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Adversarial attacks
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Principle of generating adversarial attacks
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Principle of generating adversarial attacks

* Then generating adversarial examples reduces to the problem of solving
max L(C(xadv)): Y)

Ixqgav—%llco<€

 Different tools in optimizations

» Zero-order solvers (only access to the output of NN)
* Black-box attack
* First-order solvers (access to gradient info, e.g., FGSM, BIM, PGD, CW attack, ...)
* White-box attack
* Why white-box? Because calculating gradient requires full info about NN
* Second-order solvers (access to Hessian matrix, e.g., L-BFGS attack)
* White-box attack
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FGSM Attack

Fast gradient sign method (FGSM) attack
e Goodfellow (2015) Explaining and Harnessing Adversarial Examples

Recall our goal: max L(C(Xgq1)),Y) (non-convex and hard to solve)
|Xqav—xlleo=e constant

Let us do linear expansion at x: L(C(x441)),y) = L(C(x)),y) + (xgqv — X, V. L(C(x), y))

So the problem then reduces to max  (Xgqy — X, V, L(C(x),y))
&

IXadv—%lleo=
Closed-form solution: x4, = x + € sign(VxL(C(x),y))
e Why?
* Holder inequality: for any vector a, b, we have {a, b) < |[all, [|bll,, where % + % =landp,g=>1
* |I-ll, and ||-||; are also known as dual norms
* Examples: ||+||, is self-dual, [|:]|; and ||‘|| are dual



FGSM Attack

Fast gradient sign method (FGSM) attack
e Goodfellow (2015) Explaining and Harnessing Adversarial Examples

Recall our goal: max L(C(Xgq1)),Y) (non-convex and hard to solve)
|Xqav—xlleo=e constant

Let us do linear expansion at x: L(C(x441)),y) = L(C(x)),y) + (xgqv — X, V. L(C(x), y))

So the problem then reduces to max  (xXgqy — X, V. L(C(x),y))
&

IXadv—%lleo=
Closed-form solution: x4, = x + € - sign(V,.L(C(x),v)) Named FGSM attack
* Why? by Holder inequality
* Obj(xqqp) = (xqap — X%, e L(C(x),¥)) < lIxgqr — x|l IV, LIC(x), Y1 < €l L(C), Ml
* On the other hand, the above solution achieves the upper bound and satisfies the constraint
* This finishes the proof



Facts about FGSM Attack

* FGSM is a white-box, non-targeted adversarial attack
* White-box: we need to calculate V. L(C(x), y) to create the adversarial image
* FGSM calculates the gradient only once
* Non-targeted: the attacker aims to maximize the loss w.r.t. the true label
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Intuition behind using sign operator?

* Recall that FGSM creates an adversarial image x4, by
Xaay = X + € - sign(V.L(C(x),y))
* We have proven that it is the closed-form solution of an optimization problem

* Intuition behind using sign operator:

o Remove the imbalance in the update when the gradient on one pixel is much
larger

o The method automatically reaches the boundary of adversarial reachable
region for all pixels A (x) = {x": ||x" — x|l < €} (thus, it uses the full power of
adversarial budget)

o Better empirical attack success rate in experiments



Issues with FGSM Attack

* Sometimes, FGSM requires large € in order to succeed (human-perceptible)

Original image Adversarial image

Many artifacts

Prediction: car mirror Prediction: sunglasses
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Picture from: https://blog.floydhub.com/introduction-to-adversarial-machine-learning/




BIM Attack

* Basic iterative method (BIM) attack
e Kurakin (2017) Adversarial Examples in the Physical World

* BIM is a variant of FGSM: it repeatedly adds noise to the image x in multiple
iterations, in order to cause misclassification

* Let t be the index of iterations, and y be the step size. BIM is given by
xt=x"1+y-sign(VL(C(x' 1), )
 Compare with FGSM
Xgqgp = X + € sign(VxL(C(x),y))
o Step size is different
o BIM uses an iterative procedure while FGSM uses a one-shot procedure
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BIM Attack

* Example of BIM attack on the printed image of a washer

* By repeating x* = x'1 + y - sign(V.L(C(x'™1),y)), the perturbation size € will
become larger and larger

(b) Clean image (c) Adv. image, (d) Adv. image,
Distance 4 Distance 8
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Issues with BIM Attack

* Example of BIM attack on the printed image of a washer

* By repeating x* = x'1 + y - sign(V.L(C(x'™1),y)), the perturbation size € will
become larger and larger
* For a pre-defined ¢, xt may violate the constraint ||x’ — x||, < € when t is large

(b) Clean image (c) Adv. image, (d) Adv. image,
Distance 4 Distance 8
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PGD Attack

* Projected gradient descent (PGD) attack
e Madry (2017) Towards Deep Learning Models Resistant to Adversarial Attacks

* To resolve the issue of BIM, PGD involves a truncation operation:
xt = clip(_ee) (xt‘l + vy - sign(VxL(C(xt‘l),y)))

* That is, for those pixels with perturbation size larger than €, “clip” truncates it
toe

e Another difference from BIM: PGD uses random initialization for x°, by adding
random noise to the original image from a uniform distribution in the range

(—E, E)
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PGD Attack

* PGD attack example

Original image Adversarial image

Prediction: baboon Prediction: Egyptian cat

Picture from: https://blog.floydhub.com/introduction-to-adversarial-machine-learning/

Egyptian cat

Fewer artifacts
than FGSM
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Facts about PGD Attack

* PGD is a white-box, non-targeted adversarial attack

* White-box, since we need to know the gradients V. L(C(x), y) of the model
to create the adversarial image

* PGD calculates the gradient multiple times
* Non-targeted, since PGD aims to maximize the loss w.r.t. the true label



Targeted PGD Attack

* Gradient approaches (FGSM, BIM, PGD) can also be designed as targeted white-
box attacks

* In this case, the added perturbation noise aims to minimize the loss function
of the image for a specific target class

e But how? o
Original image Adversarial image

Prediction: hippopotamus Prediction: maraca
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Picture from: https://blog.floydhub.com/introduction-to-adversarial-machine-learning/




Comparison between Untargeted and
Targeted Attacks

Gradient Ascent

e Untargeted objective: | max L(C (Xqdv), Virue)
Xadv€A(x)

* Targeted objective: min _ L(C (xadv),ytarget)
Gradient Descent

» Untargeted iteration: x5, = clip(_e ) (xt_l +y - sign(VxL(C(xt_l),ytrue)))
* |t is based on maximizing the loss function for the true class

* Targeted iteration: x5, = clip(_e ¢) (xt‘l — ¥ - sign (VXL(F(xt_l);ytarget)))

* It is based on minimizing the loss function for the target class
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Unrestricted Adversarial Examples

* Most works investigated the generation of adversarial examples that are
constrained to lie in the neighborhood of clean samples

* E.g., L, norm bounded perturbation

e Such constraints ensure that the adversarial examples are human-
imperceptible

* Such examples are sometimes referred to as restricted adversarial examples
* Unrestricted adversarial examples are generated without considering any
bounds or constraints on the modifications of clean inputs
* As long as the adversarial examples are human-imperceptible

e Challenging, because it is mathematically hard to define “human-
imperceptible”
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Unrestricted Adversarial Examples Challenge

GooQe

Unrestricted Adversarial Examples Challenge

In the Unrestricted Adversarial Examples Challenge, attackers submit arbitrary adversarial inputs, and defenders are
expected to assign low confidence to difficult inputs while retaining high confidence and accuracy on a clean,
unambiguous test set. You can learn more about the motivation and structure of the contest in our recent paper

This repository contains code for the warm-up to the challenge, as well as the public proposal for the contest. We are
currently accepting defenses for the warm-up.

& Contest Timeline

warm-up warm-up attacks contest begins & defenses contestant claims
begins are soundly beaten are evaluated each week defender prize

Za

current status
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Unrestricted Adversarial Examples Challenge

The class
of bicycle

The class
of bird




Unrestricted Adversarial Examples Challenge

GooQe

Defense

Pytorch ResNet50
(trained on bird-or-
bicycle extras)

Keras ResNet
(trained on
ImageNet)

Pytorch ResNet
(trained on bird-or-
bicycle extras)

Submitted
by

TRADES

Google
Brain

Google
Brain

Clean
data

100.0%

100.0%

98.8%

Common
corruptions

100.0%

99.2%

74.6%

Spatial
grid
attack

99.5%

92.2%

49.5%

SPSA
attack

100.0%

1.6%

2.5%

Boundary
attack

95.0%

4.0%

8.0%

Submission
Date

Jan 17th,
2019 (EST)

Sept 29th,
2018

Oct 1st,
2018
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Unrestricted Adversarial Examples Challenge

Clean Corrupted
"I da
. Spatial o
Defense Submitted Clean Common id SPSA Boundary Submission
by data corruptions a?tack attack attack Date

Pytorch ResNet50

Jan 17th,

(trained on bird-or- TRADES 100.0%  100.0% 99.5% 100.0%  95.0% 2019 (EST)
bicycle extras)
Keras ResNet

Google Sept 29th,
(trained on 9 100.0%  99.2% 92.2% 1.6% 4.0% .

Brain 2018
ImageNet)
Pytorch ResNet Gooale Oct 1st
(trained on bird-or- 9 08.8%  74.6% 49.5% 25%  8.0% '

Brain 2018

bicycle extras)
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Unrestricted Adversarial Examples Challenge
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List of Adversarial Evasion Attacks

| Attack | Publication Similarity | Attacking Capability | Algorithm | Apply Domain [l
L-BFGS (Szegedy et al., 2013) lo White-Box Iterative Image Classification
FGSM (Goodfellow et al., 2014b) loo,lo White-Box Single-Step Image Classification
Deepfool (Moosavi-Dezfooli et al., 2016) lo White-Box Iterative Image Classification
JSMA (Papernot et al., 2016a) lo White-Box Iterative Image Classification
BIM (Kurakin et al., 2016a) loo White-Box Iterative Image Classification
C&W (Carlini & Wagner, 2017b) lo White-Box Iterative Image Classification
Ground Truth (Carlini et al., 2017) lo White-Box SMT solver Image Classification
Spatial (Xiao et al., 2018b) Total Variation White-Box Iterative Image Classification
Universal (Metzen et al., 2017b) loo, o White-Box Iterative Image Classification
One-Pixel (Suetal., 2019) lo White-Box Iterative Image Classification
EAD (Chen et al., 2018) 1+ 12,1 White-Box Iterative Image Classification
Substitute (Papernot et al., 2017) lp Black-Box Iterative Image Classification
700 (Chen et al., 2017) [y Black-Box Iterative Image Classification
Biggio (Biggioet al., 2012) l2 Poisoning Iterative Image Classification
Explanation (Koh & Liang, 2017) lp Poisoning Iterative Image Classification
Zugner’s (Zigner et al., 2018) Degree Distribution, Coocurrence Poisoning Greedy Node Classification
Dai’s (Dai et al., 2018) Edges Black-Box RL Node & Graph Classification
Meta (Ziigner & Giinnemann, 2019) Edges Black-Box RL Node Classification
C&W (Carlini & Wagner, 2018) max dB White-Box Iterative Speech Recognition
Word Embedding (Miyato et al., 2016) [, White-Box One-Step Text Classification
HotFlip (Ebrahimi et al., 2017) letters White-Box Greedy Text Classification
Jia & Liang (Jia & Liang, 2017) letters Black-Box Greedy Reading Comprehension
Face Recognition (Sharif et al., 2016) physical White-Box Iterative Face Recognition
RL attack (Huang et al., 2017) [, White-Box RL
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