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▪ DNNs are vulnerable to human-imperceptible adversarial perturbations.
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[1] Explaining and Harnessing Adversarial Examples, Goodfellow et al. 2015
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▪ Adversarial setting: The proposed method is a 
targeted white-box attack.
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Robust physical-world adversarial examples must satisfy the following properties:
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Robust physical-world adversarial examples must satisfy the following properties:

1. Robust to varying environmental conditions (lighting/distance/angle/weather)

2. Account for spatial constraints of the adversarial perturbation

3. Imperceptible to humans, but perceptible to cameras

4. Account for fabrication errors (e.g., error introduced when printing the perturbation)
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General Attack Method 

▪ Constrained Optimization Problem:
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General Attack Method 

▪ Constrained Optimization Problem:

▪ Lagrangian-relaxed form:

L-𝑝 norm of 𝛿 Loss function
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▪ Collect set of images 𝑋𝑉 of object class 𝑜 (e.g., stop sign) consisting of:

▪ Physical transformations: real-world images in varying physical conditions, such as lighting, distance, 
angle and weather 

▪ Synthetic transformations: random crops, varying brightness levels
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Robustness to varying environmental conditions (lighting/distance/angle/weather)

▪ Collect set of images 𝑋𝑉 of object class 𝑜 (e.g., stop sign) consisting of:

▪ Physical transformations: real-world images in varying physical conditions, such as lighting, distance, 
angle and weather 

▪ Synthetic transformations: random crops, varying brightness levels

Alignment 
transformation
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▪ Utilize a mask                   to constrain the region of the image where the perturbation can 
exist.

▪ Motivated by graffiti on road signs, perturbations hidden “in the human psyche”.   
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1. Train model with octagonal mask with 𝐿1-norm
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How do we choose a good mask?

1. Train model with octagonal mask with 𝐿1-norm

2. Threshold the highly-activated perturbation regions.

Final Mask
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reproducible by the printer.
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Experiments

▪ Attack two trained classifiers:

▪ LISA-CNN: Trained on LISA road sign classification dataset. 91% accuracy on test set.

▪ GTSRB-CNN: Trained on GT-SRB road sign classification dataset. 95.7% accuracy on test set.

▪ Two types of experiments:

▪ Stationary (lab) tests

▪ Drive-by (field) tests



PAGE  30

Results: Lab Test



PAGE  31

Results: Field Test



PAGE  32

In the Press



▪ Are self-driving cars at risk based solely on this work?

▪ No! This work did not conduct any experiments with an autonomous vehicle. To make 
this conclusion, a more complete attack must be proposed that targets the full 
autonomous driving pipeline. 
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Conclusions

Any questions? Please send me an email! l6rowe@uwaterloo.ca


