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Generative Models

• In generative modeling, we’d like to train a network that models a distribution:
▶ For example, LLMs want to model the distribution of natural language.
▶ We want to design a generative model to generate images.
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Mathematical Model

• Given training data {x1,x2, . . . ,xn} ∼ pdata(x), the true data density

• Parameterize pθ(x), the data density estimated by model

• Estimate θ by minimizing some “distance” between pdata (the unknown data
density) and pθ:

min
θ

dist(pdata∥pθ)

• After training, can generate new data x ∼ pθ(x)

• Need a training set from pdata and an explicit form of pθ
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How to sample a new data: Push-forward Maps

Theorem: Representation through push-forward

Let r be any continuous distribution on Rh. For any distribution p on Rd, there exist
push-forward maps G : Rh → Rd such that

z ∼ r =⇒ G(z) ∼ p

• W.l.o.g. we may simply take r to be standard Gaussian noise
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Generating Samples

• Start by sampling the code vector z from a simple distribution (e.g., Gaussian)

• GAN computes a differentiable function G mapping z to an x in data space
▶ G maps one distribution to another
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Generating Samples—A 1-dimensional example

G

• G maps a sample from one distribution to a sample from another distribution

• The remaining question is how we can learn the G network
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How to learn G network?

• How can we define the loss to distinguish two distributions?
▶ Use a discriminator/binary classifier!
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Generative Adversarial Networks
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Generative Adversarial Networks

Prob of	
IsReal

• Zero-sum game between the two parties:
▶ Discriminator’s goal: distinguish real images from fake images
▶ Generator’s goal: generate images that look like real one to confuse discriminator
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Recall how we derive Log Loss — Page 2, Lecture 4
• Let Y = {0, 1}; Let’s directly learn confidence D(x) := Pr(Y = 1|X = x)
• Given (xi, yi), i = 1, . . . , n, assume independence:

Pr(Y1 = y1, . . . ,Yn = yn|X1 = x1, . . . ,Xn = xn) =
n∏

i=1

Pr(Yi = yi|Xi = xi)

Y={0,1}
=

n∏
i=1

[D(x)]yi [1−D(x)]1−yi

• Maximizing the likelihood: maxD
∏n

i=1[D(x)]yi [1−D(x)]1−yi

or minimizing the minus log (log loss):

min
D

1

n

n∑
i=1

[−yi logD(x)− (1− yi) log(1−D(x))]

= min
D

E(x,y)[−y logD(x)− (1− y) log(1−D(x))]
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Discriminator’s Goal

Prob of	
IsReal

• For a fixed generator G, minimize a log loss over D (output prob. of IsReal):
▶ If x is real, minimize − logD(x); if x is fake, minimize − log(1−D(x))
▶ Assume that x being from real/fake distribution is with equal chance:

min
D

−1

2
Ex∼pdata [logD(x)]︸ ︷︷ ︸

x is real with one half prob

−1

2
Ez∼N (0,I)[log(1−D(G(z)))]︸ ︷︷ ︸
x is fake with another half prob
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Generator’s Goal

Prob of	
IsReal

• For a fixed discriminator D, maximize a log loss (due to zero-sum game) over G:
▶ If x is real, maximize − logD(x); if x is fake, maximize − log(1−D(x))
▶ Assume that x being from real/fake distribution is with equal chance:

max
G

− 1

2
Ex∼pdata [logD(x)]− 1

2
Ez∼N (0,I)[log(1−D(G(z)))]
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Putting Everything Together

Prob of	
IsReal

• Learn G and D simultaneously by a minimax problem:

max
G

min
D

− 1

2
Ex∼pdata [logD(x)]− 1

2
Ez∼N (0,I)[log(1−D(G(z)))]

• Replace expectation with empirical expectation:

min
G

max
D

Êx∼pdata [logD(x)] + Êz∼N (0,I)[log(1−D(G(z)))]
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Solver

min
G

max
D

V (G,D) := Ex∼pdata [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

• Solved by alternative minimization-maximization:
▶ G step: Fix D and update G by one-step gradient descent
▶ D step: Fix G and update D by one-step gradient ascent
▶ Repeat until the algorithm reaches an approximate equilibrium
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Deconvolution (Transposed Convolution)

A small-size (e.g., 2× 2) matrix → A large-size (e.g., 4× 4) matrix
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Network Architecture

deconv1
deconv2 deconv3

deconv4
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Why does GAN work?

Proposition 1: solution of D∗

Let pg(x) be the density of x estimated by the generator G. For G fixed, the optimal

discriminator D is D∗
G(x) =

pdata(x)
pdata(x)+pg(x)

.

Proof of Proposition 1:

V (G,D) := Ex∼pdata [logD(x)] + Ez∼N (0,I)[log(1−D(G(z)))]

=

∫
x

pdata(x) logD(x)dx+

∫
z

pz(z) log(1−D(G(z)))dz

=

∫
x

pdata(x) log(D(x)) + pg(x) log(1−D(x))︸ ︷︷ ︸
f(D(x))

dx.

For any fixed x, taking derivative = 0, D∗
G(x) := argmaxD(x) f(D(x)) = pdata(x)

pdata(x)+pg(x)
.
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Why does GAN work?—Cont’

Theorem 1: solution of G∗

The global minimum of minGmaxD V (G,D) is achieved if and only if pg = pdata. The
optimal objective value is − log 4.

Therefore, the generator is able to learn the data distribution pdata exactly if we can
solve minG maxD V (G,D) exactly.
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Proof of Theorem 1
By proposition 1,

V (G,D∗
G) = Ex∼pdata [logD

∗
G(x)] + Ez∼N (0,I)[log(1−D∗

G(G(z)))]

= Ex∼pdata [logD
∗
G(x)] + Ex∼pg [log(1−D∗

G(x))]

= Ex∼pdata

[
log

pdata(x)

pdata(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)

pdata(x) + pg(x)

]
.

By definition, KL(P ||Q) = Ex∼P

[
log p(x)

q(x)

]
. So

V (G,D∗
G) = − log 4 +KL

(
pdata

∣∣∣∣∣∣∣∣pdata + pg
2

)
+KL

(
pg

∣∣∣∣∣∣∣∣pdata + pg
2

)
= − log 4 + 2 · JSD(pdata||pg) ≥ − log 4,

where JSD is the Jensen–Shannon divergence (distance between two distributions).
The equality holds iff pdata = pg.
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Why does GAN work?

• Thus GAN is minimizing the Jensen–Shannon divergence between generated and
real data distributions.
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