CS480/680: Introduction to Machine Learning

Lecture 15: Adversarial Attacks

Hongyang Zhang

Adversarial attacks

 $+.007 \times$

=

x
"panda"
57.7% confidence

 $x + \epsilon \cdot \text{sign}(\nabla_x \mathcal{L}(C(x, w), y))$ "gibbon"
99.3 % confidence

Deep Neural Network f **Input Space Feature Space**

Adversarial reachable region $\Delta(x) = \{x' : ||x' - x||_{\infty} \le \varepsilon\}$ (square-shaped, $\|\cdot\|_{\infty}$ is the maximum absolute value of all entries)

$$\max_{x_{adv} \in \Delta(x)} \mathcal{L}(h(f(x_{adv})), y)$$

Input Space

Deep Neural Network *f*

Feature Space

Adversarial reachable region $\Delta(x) = \{x' : ||x' - x||_{\infty} \le \varepsilon\}$ (square-shaped, $||\cdot||_{\infty}$ is the maximum absolute value of all entries)

$$\max_{x_{adv} \in \Delta(x)} \mathcal{L}(C(x_{adv})), y)$$

Composition of h and f

Then generating adversarial examples reduces to the problem of solving

$$\max_{\|x_{adv} - x\|_{\infty} \le \varepsilon} \mathcal{L}(C(x_{adv})), y)$$

- Different tools in optimizations
 - Zero-order solvers (only access to the output of NN)
 - Black-box attack
 - First-order solvers (access to gradient info, e.g., FGSM, BIM, PGD, CW attack, ...)
 - White-box attack
 - Why white-box? Because calculating gradient requires full info about NN
 - Second-order solvers (access to Hessian matrix, e.g., L-BFGS attack)
 - White-box attack

Then generating adversarial examples reduces to the problem of solving

$$\max_{\|x_{adv} - x\|_{\infty} \le \varepsilon} \mathcal{L}(C(x_{adv})), y)$$

- Different tools in optimizations
 - Zero-order solvers (only access to the output of NN)
 - Black-box attack
 - First-order solvers (access to gradient info, e.g., FGSM, BIM, PGD, CW attack, ...)
 - White-box attack
 - Why white-box? Because calculating gradient requires full info about NN
 - Second-order solvers (access to Hessian matrix, e.g., L-BFGS attack)
 - White-box attack

FGSM Attack

- Fast gradient sign method (FGSM) attack
 - Goodfellow (2015) Explaining and Harnessing Adversarial Examples
- Recall our goal: $\max_{\|x_{adv} x\|_{\infty} \le \varepsilon} \mathcal{L}(C(x_{adv})), y)$ (non-convex and hard to solve)
- Let us do linear expansion at $x: \mathcal{L}(C(x_{adv})), y) \approx \mathcal{L}(C(x)), y) + \langle x_{adv} x, \nabla_x \mathcal{L}(C(x), y) \rangle$
- So the problem then reduces to $\max_{\|x_{adv}-x\|_{\infty} \le \varepsilon} \langle x_{adv}-x, \nabla_{\!x} \mathcal{L}(C(x),y) \rangle$
- Closed-form solution: $x_{adv}^* = x + \epsilon \cdot \text{sign}(\nabla_x \mathcal{L}(C(x), y))$
 - Why?
 - Holder inequality: for any vector a, b, we have $\langle a, b \rangle \leq \|a\|_p \|b\|_q$, where $\frac{1}{p} + \frac{1}{q} = 1$ and $p, q \geq 1$
 - $\|\cdot\|_p$ and $\|\cdot\|_q$ are also known as dual norms
 - Examples: $\|\cdot\|_2$ is self-dual, $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are dual

FGSM Attack

- Fast gradient sign method (FGSM) attack
 - Goodfellow (2015) Explaining and Harnessing Adversarial Examples
- Recall our goal: $\max_{\|x_{adv} x\|_{\infty} \le \varepsilon} \mathcal{L}(C(x_{adv})), y)$ (non-convex and hard to solve)
- Let us do linear expansion at $x: \mathcal{L}(C(x_{adv})), y) \approx \mathcal{L}(C(x)), y) + \langle x_{adv} x, \nabla_x \mathcal{L}(C(x), y) \rangle$
- So the problem then reduces to $\max_{\|x_{adv}-x\|_{\infty} \le \varepsilon} \langle x_{adv}-x, \nabla_{\!x} \mathcal{L}(C(x),y) \rangle$
- Closed-form solution: $x_{adv}^* = x + \epsilon \cdot \text{sign}(\nabla_x \mathcal{L}(C(x), y))$ Named FGSM attack
 - Why? by Holder inequality
 - $\mathrm{Obj}(x_{adv}) = \langle x_{adv} x, \nabla_{\!x} \mathcal{L}(C(x), y) \rangle \leq \|x_{adv} x\|_{\infty} \|\nabla_{\!x} \mathcal{L}(C(x), y)\|_1 \leq \epsilon \|\nabla_{\!x} \mathcal{L}(C(x), y)\|_1$
 - On the other hand, the above solution achieves the upper bound and satisfies the constraint
 - This finishes the proof

Facts about FGSM Attack

- FGSM is a white-box, non-targeted adversarial attack
 - White-box: we need to calculate $\nabla_x \mathcal{L}(C(x), y)$ to create the adversarial image
 - FGSM calculates the gradient only once
 - Non-targeted: the attacker aims to maximize the loss w.r.t. the true label

Intuition behind using sign operator?

• Recall that FGSM creates an adversarial image x_{adv} by

$$x_{adv} = x + \epsilon \cdot \operatorname{sign}(\nabla_{x} \mathcal{L}(C(x), y))$$

- We have proven that it is the closed-form solution of an optimization problem
- Intuition behind using sign operator:
 - Remove the imbalance in the update when the gradient on one pixel is much larger
 - \circ The method automatically reaches the boundary of adversarial reachable region for all pixels $\triangle(x) = \{x' : ||x' x||_{\infty} \le \varepsilon\}$ (thus, it uses the full power of adversarial budget)
 - Better empirical attack success rate in experiments

Issues with FGSM Attack

• Sometimes, FGSM requires large ϵ in order to succeed (human-perceptible)

BIM Attack

- Basic iterative method (BIM) attack
 - Kurakin (2017) Adversarial Examples in the Physical World
- BIM is a variant of FGSM: it repeatedly adds noise to the image x in multiple iterations, in order to cause misclassification
 - Let t be the index of iterations, and γ be the step size. BIM is given by $x^t = x^{t-1} + \gamma \cdot \text{sign}(\nabla_{\!x} \mathcal{L}(C(x^{t-1}), \gamma))$
 - Compare with FGSM

$$x_{adv} = x + \epsilon \cdot \text{sign}(\nabla_x \mathcal{L}(C(x), y))$$

- Step size is different
- BIM uses an iterative procedure while FGSM uses a one-shot procedure

BIM Attack

- Example of BIM attack on the printed image of a washer
- By repeating $x^t = x^{t-1} + \gamma \cdot \text{sign}(\nabla_x \mathcal{L}(C(x^{t-1}), y))$, the perturbation size ϵ will become larger and larger

(b) Clean image

(c) Adv. image, Distance 4

(d) Adv. image, Distance 8

Issues with BIM Attack

- Example of BIM attack on the printed image of a washer
- By repeating $x^t = x^{t-1} + \gamma \cdot \text{sign}(\nabla_x \mathcal{L}(C(x^{t-1}), y))$, the perturbation size ϵ will become larger and larger
- For a pre-defined ε , x^t may violate the constraint $||x'-x||_{\infty} \le \varepsilon$ when t is large

(b) Clean image

(c) Adv. image, Distance 4

(d) Adv. image, Distance 8

PGD Attack

- Projected gradient descent (PGD) attack
 - Madry (2017) Towards Deep Learning Models Resistant to Adversarial Attacks
- To resolve the issue of BIM, PGD involves a truncation operation:

$$x^{t} = \operatorname{clip}_{(-\epsilon,\epsilon)} \left(x^{t-1} + \gamma \cdot \operatorname{sign} \left(\nabla_{x} \mathcal{L}(C(x^{t-1}), y) \right) \right)$$

- That is, for those pixels with perturbation size larger than ϵ , "clip" truncates it to ϵ
- Another difference from BIM: PGD uses random initialization for x^0 , by adding random noise to the original image from a uniform distribution in the range $(-\epsilon, \epsilon)$

PGD Attack

PGD attack example

than FGSM

Facts about PGD Attack

- PGD is a white-box, non-targeted adversarial attack
 - White-box, since we need to know the gradients $\nabla_{x} \mathcal{L}(C(x), y)$ of the model to create the adversarial image
 - PGD calculates the gradient multiple times
 - Non-targeted, since PGD aims to maximize the loss w.r.t. the true label

Targeted PGD Attack

- Gradient approaches (FGSM, BIM, PGD) can also be designed as targeted whitebox attacks
 - In this case, the added perturbation noise aims to minimize the loss function of the image for a specific target class
 - But how?

Original image

Adversarial image

Maraca

Prediction: hippopotamus

Adversarial image

Adversarial image

Comparison between Untargeted and Targeted Attacks

Gradient Ascent

• Untargeted objective: $\max_{x_{adv} \in \Delta(x)} \mathcal{L}(C(x_{adv}), y_{\text{true}})$

• Targeted objective: $\min_{x_{adv} \in \Delta(x)} \mathcal{L}(C(x_{adv}), y_{\text{target}})$ Gradient Descent

- Untargeted iteration: $x_{adv}^t = \text{clip}_{(-\epsilon,\epsilon)} \left(x^{t-1} + \gamma \cdot \text{sign} \left(\nabla_{\!x} \mathcal{L}(\mathcal{C}(x^{t-1}), y_{\text{true}}) \right) \right)$
 - It is based on maximizing the loss function for the true class
- Targeted iteration: $x_{adv}^t = \text{clip}_{(-\epsilon,\epsilon)} \left(x^{t-1} \gamma \cdot \text{sign} \left(\nabla_{\!\! \chi} \mathcal{L} \left(F(x^{t-1}), y_{\text{target}} \right) \right) \right)$
 - It is based on minimizing the loss function for the target class

Unrestricted Adversarial Examples

- Most works investigated the generation of adversarial examples that are constrained to lie in the neighborhood of clean samples
 - E.g., L_p norm bounded perturbation
 - Such constraints ensure that the adversarial examples are humanimperceptible
 - Such examples are sometimes referred to as restricted adversarial examples
- Unrestricted adversarial examples are generated without considering any bounds or constraints on the modifications of clean inputs
 - As long as the adversarial examples are human-imperceptible
 - Challenging, because it is mathematically hard to define "humanimperceptible"

current status

Unrestricted Adversarial Examples Challenge [build passing]

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean, unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are currently accepting defenses for the warm-up.

Warm-up & Contest Timeline

The class of bicycle

The class of bird

Clean image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADES	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Clean image:

Corrupted image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADES:	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Clean image:

Corrupted image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADES	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Clean image:

Corrupted image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADES	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

Clean image:

Corrupted image:

Defense	Submitted by	Clean data	Common corruptions	Spatial grid attack	SPSA attack	Boundary attack	Submission Date
Pytorch ResNet50 (trained on bird-or- bicycle extras)	TRADES	100.0%	100.0%	99.5%	100.0%	95.0%	Jan 17th, 2019 (EST)
Keras ResNet (trained on ImageNet)	Google Brain	100.0%	99.2%	92.2%	1.6%	4.0%	Sept 29th, 2018
Pytorch ResNet (trained on bird-or- bicycle extras)	Google Brain	98.8%	74.6%	49.5%	2.5%	8.0%	Oct 1st, 2018

List of Adversarial Evasion Attacks

Attack	Publication	Similarity	Attacking Capability	Algorithm	Apply Domain
L-BFGS	(Szegedy et al., 2013)	l_2	White-Box	Iterative	Image Classification
FGSM	(Goodfellow et al., 2014b)	l_{∞}, l_2	White-Box	Single-Step	Image Classification
Deepfool	(Moosavi-Dezfooli et al., 2016)	l_2	White-Box	Iterative	Image Classification
JSMA	(Papernot et al., 2016a)	l_2	White-Box	Iterative	Image Classification
BIM	(Kurakin et al., 2016a)	l_{∞}	White-Box	Iterative	Image Classification
C & W	(Carlini & Wagner, 2017b)	l_2	White-Box	Iterative	Image Classification
Ground Truth	(Carlini et al., 2017)	l_0	White-Box	SMT solver	Image Classification
Spatial	(Xiao et al., 2018b)	Total Variation	White-Box	Iterative	Image Classification
Universal	(Metzen et al., 2017b)	l_{∞}, l_2	White-Box	Iterative	Image Classification
One-Pixel	(Su et al., 2019)	l_0	White-Box	Iterative	Image Classification
EAD	(Chen et al., 2018)	$l_1 + l_2, l_2$	White-Box	Iterative	Image Classification
Substitute	(Papernot et al., 2017)	l_p	Black-Box	Iterative	Image Classification
ZOO	(Chen et al., 2017)	l_p	Black-Box	Iterative	Image Classification
Biggio	(Biggio et al., 2012)	l_2	Poisoning	Iterative	Image Classification
Explanation	(Koh & Liang, 2017)	l_p	Poisoning	Iterative	Image Classification
Zugner's	(Zügner et al., 2018)	Degree Distribution, Coocurrence	Poisoning	Greedy	Node Classification
Dai's	(Dai et al., 2018)	Edges	Black-Box	RL	Node & Graph Classification
Meta	(Zügner & Günnemann, 2019)	Edges	Black-Box	RL	Node Classification
C & W	(Carlini & Wagner, 2018)	max dB	White-Box	Iterative	Speech Recognition
Word Embedding	(Miyato et al., 2016)	l_p	White-Box	One-Step	Text Classification
HotFlip	(Ebrahimi et al., 2017)	letters	White-Box	Greedy	Text Classification
Jia & Liang	(Jia & Liang, 2017)	letters	Black-Box	Greedy	Reading Comprehension
Face Recognition	(Sharif et al., 2016)	physical	White-Box	Iterative	Face Recognition
RL attack	(Huang et al., 2017)	l_p	White-Box	RL	