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Categories	of	Adversarial	Defense
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• Categories	of	empirical	defenses:
• Gradient	masking
• Design	a	method	to	hide	the	gradients	in	the	classification	model
• This	will	make	first-order	attacks	failed

• Adversarial	training
• Use	the	inner	maximization	to	mimic	the	behavior	of	attacks
• Use	the	outer	minimization	to	update	the	weight	of	neural	networks



Categories	of	Adversarial	Defense

3

Input	Space Deep	Neural	Network	𝒇 Feature	Space

Adversarial	reachable	
region	△ 𝑥

min
6,7

𝔼',9~𝒟<Adversarial	Training:

Gradient	AscentGradient	Descent

max
'(∈△ '

Loss(ℎ(𝑓 𝑥0 ), y)	

ℎ

Reachable	region

• Categories	of	empirical	defenses:
• Gradient	masking
• Design	a	method	to	hide	the	gradients	in	the	classification	model
• This	will	make	first-order	attacks	failed

• Adversarial	training
• Use	the	inner	maximization	to	mimic	the	behavior	of	attacks
• Use	the	outer	minimization	to	update	the	weight	of	neural	networks



Outline	of	the	Lecture

• Gradient	masking
• Shattered	gradient	based	method
• Stochastic/randomized	gradient	based	method

• Adversarial	training
• FGSM	adversarial	training
• Ensemble	adversarial	training
• PGD	adversarial	training
• Trade-off	between	robustness	and	accuracy
• TRADES
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Gradient	Masking

• Gradient	maskingmethods	hide	the	gradient	of	the	model	from	being	used	by	an	adversary
• Because	most	attacks	are	based	on	the	model’s	gradient	information,	creating	adversarial	
examples	with	such	attacks	becomes	less	successful

• Gradient	masking	methods	can	be	grouped	into:
• Shattered	gradients	methods
• Stochastic/randomized	gradients

• Limitation: they	are	designed	to	confuse	the	first-order	attacks,	but	they	cannot	defend	against	
other	forms	of	attacks	such	as	black-box	attacks
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Shattered	Gradients

• Shattered	gradients	methods
• The	goal	is	to	prevent	the	flow	of	information	from	the	inputs	to	the	outputs	in	the	model
• By	this,	the	adversaries	are	prevented	from	calculating	the	gradients

• A	common	approach	towards	this	goal	is	to	preprocess	the	input	data
• For	example,	by	applying	a	non-smooth	or	non-differentiable	preprocessor	𝑔(. ) to	the	
inputs,	and	then	training	a	DNN	model	f on	the	preprocessed	inputs	𝑔(𝑥)

• The	trained	target	classifier	𝑓(𝑔(𝑥))	is	not	differentiable	w.r.t.	the	inputs	𝑥,	causing	the	
failure	of	adversarial	attacks
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Shattered	Gradients

• Buckman	(2018)	Thermometer	Encoding:	One	Hot	Way	to	Resist	Adversarial	Examples

• Thermometer	Encoding	defense	applies	discretization	of	the	intensity	levels	of	each	pixel	into	an	
𝑙-dimensional	vector
• They	propose	a	mechanism	for	the	mapping	table
• The	value	of	the	pixel	with	intensity	0.13	is	replaced	by	a	10-dimensional	vector	
[0111111111],	but	one	can	use	other	mappings	as	well

• The	target	classifier	is	trained	using	discrete	vectors	for	all	pixels,	which	breaks	the	calculation	of	
the	gradients
• Experimental	evaluation	indicates	increased	robustness	by	the	DNN	models	to	adversarial	
examples
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Shattered	Gradients

• Guo	(2017)	Countering	Adversarial	Images	using	Input	Transformations

• This	work	employs	several	image	transformation	𝑔(. ) to	break	the	calculation	of	the	gradients
• These	include:	image	cropping	and	rescaling,	bit	depth	reduction,	JPEG	compression,	total	
variance	minimization,	and	image	quilting
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Shattered	Gradients

• Guo	(2017)	Countering	Adversarial	Images	using	Input	Transformations

• This	work	employs	several	image	transformation	𝑔(. ) to	break	the	calculation	of	the	gradients
• These	include:	image	cropping	and	rescaling,	bit	depth	reduction,	JPEG	compression,	total	
variance	minimization,	and	image	quilting
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o Evaluation	of	different	attacks	against	
ResNet on	ImageNet
o X-axis:	perturbation	size
o Y-axis:	accuracy	(higher	is	better)
o The	accuracy	increases	from	almost	

0%	with	no	defense,	to	over	60%	for	
most	settings



Stochastic/Randomized	Gradients

• Stochastic/Randomized	Gradients	methods	apply	some	form	of	randomization	of	the	DNN	model	
as	a	defense	strategy	to	fool	the	adversary
• E.g.,	train	a	set	of	classifiers,	and	during	the	testing	phase	randomly	select	one	classifier	to	
predict	the	class	labels

• Because	the	adversary	does	not	know	which	model	was	used	for	prediction,	the	attack	
success	rate	is	reduced
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Stochastic/Randomized	Gradients

• Xie	(2018)	Mitigating	Adversarial	Effects	Through	Randomization

• The	defense	approach	applies	random	resizing	and	padding to	improve	the	robustness	to	
adversarial	attacks	
• Images	are	first	resized	to	several	different	widths	and	heights
• Random	padding	with	0s	is	added	to	all	four	sides	of	the	resized	images

• For	each	image,	prediction	vectors	are	obtained	for	30	randomized	versions	of	the	image,	and	the	
average	value	is	adopted	as	the	final	prediction
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Stochastic/Randomized	Gradients

• Dhillon	(2018)	Stochastic	Activation	Pruning	for	Robust	Adversarial	Defense

• Stochastic	Activation	Pruning removes	a	random	subset	of	neurons’	activations	in	each	layer
• The	remaining	output	activations	in	each	layer	are	rescaled	to	normalize	the	inputs	to	the	
subsequent	layer

• This	approach	is	similar	to	dropout	layers
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Gradient	masking	is	a	false	sense	of	security

• All	the	above	defenses	break	down	by	adaptive	attacks
• E.g.,	by	applying	black-box	attacks	which	do	not	use	gradients

• Therefore,	gradient	masking	is	proven	to	be	a	false	sense	of	security
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Outline	of	the	Lecture

• Gradient	masking
• Shattered	gradient	based	method
• Stochastic/randomized	gradient	based	method

• Adversarial	training
• FGSM	adversarial	training
• Ensemble	adversarial	training
• PGD	adversarial	training
• Trade-off	between	robustness	and	accuracy
• TRADES
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Adversarial	Training

• Adversarial	training	trains	the	target	classification	model	using	adversarial	examples	

• The	adversarial	examples	are	produced	to	attack	the	latest	iterate	of	classifier
• By	adding	adversarial	examples	𝑥′ with	true	label	𝑦 to	the	training	set,	the	model	will	learn	
that	𝑥′	belongs	to	the	class	𝑦

• Adversarial	training	is	one	of	the	most	successful	defenses	so	far
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Adversarial	Training

• Goodfellow	(2015)	Explaining	and	Harnessing	Adversarial	Examples

• The	paper	suggests	using	FGSM	attack	to	solve	the	inner	maximization
• Adversarial	examples	created	by	FGSM	were	added	to	the	training	set	to	increase	the	model	
robustness

• Limitation: the	robust	model	is	vulnerable	to	adversarial	examples	created	by	other	attacks	
(e.g.,	PGD	attacks)
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Adversarial	Training

• Tramer	(2017)	Ensemble	Adversarial	Training:	Attacks	and	Defenses

• Ensemble	Adversarial	Training	uses	a	set	of	adversarial	examples	created	by	several	fixed
classifiers	to	train	the	model
• Model	1,	Model	2,	and	Model	3	with	different	architectures	are	trained
• For	each	input	sample	x,	FGSM	is	used	to	create	adversarial	samples	xI	JKL,	xM	JKL,	and	xN	JKL
using	the	three	models

• A	classifier	is	trained	using	the	clean	sample	x and	the	adversarial	samples	created	by	all	
three	models	xI	JKL,	xM	JKL,	and	xN	JKL

• The	performance	highly	depends	on	the	robustness	of	Models	1,	2,	and	3
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Adversarial	Training

• Madry	(2017)	Towards	Deep	Learning	Models	Resistant	to	Adversarial	Attacks

• This	paper	suggests	using	PGD	attack	to	solve	the	inner	maximization
• PGD	can	find	stronger	adversarial	example	around	an	input	sample	x

• The	trained	model	demonstrated	good	robustness	on	MNIST	and	CIFAR-10
• Due	to	the	high	computational	cost	for	created	PGD	samples,	it	is	difficult	to	scale	to	large	

datasets	such	as	ImageNet
• Xie	et	al.	(2019)	Feature	Denoising	for	Improving	Adversarial	Robustness
• 128	Nvidia V100	GPUs	and	52	hours	to	adversarially train	a	ResNet-152	model
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Adversarial	Training

• Limitation: Adversarial	training	suffers	from	a	reduced	accuracy	on	clean	samples,	known	as	
robustness-accuracy	trade-off
• y-axis:	the	difference	between	the	classification	error	of	an	adversarially trained	model	and	a	
natually trained	model

• Adversarial	training	reduces	the	natural	accuracy	for	about	3%~7%
• Increasing	the	size	of	the	dataset	reduces	the	gap
• Increasing	the	perturbation	size	increases	the	gap
• Why	the	trade-off?

20
Figure	from:	Madry (2018)	Towards	Deep	Learning	Models	Resistant	to	Adversarial	Attacks



Trade-off	between	Robustness	and	Accuracy
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𝑅RST 𝑓 := Pr',9~𝒟{∃𝑥0 ∈△ (𝑥)	s. t. 	𝑓 𝑥0 𝑦 ≤ 0}

𝑅^_` 𝑓 := Pr',9~𝒟{𝑓 𝑥 𝑦 ≤ 0}

• An	example	of	trade-off	(for	△ 𝑥 = 𝔹b(𝑥, 𝜀)):

= Pr	(𝑦 = +1|𝑥)

𝑥~Uniform[0,1]

Bayes	Optimal Classifier

𝑅^_` 𝑓 0	(best	𝑅^_`)

𝑅RST 𝑓 1	(worst 𝑅RST)

𝑦 ∈ {+1,−1},	classifier	𝑓:𝒳 → ℝ

0 1

+1 class −1 class

𝑥



Trade-off	between	Robustness	and	Accuracy
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Computationally, weighted average 
𝑅^_` 𝒇 + 𝑅𝒓𝒐𝒃(𝒇)/𝛌 is non-differentiable.

Solution:	minimize	min
7
𝑅^_` 𝑓 + 𝑅RST(𝑓)/𝜆	

0 1

Bayes	Optimal Classifier All	+1	Classifier

𝑅^_` 𝑓 0	(best	𝑅^_`) 1/2

𝑅RST 𝑓 1	(worst	𝑅RST) 1/2	(best	𝑅RST)

• An	example	of	trade-off	(for	△ 𝑥 = 𝔹b(𝑥, 𝜀)):

+1 class −1 class

𝑅RST 𝑓 := Pr',9~𝒟{∃𝑥0 ∈△ (𝑥)	s. t. 	𝑓 𝑥0 𝑦 ≤ 0}

𝑅^_` 𝑓 := Pr',9~𝒟{𝑓 𝑥 𝑦 ≤ 0}

𝑦 ∈ {+1,−1},	classifier	𝑓:𝒳 → ℝ

= Pr	(𝑦 = +1|𝑥)

𝑥~Uniform[0,1]

𝑥



Classification-Calibrated	Surrogate	Loss

23[Bartlett	et	al.’06]	Convexity,	Classification,	and	Risk	Bounds,	Journal	of	the	American	Statistical	Association,	2006

𝑅r 𝑓 := 𝔼',9~𝒟𝜙(𝑓 𝑥 𝑦)
[Bartlett	et	al.’06]
approximate

𝑅RST 𝑓 := 𝔼',9~𝒟1{∃𝑥0 ∈△ (𝑥)	s. t. 	𝑓 𝑥0 𝑦 ≤ 0}
Can	we	design	a	differentiable	surrogate	loss	for	the	trade-off?

𝑅^_` 𝑓 := 𝔼',9~𝒟1{𝑓 𝑥 𝑦 ≤ 0}

𝑡
𝜙
(𝑡
)



TRADES
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minimize	difference	between	𝑓(𝑥) and	𝑦 for	accuracy

min
7
[𝔼',9~𝒟 𝜙 𝑓 𝑥 𝑦 + 𝔼',9~𝒟 max

'0∈△(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]

[Zhang,	Yu,	Jiao,	Xing,	Ghaoui,	Jordan’19]	Theoretically	Principled	Trade-off	between	Robustness	and	Accuracy,	ICML	2019



min
7
𝔼𝜙 𝑓 𝑥 𝑦 min

7
[𝔼𝜙 𝑓 𝑥 𝑦 + 𝔼 max

'0∈∆(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]

TRADES
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minimize	difference	between	𝑓(𝑥) and	𝑓(𝑥′) for	robustness

Gradient	Ascent
min
7
[𝔼',9~𝒟 𝜙 𝑓 𝑥 𝑦 + 𝔼',9~𝒟 max

'0∈△(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]

[Zhang,	Yu,	Jiao,	Xing,	Ghaoui,	Jordan’19]	Theoretically	Principled	Trade-off	between	Robustness	and	Accuracy,	ICML	2019



TRADES
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TRADES Loss(𝑓):

min
7
[𝔼',9~𝒟 𝜙 𝑓 𝑥 𝑦 + 𝔼',9~𝒟 max

'0∈△(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]
Gradient	Ascent

min
7
𝔼𝜙 𝑓 𝑥 𝑦 min

7
[𝔼𝜙 𝑓 𝑥 𝑦 + 𝔼 max

'0∈∆(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]

[Zhang,	Yu,	Jiao,	Xing,	Ghaoui,	Jordan’19]	Theoretically	Principled	Trade-off	between	Robustness	and	Accuracy,	ICML	2019



Theoretical	Results
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Theorem	1	(Informal,	upper	bound,	Zhang	et	al.’19):

For	any distribution	𝒟,	𝑓,	∆(𝑥) and	𝜆 > 0,	we	have	𝑅RST 𝑓 − 𝑅^_`∗ ≤ TRADES	Loss 𝑓 −	𝑅r∗ .
q 𝑅^_`∗ :	minimal	value	of	𝑅^_` 𝑓 over	all	classifiers	𝑓
q 𝑅r∗ :	minimal	value	of	𝑅r 𝑓 := 𝔼',9~𝒟𝜙 𝑓 𝑥 𝑦 	over	all	classifiers	𝑓
q 𝜙:	classification-calibrated	surrogate	loss

TRADES Loss(𝑓):

min
7
[𝔼',9~𝒟 𝜙 𝑓 𝑥 𝑦 + 𝔼',9~𝒟 max

'0∈△(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]

min
7
𝔼𝜙 𝑓 𝑥 𝑦 min

7
[𝔼𝜙 𝑓 𝑥 𝑦 + 𝔼 max

'0∈∆(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]

[Zhang,	Yu,	Jiao,	Xing,	Ghaoui,	Jordan’19]	Theoretically	Principled	Trade-off	between	Robustness	and	Accuracy,	ICML	2019



Theoretical	Results
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Theorem	2	(Informal,	lower	bound,	Zhang	et	al.’19):

For	any ∆(𝑥), there	exist	a	data	distribution	𝒟,	a	classifier	𝑓,	and	an	𝜆 > 0 such	that
𝑅RST 𝑓 − 𝑅^_`∗ ≥ TRADES	Loss(𝑓) −	𝑅r∗ .

[Zhang,	Yu,	Jiao,	Xing,	Ghaoui,	Jordan’19]	Theoretically	Principled	Trade-off	between	Robustness	and	Accuracy,	ICML	2019

Theorem	1	(Informal,	upper	bound,	Zhang	et	al.’19):

For	any distribution	𝒟,	𝑓,	∆(𝑥) and	𝜆 > 0,	we	have	𝑅RST 𝑓 − 𝑅^_`∗ ≤ TRADES	Loss 𝑓 −	𝑅r∗ .
q 𝑅^_`∗ :	minimal	value	of	𝑅^_` 𝑓 over	all	classifiers	𝑓
q 𝑅r∗ :	minimal	value	of	𝑅r 𝑓 := 𝔼',9~𝒟𝜙 𝑓 𝑥 𝑦 	over	all	classifiers	𝑓
q 𝜙:	classification-calibrated	surrogate	loss



Experiments	--- CIFAR10	with	8-intensity	level	attacks
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min
7
𝔼 max
'0∈𝔹(',�)

𝜙 𝑓 𝑥′ 𝑦

min
7
[𝔼𝜙 𝑓 𝑥 𝑦 + 𝔼 max

'0∈𝔹(',�)
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]

(by	Madry et	al.)

(TRADES)

Natural	
Accuracy

Robust
Accuracy



Applications

Overview of This Talk
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Paradigms

Adversarial	
Defenses

Empirical	Defenses Certified	Defenses

Norm-Bounded	
Adversarial	Example Hardness	Results

Robustness

Adversarial	Examples Random	Noises Mixed	Random/Adversarial	
Corruptions

Positive	Results
Unrestricted	

Adversarial	Example

Significant	Experimental	Results	via	Case	Study



Case	Study	I:	NeurIPS’18	Adversarial	Vision	
Challenge
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• 400+	teams,	~3,000	submissions
• ImageNet	dataset
• Model	Track	and	Attack	Track
• Participants	in	the	two	tracks	play	

against	each	other

• Evaluation	criterion

Ranking



1st out	of	400	teams	and	3,000	submissions	from	academia	and	industry
such	as	Tsinghua	Univ,	LG,	EPFL,	Google,	Gatech …

Case	Study	I:	NeurIPS’18	Adversarial	Vision	Challenge
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y-axis:	mean	ℓM
perturbation	distance	
to	let	a	classifier	make	
a	mistake



Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge
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Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge
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The	class	
of	bicycle

The	class	
of	bird



Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge
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min
7
[𝔼𝜙 𝑓 𝑥 𝑦 + 𝔼 max

'0∈△(')
𝜙 𝑓 𝑥 𝑓 𝑥0 /𝜆 ]
Choose	the	adversarial	
reachable	region	as	the	union	of	
these	threat	models

Our	methodology:



Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge
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Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge
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Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge
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Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge
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Clean	
image:

Corrupted
image:



Case	Study	II:	Unrestricted	Adversarial	Examples	Challenge

40

Clean	
image:

Corrupted
image:

Adversarial	example	
around	the	decision	
boundary



Interpretability	of	TRADES	--- Adversarial	Examples	by	Boundary	Attack
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The	class	
of	bicycle

The	class	
of	bird



Follow-ups	of	TRADES
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DeepMind
Tsinghua	University
(2	concurrent	works)

Univ.	of	Maryland
Peking	University
(2	concurrent	works)

GaTech,	MicrosoftStanford
DeepMind

Peking	University
(3	concurrent	works)

June	2019Jan.	2019

TRADES

April	2019

Acceleration Semi-Supervision

Dec.	2019

NLP	Champion

Oct.	2020

Benchmark

Sep.	2020

Hyper-Parameters

Univ.	of	Tubingen
EPFL,	Princeton

All	top	10	methods	use	TRADES	as	their	training	algorithms.



Adaptive	Attacks	against	TRADES
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Attack Submitted	by Attack Model Robust	Acc Time

PGD-20 (initial	entry) ℓ�,	8	intensity 56.61% Jan 24,	2019

PGD-1,000 (initial	entry) ℓ�,	8	intensity 56.43% Jan 24,	2019

*Powered	by	TRADES	CIFAR-10	Challenge	on

[Croce	et	al.’20]	Minimally	Distorted	Adversarial	Examples	with	A Fast	Adaptive	Boundary	Attack,	ICML	2020.
[Gowal et	al.’19]	An	Alternative	Surrogate	Loss	for	PGD-based	Adversarial	Testing,	arXiv 2019.
[Tashiro et	al.’20]	Diversity	Can	Be	Transferred,	NeurIPS 2020.

• TRADES	motivates	new	attacks:



Adaptive	Attacks	against	TRADES
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Attack Submitted	by Attack Model Robust	Acc Time

PGD-20 (initial	entry) ℓ�,	8	intensity 56.61% Jan 24,	2019

PGD-1,000 (initial	entry) ℓ�,	8	intensity 56.43% Jan 24,	2019

fab-attack U.	of	Tubingen ℓ�,	8	intensity 53.44% Jun	7,	2019

*Powered	by	TRADES	CIFAR-10	Challenge	on

[Croce	et	al.’20]	Minimally	Distorted	Adversarial	Examples	with	A Fast	Adaptive	Boundary	Attack,	ICML	2020.
[Gowal et	al.’19]	An	Alternative	Surrogate	Loss	for	PGD-based	Adversarial	Testing,	arXiv 2019.
[Tashiro et	al.’20]	Diversity	Can	Be	Transferred,	NeurIPS 2020.
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Attack Submitted	by Attack Model Robust	Acc Time

PGD-20 (initial	entry) ℓ�,	8	intensity 56.61% Jan 24,	2019

PGD-1,000 (initial	entry) ℓ�,	8	intensity 56.43% Jan 24,	2019

fab-attack U.	of	Tubingen ℓ�,	8	intensity 53.44% Jun	7,	2019

MultiTargeted DeepMind ℓ�,	8	intensity 53.07% Oct	31,	2019
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PGD-20 (initial	entry) ℓ�,	8	intensity 56.61% Jan 24,	2019
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fab-attack U.	of	Tubingen ℓ�,	8	intensity 53.44% Jun	7,	2019

MultiTargeted DeepMind ℓ�,	8	intensity 53.07% Oct	31,	2019

ODI-PGD Stanford ℓ�,	8	intensity 53.01% Feb	16,	2020
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Attack Submitted	by Attack	Model Robust	Acc Time

PGD-20 (initial	entry) ℓ�,	8	intensity 56.61% Jan 24,	2019

PGD-1,000 (initial	entry) ℓ�,	8	intensity 56.43% Jan 24,	2019

fab-attack U.	of	Tubingen ℓ�,	8	intensity 53.44% Jun	7,	2019

MultiTargeted DeepMind ℓ�,	8	intensity 53.07% Oct	31,	2019

ODI-PGD Stanford ℓ�,	8	intensity 53.01% Feb	16,	2020

CAA Xiaofeng Mao ℓ�,	8	intensity 52.94% Dec	14,	2020

EWR-PGD Ye Liu ℓ�,	8	intensity 52.92% Dec	20,	2020
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• TRADES	motivates	new	attacks:



Summary

• Gradient	masking
• Shattered	gradient	based	method
• Stochastic/randomized	gradient	based	method
• Gradient	masking	is	a	false	sense	of	security

• Adversarial	training
• FGSM	adversarial	training
• Ensemble	adversarial	training
• PGD	adversarial	training
• Trade-off	between	robustness	and	accuracy
• TRADES
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