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Categories of Adversarial Defense
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- Categories of empirical defenses:

* Gradient masking
* Design a method to hide the gradients in the classification model
* This will make first-order attacks failed
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- Categories of empirical defenses: h.f

* Gradient masking
* Design a method to hide the gradients in the classification model
* This will make first-order attacks failed
 Adversarial training
¢ Use the inner maximization to mimic the behavior of attacks
* Use the outer minimization to update the weight of neural networks

Adversarial reachable Gradient Descent Gradient Ascent
region A (x)

Adversarial Training:  min [Ex,y~7)n x’nelAaéc) Loss(h(f(x")),y)



Outline of the Lecture

* Gradient masking
e Shattered gradient based method
 Stochastic/randomized gradient based method

* Adversarial training
 FGSM adversarial training
* Ensemble adversarial training
e PGD adversarial training

* Trade-off between robustness and accuracy
« TRADES
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Gradient Masking

* Gradient masking methods hide the gradient of the model from being used by an adversary
* Because most attacks are based on the model’s gradient information, creating adversarial
examples with such attacks becomes less successful
e Gradient masking methods can be grouped into:
* Shattered gradients methods
 Stochastic/randomized gradients

* Limitation: they are designed to confuse the first-order attacks, but they cannot defend against
other forms of attacks such as black-box attacks



Shattered Gradients

* Shattered gradients methods
* The goal is to prevent the flow of information from the inputs to the outputs in the model
e By this, the adversaries are prevented from calculating the gradients

* A common approach towards this goal is to preprocess the input data

* For example, by applying a non-smooth or non-differentiable preprocessor g(.) to the
inputs, and then training a DNN model f on the preprocessed inputs g(x)

* The trained target classifier f(g(x)) is not differentiable w.r.t. the inputs x, causing the
failure of adversarial attacks



Shattered Gradients

* Buckman (2018) Thermometer Encoding: One Hot Way to Resist Adversarial Examples

* Thermometer Encoding defense applies discretization of the intensity levels of each pixel into an
[-dimensional vector
* They propose a mechanism for the mapping table

* The value of the pixel with intensity 0.13 is replaced by a 10-dimensional vector
[0111111111], but one can use other mappings as well

* The target classifier is trained using discrete vectors for all pixels, which breaks the calculation of
the gradients
e Experimental evaluation indicates increased robustness by the DNN models to adversarial
examples



Shattered Gradients

* Guo (2017) Countering Adversarial Images using Input Transformations

* This work employs several image transformation g(.) to break the calculation of the gradients
* These include: image cropping and rescaling, bit depth reduction, JPEG compression, total
variance minimization, and image quilting
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Shattered Gradients

* Guo (2017) Countering Adversarial Images using Input Transformations

* This work employs several image transformation g(.) to break the calculation of the gradients

* These include: image cropping and rescaling, bit depth reduction, JPEG compression, total
variance minimization, and image quilting
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Stochastic/Randomized Gradients

» Stochastic/Randomized Gradients methods apply some form of randomization of the DNN model
as a defense strategy to fool the adversary
* E.g., train a set of classifiers, and during the testing phase randomly select one classifier to
predict the class labels
* Because the adversary does not know which model was used for prediction, the attack
success rate is reduced



Stochastic/Randomized Gradients

e Xie (2018) Mitigating Adversarial Effects Through Randomization

* The defense approach applies random resizing and padding to improve the robustness to
adversarial attacks

* Images are first resized to several different widths and heights
* Random padding with Os is added to all four sides of the resized images

* For each image, prediction vectors are obtained for 30 randomized versions of the image, and the
average value is adopted as the final prediction

Input Image Resized, Image Padded ”Image

Xn X Xn

ll \

o~ Nk
/ i i )
\' o R —

|

CNN
Classification

|

Random Random Randomly
Resizing Padding Select One 12
Layer Layer Pattern



Stochastic/Randomized Gradients

* Dhillon (2018) Stochastic Activation Pruning for Robust Adversarial Defense

» Stochastic Activation Pruning removes a random subset of neurons’ activations in each layer

* The remaining output activations in each layer are rescaled to normalize the inputs to the
subsequent layer

* This approach is similar to dropout layers

Hidden layer 2 :
300 neurons
Encoder
Hidden layer 1 :
500 neurons
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Gradient masking is a false sense of security

* All the above defenses break down by adaptive attacks
* E.g., by applying black-box attacks which do not use gradients

* Therefore, gradient masking is proven to be a false sense of security

Obfuscated Gradients Give a False Sense of Security:
Circumventing Defenses to Adversarial Examples

Anish Athalye ' Nicholas Carlini “> David Wagner >

Abstract

We identify obfuscated gradients, a kind of gradi-
ent masking, as a phenomenon that leads to a false
sense of security in defenses against adversarial
examples. While defenses that cause obfuscated
gradients appear to defeat iterative optimization-
based attacks, we find defenses relying on this
effect can be circumvented. We describe charac-
teristic behaviors of defenses exhibiting the effect,
and for each of the three types of obfuscated gra-
dients we discover, we develop attack techniques
to overcome it. In a case study, examining non-
certified white-box-secure defenses at ICLR 2018,
we find obfuscated gradients are a common occur-
rence, with 7 of 9 defenses relying on obfuscated

apparent robustness against iterative optimization attacks:
obfuscated gradients, a term we define as a special case of
gradient masking (Papernot et al., 2017). Without a good
gradient, where following the gradient does not successfully
optimize the loss, iterative optimization-based methods can-
not succeed. We identify three types of obfuscated gradients:
shattered gradients are nonexistent or incorrect gradients
caused either intentionally through non-differentiable op-
erations or unintentionally through numerical instability;
stochastic gradients depend on test-time randomness; and
vanishing/exploding gradients in very deep computation
result in an unusable gradient.

We propose new techniques to overcome obfuscated gradi-
ents caused by these three phenomena. We address gradient
shattering with a new attack technique we call Backward

14
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Adversarial Training

* Adversarial training trains the target classification model using adversarial examples

mC!n IEx,y~Dn x’nelgéc) LOSS(C(X )), y)

* The adversarial examples are produced to attack the latest iterate of classifier

By adding adversarial examples x’ with true label y to the training set, the model will learn
that x’ belongs to the class y

* Adversarial training is one of the most successful defenses so far



Adversarial Training

* Goodfellow (2015) Explaining and Harnessing Adversarial Examples

mC!n IEx,y~Dn x,réliléc) LOSS(C(X )), y)

* The paper suggests using FGSM attack to solve the inner maximization

* Adversarial examples created by FGSM were added to the training set to increase the model
robustness

* Limitation: the robust model is vulnerable to adversarial examples created by other attacks
(e.g., PGD attacks)
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Adversarial Training

* Tramer (2017) Ensemble Adversarial Training: Attacks and Defenses

* Ensemble Adversarial Training uses a set of adversarial examples created by several fixed

classifiers to train the model

* Model 1, Model 2, and Model 3 with different architectures are trained

* For each input sample x, FGSM is used to create adversarial samples X4 14v, X2 adv, @Nd X3 adv

using the three models

* A classifier is trained using the clean sample x and the adversarial samples created by all

three models X4 54v, X2 adv, aNd X3 a4v

* The performance highly depends on the robustness of Models 1, 2, and 3

X — Model 1
-

X — Model 2

X — Model 3

/ FGSM Attack

/ FGSM Attack

/ FGSM Attack

X1 adv

+
XZ adv

+

X3 adv

-+

X
. )
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Adversarial Training

* Madry (2017) Towards Deep Learning Models Resistant to Adversarial Attacks

min E, ,, .pn max Loss(c(x")),y)
c ’ x'en(x)
* This paper suggests using PGD attack to solve the inner maximization
* PGD can find stronger adversarial example around an input sample x

* The trained model demonstrated good robustness on MNIST and CIFAR-10

* Due to the high computational cost for created PGD samples, it is difficult to scale to large
datasets such as ImageNet

e Xie et al. (2019) Feature Denoising for Improving Adversarial Robustness
e 128 Nvidia V100 GPUs and 52 hours to adversarially train a ResNet-152 model

19



Adversarial Training

* Limitation: Adversarial training suffers from a reduced accuracy on clean samples, known as
robustness-accuracy trade-off

» y-axis: the difference between the classification error of an adversarially trained model and a
natually trained model

* Adversarial training reduces the natural accuracy for about 3%~7%
* Increasing the size of the dataset reduces the gap

* Increasing the perturbation size increases the gap 5 —e— £=1/255
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Figure from: Madry (2018) Towards Deep Learning Models Resistant to Adversarial Attacks



Trade-off between Robustness and Accuracy

Ryop(f)i= Prx,y~2){3x’ €A (x)s.t. f(x")y <0}

Rpat(f):= Prx,y~2){f(x)y <0}

* An example of trade-off (for A (x) = B, (x, €)):

@)= Pr(y = +1|x)
1/21
m— S— —>
0 £ £ 1

x~Uniform|[0,1]

w11 class — — class

I I x
0 1

y € {+1, —1}, classifier f: X - R

Bayes Optimal Classifier

Rpat(f) 0 (best Ry q¢)
Ryop(f) 1 (worst R;4p)
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Trade-off between Robustness and Accuracy

Rrop(f):=Pryy p{3x’ €A (x)s.t. f(x)y <0} y € {+1,—1}, classifier f: X - R

Rpat(f):= Prx,y~2){f(x)y <0}
* An example of trade-off (for A (x) = B, (x, €)):

n(@)]=Pr(y = +1|x)
1/21 All +1 Classifier
Ruae () 1/2
0 — — >y Ryop (f) 1/2 (best Ryop)
£ £ 1
x~Uniform|[0,1]
= +1 class = —1 class Solution: minimize mfin Ruat (f) + Rrop (f)/A

Computationally, weighted average

)
0 X @ Roat (f) + Ryop(f)/A is non-differentiable.



Classification-Calibrated Surrogate Loss

Rrop(f):=Eyy-p1{3x" €A (x) s.t. f(x")y < 0}
I Can we design a differentiable surrogate loss for the trade-off?

Rnat(f): = IEx,y~D1{f(x)y <0} < [Bartlett et al/06] R(/)(f): = IEx,y~D¢(f(x)y)

approximate

— 0-1
- exponential
\ . - hinge
© 4 3 \.\ rrrrrrrr logistic
. LS - truncated quadratic

T T T T T
-2 -1 0 1 2

[Bartlett et al.’06] Convexity, Classification, and Risk Bounds, Journal of the American Statistical Association, 2006 23



TRADES

minimize difference betweer} f(x) and y for accuracy

min[E.y-p $(F(Y) + Eyyon max p(fCOf()/D]

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019 24



TRADES

minimize difference between ]j(x) and f(x") for robustness

Min[E.,-p @(f ()Y) + Eryn (WA $(f () (x)/2)

Gradient Ascent

1.0

0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0

mfin E¢p(f()y) rnfin[IE d(f(x)y) + E Jnax d(f ) f (x) /)]
[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
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TRADES

TRADES Loss(f):

min[Ey - $( () + By AKX $(7 COf (/)]

Gradient Ascent

1.0

0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0

mfin E¢p(f()y) rnfin[IE d(f(x)y) + E Jnax d(f ) f (x) /)]
[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019
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heoretical Results

Theorem 1 (Informal, upper bound, Zhang et al.’19):

For any distribution D, f, A(x) and 1 > 0, we have Ry,p(f) — Rpqe < TRADES Loss(f) — Ry
d Ry, minimal value of R,,,;:(f) over all classifiers f

d R;,: minimal value of Ry (f): = E, ,.p@(f (x)y) over all classifiers f
O ¢: classification-calibrated surrogate loss

TRADES Loss(f):

min[Eyp () + ey _max p(ff )/)]

1.0

0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0
min d(f (x)y) min[E d(f()y) + E Jnax, d(fC)f (x") /)]
[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019 27



heoretical Results

Theorem 1 (Informal, upper bound, Zhang et al.’19):

For any distribution D, f, A(x) and 1 > 0, we have Ry, (f) — Rpqr < TRADES Loss(f) — Ry
d Ry, minimal value of R,,,;:(f) over all classifiers f

d Ry: minimal value of Ry (f): = Ey,~p@(f (x)y) over all classifiers f
O ¢: classification-calibrated surrogate loss

Theorem 2 (Informal, lower bound, Zhang et al.19):

For any A(x), there exist a data distribution D, a classifier f, and an A > 0 such that
Rrob (f) o nat = TRADES LOSS(f) qu

[Zhang, Yu, Jiao, Xing, Ghaoui, Jordan’19] Theoretically Principled Trade-off between Robustness and Accuracy, ICML 2019 28



Experiments

Natural

CIFAR10 with 8-intensity level attacks

Robust

Accuracy Accuracy

Defense | Defense type | Under which attack | Dataset | Distance | Apnae(f) | Arob(f)
Buckman et al. (2018) gradient mask | Athalye et al. (2018) | CIFARI10 | 0.031 (/) - 0%
Ma et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 (/) - 5%
Dhillon et al. (2018) gradient mask | Athalye et al. (2018) | CIFARI10 | 0.031 (/) - 0%
Song et al. (2018) gradient mask | Athalye et al. (2018) | CIFAR10 | 0.031 (/) - 9%
Na et al. (2017) gradient mask | Athalye et al. (2018) | CIFARI10 | 0.015 (/) - 15%

Wong et al. (2018) robust opt. FGSM?’ (PGD) CIFARI10 | 0.031 ({) | 27.07% | 23.54%

[ Madry et al. (2018) robust opt. FGSM?%’ (PGD) CIFARI10 | 0.031 (/) | 87.30% | 47.04% ]
min E max qb(f(x )y) (by Madry etal.)
[ xeB(x.e
TRADES (1/A = 1.0) regularization FGSM?° (PGD) CIFARI10 | 0.031 ({~) | 88.64% | 49.14%
TRADES (1/)\ = 6.0) regularization FGSM?’ (PGD) CIFARI10 | 0.031 (/) | 84.92% | 56.61%

mln[IEdJ(f C)y) +E max. ¢(f (x)f(x")/A)] (TRADES)

TRADES (1/\ = 6.0) regularlzatlon LBFGS Attack CIFAR10 | 0.031 (/OO) 84.92% | 81.58%
TRADES (1/\ = 1.0) regularization MI-FGSM CIFARI0 | 0.031 (/) | 88.64% | 51.26%
TRADES (1/)\ = 6.0) regularization MI-FGSM CIFARI10 | 0.031 (/) | 84.92% | 57.95%
TRADES (1/\ = 1.0) regularization C&W CIFARI0 | 0.031 (/) | 88.64% | 84.03%
TRADES (1/)\ = 6.0) regularization C&W CIFARI10 | 0.031 (/) | 84.92% | 81.24%
Samangouei et al. (2018) || gradient mask | Athalye et al. (2018) | MNIST 0.005 (42) - 55%

Madry et al. (2018) robust opt. FGSM* (PGD) MNIST 0.3(ls) | 99.36% | 96.01%
TRADES (1/)\ = 6.0) regularization FGSM*’ (PGD) MNIST 0.3 (lss) | 99.48% | 96.07%
TRADES (1/)\ = 6.0) regularization C&W MNIST | 0.005 (¢5) | 99.48% | 99.46%

29



Overview of This Talk

Robustness

Paradigms

Adversarial Examples

Applications
Model Untargeted
Track Attack

A standardized benchmark for adversarial robustness



Case Study |: NeurlPS'18 Adversarial Vision
Challenge

Ranking

Wntargeted
Attack

* Evaluation criterion

* 400+ teams, ~3,000 submissions

* ImageNet dataset

* Model Track and Attack Track

e Participants in the two tracks play
against each other

31



Case Study |: NeurlPS 18 Adversarial Vision Challenge

¢ Final Result

2.5

R

Model

Track 2

y-axis: mean ¥, 1.5
perturbation distance
to let a classifier make
a mistake 1
0.5
0
2nd 3rd 4th 5th 6th

1st (TRADES)




Case Study Il: Unrestricted Adversarial Examples Challenge

GooQe

Unrestricted Adversarial Examples Challenge

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are
expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean,
unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are
currently accepting defenses for the warm-up.

& Contest Timeline

warm-up warm-up attacks contest begins & defenses contestant claims
begins are soundly beaten are evaluated each week defender prize

7/

current status 33



Case Study Il: Unrestricted Adversarial Examples Challenge

The class
of bicycle

The class
of bird



Case Study II: Unrestricted Adversarial Examples Challenge

O

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADES

Google
Brain

Google
Brain

Our methodology:

min[E ¢(f(x)y) + E max, ¢(f(x)f(x)/D)]

X1EA(X)

Clean Common
data corruptions

100.0%  100.0%

100.0%  99.2%

98.8% 74.6%

Spatial
grid
attack

99.5%

92.2%

49.5%

SPSA
attack

100.0%

1.6%

2.5%

Choose the adversarial
reachable region as the union of
these threat models

Boundary = Submission

attack Date
95.0% Jan 17th,
e 2019 (EST)
Sept 29th,
4.0%
2018
8.0% Oct 1st,
2018
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Case Study Il: Unrestricted Adversarial Examples Challenge

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADES

Google
Brain

Google
Brain

Clean
data

100.0%

100.0%

98.8%

Common
corruptions

100.0%

99.2%

74.6%

Spatial
grid
attack

99.5%

92.2%

49.5%

SPSA
attack

100.0%

1.6%

2.5%

Boundary
attack

95.0%

4.0%

8.0%

Submission
Date

Jan 17th,
2019 (EST)

Sept 29th,
2018

Oct 1st,
2018
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Case Study Il: Unrestricted Adversarial Examples Challenge

GooQe

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADES

Google
Brain

Google
Brain

Clean
data

100.0%

100.0%

98.8%

Common

corruptions

100.0%

99.2%

74.6%

Spatial
grid
attack

99.5%

92.2%

49.5%

Corrupted
image:

SPSA
attack

100.0%

1.6%

2.5%

Boundary
attack

95.0%

4.0%

8.0%

Submission
Date

Jan 17th,
2019 (EST)

Sept 29th,
2018

Oct 1st,
2018
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Case Study II: Unrestricted Adversarial Examples Challenge

GooQe

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Clean
image:

Submitted
by

TRADES

Google
Brain

Google
Brain

Clean
data

100.0%

100.0%

98.8%

Common
corruptions

100.0%

99.2%

74.6%

Spatial
grid

attack

99.5%

92.2%

49.5%

Corrupted
image:

SPSA Boundary
attack attack
100.0%  95.0%
1.6% 4.0%
2.5% 8.0%

Submission
Date

Jan 17th,
2019 (EST)

Sept 29th,
2018

Oct 1st,
2018
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Case Study Il: Unrestricted Adversarial Examples Challenge

Clean Corrupted
. Spatial o
Defense Submitted Clean Common id SPSA Boundary Submission
by data corruptions g attack attack Date
attack
Pytorch ResNet50
Jan 17th,

(trained on bird-or- TRADES 100.0%  100.0% 99.5% 100.0%  95.0%

2019 (EST
bicycle extras) ( )
Keras ResNet

Google Sept 29th,
(trained on 9 100.0%  99.2% 92.2% 1.6% 4.0% i

Brain 2018
ImageNet)
Pytorch ResNet Gooale Oct 1st
(trained on bird-or- 9 08.8%  74.6% 49.5% 25%  80% '

Brain 2018

bicycle extras)
39



Case Study Il: Unrestricted Adversarial Examples Challenge

GooQe

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Clean
image:
Submitted Clean Common
by data corruptions

TRADES 100.0%  100.0%

|
Gor?g © 100.0% 99.2%
Brain
G
oc.>gle 98.8% 74.6%
Brain

Corrupted
image:

Adversarial example
around the decision

boundary
tial
Sp:;a SPSA Submission
9 attack Date
attack
99.5% 100.0%  95.0% Jan 17th,
= e e 2019 (EST)
Sept 29th,
2.2% 16% 4.0%
o 6 0 2018
Oct 1st
49.5% 2.5% 0% '
° ° 8 2018

40



Interpretability of TRADES --- Adversarial Examples by Boundary Attack

The class
of bicycle

The class
of bird




EBERHARD KARLS

UNIVERSITAT

) RoBUSTBENCH oo

W PRINCETON
UNIVERSITY

A standardized benchmark for adversarial robustness

All top 10 methods use TRADES as their training algorithms.



Adaptive Attacks against TRADES

e TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on GitHub
Attack Submitted by Attack Model Robust Acc
PGD-20 (initial entry) £, 8 intensity 56.61%
PGD-1,000 (initial entry) £, 8 intensity 56.43%

[Croce et al./20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.

[Gowal et al/19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.

Time
Jan 24, 2019
Jan 24, 2019



Adaptive Attacks against TRADES

e TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on % GitHub
Attack Submitted by Attack Model Robust Acc
PGD-20 (initial entry) £, 8 intensity 56.61%
PGD-1,000 (initial entry) £, 8 intensity 56.43%
fab-attack U. of Tubingen £, 8 intensity 53.44%

[Croce et al./20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.

[Gowal et al/19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.

Time
Jan 24, 2019
Jan 24, 2019
Jun 7, 2019



Adaptive Attacks against TRADES

e TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on % GitHub
Attack Submitted by Attack Model Robust Acc
PGD-20 (initial entry) £, 8 intensity 56.61%
PGD-1,000 (initial entry) £, 8 intensity 56.43%
fab-attack U. of Tubingen £, 8 intensity 53.44%
MultiTargeted DeepMind £, 8 intensity 53.07%

[Croce et al./20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.

[Gowal et al/19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.
[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.

Time
Jan 24, 2019
Jan 24, 2019
Jun 7, 2019
Oct 31, 2019



Adaptive Attacks against T

RADES

e TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on

Attack Submitted by
PGD-20 (initial entry)
PGD-1,000 (initial entry)
fab-attack U. of Tubingen
MultiTargeted DeepMind
ODI-PGD Stanford

[Croce et al./20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al/19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.

[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.

& GitHub
Attack Model
£, 8 intensity
£, 8 intensity
£, 8 intensity
£, 8 intensity
£, 8 intensity

Robust Acc
56.61%
56.43%
53.44%
53.07%
53.01%

Time
Jan 24, 2019
Jan 24, 2019
Jun 7, 2019
Oct 31, 2019
Feb 16, 2020



Adaptive Attacks against T

RADES

e TRADES motivates new attacks:

*Powered by TRADES CIFAR-10 Challenge on

Attack Submitted by
PGD-20 (initial entry)
PGD-1,000 (initial entry)
fab-attack U. of Tubingen
MultiTargeted DeepMind
ODI-PGD Stanford
CAA Xiaofeng Mao
EWR-PGD Ye Liu

[Croce et al./20] Minimally Distorted Adversarial Examples with A Fast Adaptive Boundary Attack, ICML 2020.
[Gowal et al/19] An Alternative Surrogate Loss for PGD-based Adversarial Testing, arXiv 2019.

[Tashiro et al.’20] Diversity Can Be Transferred, NeurlPS 2020.

& GitHub
Attack Model
£, 8 intensity
£, 8 intensity
£, 8 intensity
£, 8 intensity
£, 8 intensity
£, 8 intensity
£, 8 intensity

Robust Acc
56.61%
56.43%
53.44%
53.07%
53.01%
52.94%
52.92%

Time

Jan 24, 2019
Jan 24, 2019
Jun 7, 2019

Oct 31, 2019
Feb 16, 2020
Dec 14, 2020
Dec 20, 2020



Summary

* Gradient masking
e Shattered gradient based method
 Stochastic/randomized gradient based method
* Gradient masking is a false sense of security

* Adversarial training

* FGSM adversarial training
Ensemble adversarial training
PGD adversarial training

Trade-off between robustness and accuracy
 TRADES



