial constraints and limits of physical perceptibility

• Utilize a mask $M_x \in \mathbb{R}^d$ to constrain the region of the image where the perturbation can exist.

• Motivated by graffiti on road signs, perturbations hidden "in the human psyche".

$$\underset{\delta}{\operatorname{argmin}} \lambda ||\delta||_{p} + \mathbb{E}_{x_{i} \sim X^{V}} J(f_{\theta}(x_{i} + T_{i}(\delta)), y^{*})$$

$$\underset{\delta}{\operatorname{argmin}} \lambda ||M_{x} \cdot \delta||_{p} + \mathbb{E}_{x_{i} \sim X^{V}} J(f_{\theta}(x_{i} + T_{i}(M_{x} \cdot \delta)), y^{*})$$

How do we choose a good mask?

How do we choose a good mask?

1. Train model with octagonal mask with L_1 -norm

$$\underset{\delta}{\operatorname{argmin}} \lambda || M_x \cdot \delta ||_{\mathbf{1}} + \mathbb{E}_{x_i \sim X^V} J(f_\theta(x_i + T_i(M_x \cdot \delta)), y^*)|$$

How do we choose a good mask?

1. Train model with octagonal mask with L_1 -norm

$$\underset{\delta}{\operatorname{argmin}} \lambda || M_x \cdot \delta ||_1 + \mathbb{E}_{x_i \sim X^V} J(f_\theta(x_i + T_i(M_x \cdot \delta)), y^*)$$

2. Threshold the highly-activated perturbation regions.

• Add an additional term to the objective function that encourages the perturbation to be reproducible by the printer.

- Add an additional term to the objective function that encourages the perturbation to be reproducible by the printer.
- Let $R(\delta)$ be the set of RGB triplets used in perturbation δ and let P be the set of printable RGB triplets: $NPS = \sum \prod |\hat{p} - p'|$

$$VPS = \sum_{\hat{p} \in R(\delta)} \prod_{p' \in P} |\hat{p} - p'|$$

- Add an additional term to the objective function that encourages the perturbation to be reproducible by the printer.
- Let $R(\delta)$ be the set of RGB triplets used in perturbation δ and let *P* be the set of printable RGB triplets: $NDC = \sum \prod_{i=1}^{n} |\hat{x}_i - x_i'|$

$$NPS = \sum_{\hat{p} \in R(\delta)} \prod_{p' \in P} |\hat{p} - p'|$$

$$\underset{\delta}{\operatorname{argmin}} \lambda || M_x \cdot \delta ||_p + \mathbb{E}_{x_i \sim X^V} J(f_\theta(x_i + T_i(M_x \cdot \delta)), y^*)$$

 $\underset{\delta}{\operatorname{argmin}} \lambda || M_x \cdot \delta ||_p + \mathbb{E}_{x_i \sim X^V} J(f_\theta(x_i + T_i(M_x \cdot \delta)), y^*) + NPS$

- Add an additional term to the objective function that encourages the perturbation to be reproducible by the printer.
- Let $R(\delta)$ be the set of RGB triplets used in perturbation δ and let *P* be the set of printable RGB triplets: $NDC = \sum \prod_{i=1}^{n} |\hat{x}_{i} - x_{i}'|$

$$NPS = \sum_{\hat{p} \in R(\delta)} \prod_{p' \in P} |\hat{p} - p'|$$

$$\underset{\delta}{\operatorname{argmin}} \lambda || M_x \cdot \delta ||_p + \mathbb{E}_{x_i \sim X^V} J(f_\theta(x_i + T_i(M_x \cdot \delta)), y^*)$$

 $\underset{\delta}{\operatorname{argmin}} \lambda || M_x \cdot \delta ||_p + \mathbb{E}_{x_i \sim X^V} J(f_\theta(x_i + T_i(M_x \cdot \delta)), y^*) + NPS$

Experiments

Experiments

- Attack two trained classifiers:
 - LISA-CNN: Trained on LISA road sign classification dataset. 91% accuracy on test set.
 - GTSRB-CNN: Trained on GT-SRB road sign classification dataset. 95.7% accuracy on test set.

Experiments

- Attack two trained classifiers:
 - LISA-CNN: Trained on LISA road sign classification dataset. 91% accuracy on test set.
 - GTSRB-CNN: Trained on GT-SRB road sign classification dataset. 95.7% accuracy on test set.
- Two types of experiments:
 - Stationary (lab) tests
 - Drive-by (field) tests

Results: Lab Test

Table 1: Sample of physical adversarial examples against LISA-CNN and GTSRB-CNN.

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP			STOP	STOP
5′ 15°	STOP		STOP	STOP	STOP
10′ 0°	STOP		STOP -	STOP	STOP
10' 30°				STOP	STOP
40′ 0°	and the				
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%

Table 5: A camouflage art attack on GTSRB-CNN. See example images in Table 1. The targeted-attack success rate is 80% (true class label: Stop, target: Speed Limit 80).

Distance & Angle	Top Class (Confid.)	Second Class (Confid.)
5' 0° 5' 15°	Speed Limit 80 (0.88)	Speed Limit 70 (0.07) Stop (0.03)
5' 30° 5' 45° 5' 60°	Speed Limit 80 (0.94) Speed Limit 80 (0.86) Keep Right (0.82) Speed Limit 80 (0.55)	Keep Right (0.03) Speed Limit 80 (0.12) Stop (0.31)
10' 0°	Speed Limit 80 (0.98)	Speed Limit 100 (0.006)
10' 15°	Stop (0.75)	Speed Limit 80 (0.20)
10' 30°	Speed Limit 80 (0.77)	Speed Limit 100 (0.11)
15' 0°	Speed Limit 80 (0.98)	Speed Limit 100 (0.01)
15' 15°	Stop (0.90)	Speed Limit 80 (0.06)
20' 0°	Speed Limit 80 (0.95)	Speed Limit 100 (0.03)
20' 15°	Speed Limit 80 (0.97)	Speed Limit 100 (0.01)
25' 0°	Speed Limit 80 (0.99)	Speed Limit 70 (0.0008)
30' 0°	Speed Limit 80 (0.99)	Speed Limit 100 (0.002)
40' 0°	Speed Limit 80 (0.99)	Speed Limit 100 (0.002)

Results: Field Test

Perturbation	Attack Success	A Subset of Sampled Frames $k = 10$		
Subtle poster	100%			
Camouflage abstract art	84.8%			

In the Press

IEEE Spectrum FOR THE TECHNOLOGY INSIDER

Q Type to search

NEWS TRANSPORTATION

Slight Street Sign Modifications Can Completely Fool Machine Learning

Algorithms >Minor changes to street sign graphics can fool machine learning algorithms into thinking the signs say something completely different

BY EVAN ACKERMAN | PUBLISHED 04 AUG 2017 | 5 MIN READ | 🗔

Auto Tech

It is surprisingly easy to bamboozle a self-driving car

Researchers confused cameras into misinterpreting signs with a few small tricks and a lot of math.

EMILY DREYFUSS SECURITY AUG 5, 2017 7:00 AM

Security News This Week: A Whole New Way to Confuse Self-Driving Cars

Each Saturday we roundup the major security news of the week.

You can confuse self-driving cars by altering street signs

It doesn't take much to send autonomous cars crashing into each other.

Researchers Find a Malicious Way to Meddle with Autonomous Cars

C/D MARK HARRIS AUG 4, 2017

HOME · CARS · NEWS

Stickers on street signs can confuse self-driving cars, researchers show

By Trevor Mogg August 6, 2017 SHARE

Hacking street signs with stickers could confuse self-driving cars

Conclusions

- Are self-driving cars at risk based solely on *this work*?
- No! This work did not conduct any experiments with an autonomous vehicle. To make this conclusion, a more complete attack must be proposed that targets the full autonomous driving pipeline.

Conclusions

- Are self-driving cars at risk based solely on *this work*?
- No! This work did not conduct any experiments with an autonomous vehicle. To make this conclusion, a more complete attack must be proposed that targets the full autonomous driving pipeline.
- Are self-driving cars **potentially** at risk based solely on *this work*?
- Absolutely!

Conclusions

- Are self-driving cars at risk based solely on *this work*?
- No! This work did not conduct any experiments with an autonomous vehicle. To make this conclusion, a more complete attack must be proposed that targets the full autonomous driving pipeline.
- Are self-driving cars **potentially** at risk based solely on *this work*?
- Absolutely!

Any questions? Please send me an email! l6rowe@uwaterloo.ca

