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Learning Paradigms

® Supervised learning — learning with labeled data

» Collect a small dataset with labels (labels are expensive)
» Examples: SVM, Logistic Regression, LLM finetuning, etc.

® Unsupervised learning — learning with unlabeled data

» Collect a large dataset without label (unlabeled data are cheap)
» Examples: LLM pretraining, GAN, etc.

® Self-supervised learning — a subclass of unsupervised learning

» Goal: Learn useful representations through pretraining tasks for downstream tasks
» Example: LLM pretraining (predicting masked tokens)
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Self-Supervised Learning

® Self-supervised learning steps

» Pretraining/Pretext step: build a task where the label is pseudo and is constructed

from the unlabeled data (e.g., predict the rotation degree of rotated images)
» Downstream step:

» Fine-tuning protocol: all trainable parameters
P Linear evaluation protocol: Fix the representation and fine-tuning topping layers

Self-supervised  Downstream "Cat”
model layers

Trained on Transfer
rotation prediction Learning
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Why self-supervised learning?

® Why self-supervised learning?

» Creating labeled datasets for each task is an expensive
» Vast amount of unlabeled data on the internet (images, videos, text)
» Self-supervised learning will not overfit

® Challenges for self-supervised learning

» How to select a suitable pretraining task for an application
» There is no golden rule for comparison of learned feature representations
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Outline (Pretraining Tasks)

® Geometric transformation recognition
» |mage rotation
® Patches
» Relative patch position
> Image jigsaw puzzle
® Generative modeling
» Context encoders
» Image colorization
» Cross-channel prediction
» Image super-resolution
e Contrastive learning
> SimCLR
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Image Rotation

® Pretraining data: images rotated by a multiple of 90 degree at random
» This corresponds to four rotated images at 0, 90, 180, and 270 degrees

® Pretraining task: train a model to predict the rotation degree that was applied

Architecture for Geometric Transformation Recognition
Original Image

argmax

ConvNets — Dense(4) — 1

90 degree

{0, 90, 180, 270}

Classes

\d

0 degree 90 degree 180 degree 270 degree

Gidaris (2018) - Unsupervised Representation Learning by Predicting Image Rotations
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Image Rotation

® A single ConvNet model is used to predict one of the four rotations
® The model needs to understand the location and type of the objects in images to

determine the rotation degree

» g(Xx,y=0) |

Rotate 0 degrees

> gX,y=1)

Rotate 90 degrees

> g(x,y=2) |
Rotate 180 degrees

»

Rotated image: X"

Rotated image: X'

Rotated image: X

e l
Rotate 270 degrees

Rotated image: X~

ConvNet
model F(.)

ConvNet
model F(.)

ConvNet

model F()

ConvNet

model F(.) |

Objectives:

Maximize prob.
F(x")
Predict 0 degrees rotation (y=0)

» Mninlliu Ipmh
F'(x")
Predict 90 degrees rotation (y=1)

Maximize prob.
»
F(X)
Predict 180 degrees rotation (y=2)

» Maximize prob.
F(x7)
Predict 270 degrees rotation (y=3)
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Image Rotation Evaluation

e Evaluation on the PASCAL VOC dataset for classification, detection, and
segmentation tasks
» The model (RotNet) is trained in SSL manner, and fine-tuned afterwards
> The learned features are not as good as the supervised learned features based on
transfer learning from ImageNet, but they demonstrate a potential

Classification ~ Detection ~Segmentation
(%mAP) (%mAP) (%mloU)

Trained layers | fc6-8 all all all
Supervised feature learning I ImageNet labels 789 799 56.8 48.0

Random 533 434 19.8

Random rescaled Krihenbithl et al./(2015) | 39.2  56.6 45.6 32.6

Egomotion (Agrawal et al., 2015) 3.0 542 439

Context Encoders (Pathak et al., 2016b) 34.6 56.5 445 297

Tracking (Wang & Gupta, 2015) 556  63.1 474

Context (Doersch et al.. 2015) 551 653 511

Colorization (Zhang et al., 2016a) 6L.5  65.6 46.9 35.6

BIGAN (Donahue et al.; 2016) 523 60.1 46.9 349

Jigsaw Puzzles (Noroozi & Favaro, 2016) - 67.6 532 37.6

NAT (Bojanowski & Joulin, 2017) 56.7 653 49.4

Split-Brain (Zhang et al., 2016b) 63.0 67.1 46.7 36.0

ColorProxy (Larsson et al., 2017) 65.9 384
Proposed self-supervised Counting (Noroozi et al.,[2017) - 67.7 51.4 36.6
feature learning (Ours) RotNet [ 7087 7297 544 39.1
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Relative Patch Position

® Pretraining data: multiple patches extracted from images
® Pretraining task: train a model to predict the relationship between the patches

Features Label (1-8)
e
| i =/ Bottom Center(7)
|
Center Random
Patch neighbor

Dorsch (2015) Unsupervised Visual Representation Learning by Context Prediction 8/30



Relative Patch Position
® The patches are inputted into two ConvNets with shared weights

® The model needs to understand the spatial context of images, in order to predict
the relative positions between the patches

o)1 1Ll

Center Patch

a ™ Convolution Dense
/ *
| Blocks*5 4096 Dense Dense Dense arom

(4096) (4096) (8)
Convolution Dense
‘ Blocks*5 4096

Random neighbor  Shared weights(siamese)
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Relative Patch Position

® The training patches are sampled in the following way:
» Randomly sample the first patch, and consider it the middle of a 3x3 grid
» Sample from 8 neighboring locations of the first central patch (blue patch)
® To avoid the model only catching low-level trivial information:
» Add gaps between the patches
» Add small jitters to the positions of the patches
» Randomly downsample some patches to reduced resolution, and then upsample
» Randomly drop 1 or 2 color channels for some patches
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Image Jigsaw Puzzle

® Pretraining data: 9 patches extracted in images (similar to the previous approach)
® Pretraining task: predict the positions of all 9 patches
» This approach uses the grid of 3-by-3 patches and solves a jigsaw puzzle

Noroozi (2016) Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles
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Image Jigsaw Puzzle
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Context Encoders

® Pretraining data: remove a random region in images

® Pretraining task: fill in a missing piece in the image

+ random missing region

Pathak (2016) Context Encoders: Feature Learning by Inpainting
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Context Encoders

® The initially considered model uses an encoder-decoder architecture
e A Euclidean ¢, distance is used as the reconstruction loss function L,..

® |n the downstream task, use the encoder networks as the representation

Encoder Decoder

Ng
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,,,,,,,,, Reconstruction
>54 > Loss (L2)
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Context Encoders

® |Improvement was achieved by adding a GAN branch
® A weighted combination of the two losses, i.e., ArecLirec + AganLgan

Encader Decoder
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Context Encoders

Input image Encoder-decoder GAN with loss £gan Joint loss
with reconstruction L = ArecLrect
loss ‘Crec AganLgan
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Context Encoders

Pretraining Method Supervision Pretraining time  Classification Detection Segmentation
ImageNet [ 7] 1000 class labels 3 days 78.2% 56.8% 48.0%
Random Gaussian initialization < 1 minute 53.3% 43.4% 19.8%
Autoencoder - 14 hours 53.8% 41.9% 25.2%
Agrawal et al. [ ] egomotion 10 hours 52.9% 41.8% -
Doersch et al. [ '] context 4 weeks 55.3% 46.6% -
Wang et al. [*] motion 1 week 58.4% 44 0% -

Ours context 14 hours 56.5% 44.5% 29.7%
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Image Colorization

® Pretraining data: pairs of color and grayscale images

® Pretraining task: predict the colors of the objects in grayscale images

T
- E )
- E

Sky is blue
Cloud is white
Mountain is green

Grayscale 2 3
filter —_—

/\ /\
/ \ N\
VARV

Zhang (2016) Colorful Image Colorization
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Image Colorization

® An encoder-decoder architecture with convolutional layers
® [, loss between the actual color image and the predicted colorized image
® |n the downstream task, use the encoder as the representation

Predicted Actual

CNN CNN
Encoder ___ Decoder

Loss
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Image Super-Resolution

® Pretraining data: pairs of regular and downsampled low-resolution images

® Pretraining task: predict a high-resolution image that corresponds to a
downsampled low-resolution image

Make 2x smaller

—

Ledig (2017) Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
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Image Super-Resolution
® A GAN architecture

® The paper did not consider downstream tasks other than super-resolution

SRGAN L2 + Content Loss

Predicted

Actual

Generator

Low resolutlon

Discriminator

Vo

fake(0) real(1)

Ledig (2017) Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
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Contrastive Learning
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SimCLR

A Simple Framework for Contrastive Learning of Visual Representations

Ting Chen' Simon Kornblith' Mohammad Norouzi' Geoffrey Hinton'

Abstract

‘This paper presents SimCLR: a simple framework
for stive learning of visual

We simplify recently proposed contrastive self-
supervised learning algorithms without requiring
specialized architectures or a memory bank. In
order to understand what enables the contrastive
prediction tasks to learn useful representations.
we systematically study the major components of
our framework. We show that (1) composition of
data augmentations plays a critical role in defining
effective predictive tasks, (2) introducing a leam-
able nonlinear transformation between the repre-
sentation and the contras substantially im-
proves the quality of the learned representations.
and (3) contrastive learning benefits from larger
batch sizes and more training steps compared to
supervised learning. By combining these findings,
we are able to considerably outperform previous
methods for self-supervised and semi-supervised
leaming on ImageNet. A linear classifier trained
on self-supervised representations learned by Sim-
CLR achieves 76.5% top-1 accuracy, which is a
7% relative improvement over previous state-c
the-art, matching the performance of a supervised
ResNet-50. When fine-tuned on only 1% of the
labels, we achieve 85.8% top-5 accuracy, outper-
forming AlexNet with 100 fewer labels. !

ive los

#Supervised *SImCLR (4x)
g™ *SIMCLR (2x)
g #CPCv2-L
g 70|
5 TO[ *simetr . ‘MDCD’(M)
8 oPIRL-c2X
< AMDIM
= 6 s oMoCo (2x)
5 % qopovz PIRLens.
2 PIRL o
% BigBIGAN
3 6o qMoCo 9
z LA
g
E eRotation
5[ einstoise

25 50 100 200 400
Number of Parameters (Millions)

Figure 1. ImageNet Top-1 accuracy of linear classifiers trained
on representations leamed with different self-supervised meth-
ods (pretrained on ImageNet). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold.

However, pixel-level generation is computationally expen-
sive and may not be necessary for representation learning.
Discriminative approaches learn representations using objec-
tive functions similar to those used for supervised learning,
but train networks to perform pretext tasks where both the in-
puts and labels are derived from an unlabeled dataset. Many
such approaches have relied on heuristics to design pretext
(Doersch et al., 2015; Zhang et al., 2016; Noroozi &
varo, 2016; Gidaris et al., 2018), which could limit the

Chen (2020) A Simple Framework for Contrastive Learning of Visual Representations
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Structure of SImCLR

Z= (ril T])
Maximize agreement
13 7

g() I Projection head  (2-layer MLP)  Pprojection head Ig()

i Class
h; <— Representation —» h;
h(") linear classifier
f() Encoder network  (ResNet-50) Encoder network f()
h
; . ‘# £ () encoder network
el
e A
@
a) Training b) Testing

® But how to measure agreement? By comparison!

Chen (2020) A Simple Framework for Contrastive Learning of Visual Representations
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How to measure agreement

/ﬁ feature vectors Feature Space
—-—) —-—)

R
closer
[ ]

Machine Learning Further

- Model —)
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ey —) —)
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¢ Distance of images of same content < Distance of images of different contents

e Similarity of images of same content > Similarity of images of different contents
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Loss Function

Image 1 Image 2 Image n
///////\\\\\\ ///////\\\\\\ ...... K/i////“\\\i\
Image 1 (t) Image 1 (t') Image 2 (t) Image 2 (t) Image n (t) Image n (t')

Image 1(t') Image2(t) Image?2(t’) Image n (t’)
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o, _exp(z)
Softmax: z; — 3o (z)
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Loss: max prob, =

exp (z1)

Zex—p(z) (a.k.a. InfoNCE loss)
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Loss Function
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Loss Function

Image 1 Image 2 Image n
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Performance

% Supervised % SimCLR (4x)
s *SimCLR (2x)
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Figure 1. ImageNet Top-1 accuracy of linear classifiers trained
on representations learned with different self-supervised meth-
ods (pretrained on ImageNet). Gray cross indicates supervised
ResNet-50. Our method, SimCLR, is shown in bold.

® The 1st method that is comparable with supervised learning on ImageNet by linear

evaluation protocol
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Performance

® Experimental results on 10 image datasets

® SimCLR outperformed supervised models on most datasets

Food CIFARIO CIFAR100 Birdsnap SUN397 Cars

Aircraft VOC2007 DTD Pets Caltech-101 Flowers

Linear evaluation:

SimCLR (ours) 76.9 95.3 80.2 48.4 659 600 61.2 84.2 78.9 89.2 93.9 95.0
Supervised 75.2 95.7 81.2 56.4 649 688 3.8 83.8 78.7 923 9.1 94.2
Fine-tuned:

SimCLR (ours) 89.4 98.6 89.0 78.2 68.1 92.1 87.0 86.6 77.8 92.1 94.1 97.6
Supervised 88.7 98.3 88.7 77.8 670 914 88.0 86.5 78.8 93.2 94.2 98.0
Random init 88.3 96.0 81.9 77.0 537 913 848 69.4 64.1 82.7 72.5 925
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