CS480/680: Introduction to Machine Learning

Lecture 14: Generative Adversarial Networks

Hongyang Zhang

Generative Models

- In generative modeling, we'd like to train a network that models a distribution:
 - ► For example, LLMs want to model the distribution of natural language.
 - ▶ We want to design a generative model to generate images.

Mathematical Model

- Given training data $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\} \sim p_{data}(\mathbf{x})$, the true data density
- Parameterize $p_{\theta}(\mathbf{x})$, the data density estimated by model
- Estimate θ by minimizing some "distance" between p_{data} (the unknown data density) and p_{θ} :

$$\min_{\boldsymbol{\theta}} \ \mathsf{dist}(p_{data} || p_{\boldsymbol{\theta}})$$

- After training, can generate new data $\mathbf{x} \sim p_{\boldsymbol{\theta}}(\mathbf{x})$
- Need a training set from p_{data} and an explicit form of $p_{m{ heta}}$

How to sample a new data: Push-forward Maps

Theorem: Representation through push-forward

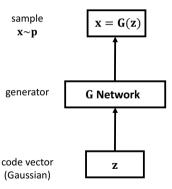
Let r be any continuous distribution on \mathbb{R}^h . For any distribution p on \mathbb{R}^d , there exist push-forward maps $G: \mathbb{R}^h \to \mathbb{R}^d$ such that

$$\mathbf{z} \sim r \implies \mathbf{G}(\mathbf{z}) \sim p$$

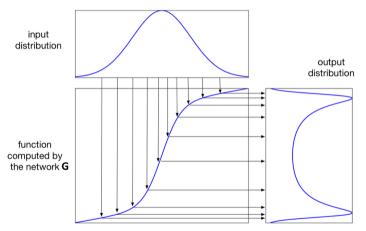
ullet W.l.o.g. we may simply take r to be standard Gaussian noise

Generating Samples

- Start by sampling the code vector z from a simple distribution (e.g., Gaussian)
- GAN computes a differentiable function G mapping z to an x in data space
 - ▶ **G** maps one distribution to another

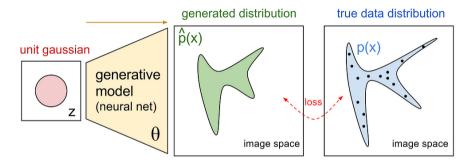


Generating Samples—A 1-dimensional example



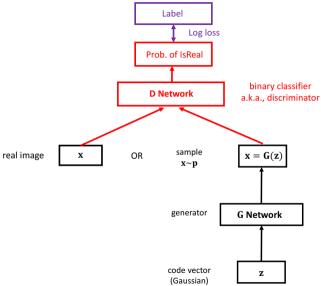
- ullet G maps a sample from one distribution to a sample from another distribution
- ullet The remaining question is how we can learn the G network

How to learn G network?

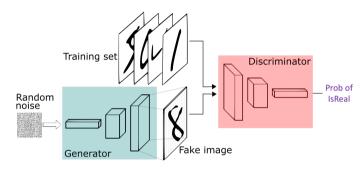


- How can we define the loss to distinguish two distributions?
 - Use a discriminator/binary classifier!

Generative Adversarial Networks



Generative Adversarial Networks



- Zero-sum game between the two parties:
 - Discriminator's goal: distinguish real images from fake images
 - Generator's goal: generate images that look like real one to confuse discriminator

Recall how we derive Log Loss — Page 2, Lecture 4

- Let $\mathcal{Y} = \{0, 1\}$; Let's directly learn confidence $D(\mathbf{x}) := \Pr(\mathsf{Y} = 1 | \mathsf{X} = \mathbf{x})$
- Given $(\mathbf{x}_i, \mathbf{y}_i), i = 1, \dots, n$, assume independence:

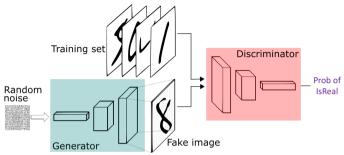
$$\Pr(\mathsf{Y}_1 = \mathsf{y}_1, \dots, \mathsf{Y}_n = \mathsf{y}_n | \mathsf{X}_1 = \mathbf{x}_1, \dots, \mathsf{X}_n = \mathbf{x}_n) = \prod_{i=1}^n \Pr(\mathsf{Y}_i = \mathsf{y}_i | \mathsf{X}_i = \mathbf{x}_i)$$

$$\stackrel{\mathcal{Y} = \{0,1\}}{=} \prod_{i=1}^n [D(\mathbf{x})]^{\mathsf{y}_i} [1 - D(\mathbf{x})]^{1-\mathsf{y}_i}$$

• Maximizing the likelihood: $\max_D \prod_{i=1}^n [D(\mathbf{x})]^{y_i} [1 - D(\mathbf{x})]^{1-y_i}$ or minimizing the minus log (log loss):

$$\begin{aligned} & \min_{D} \ \frac{1}{n} \sum_{i=1}^{n} [-\mathsf{y}_{i} \log D(\mathbf{x}) - (1-\mathsf{y}_{i}) \log(1-D(\mathbf{x}))] \\ & = \min_{D} \ \mathbb{E}_{(\mathbf{x},\mathsf{y})} [-\mathsf{y} \log D(\mathbf{x}) - (1-\mathsf{y}) \log(1-D(\mathbf{x}))] \end{aligned}$$

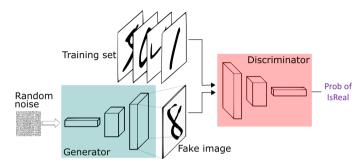
Discriminator's Goal



- For a fixed generator G, minimize a log loss over D (output prob. of IsReal):
 - ▶ If x is real, minimize $-\log D(x)$; if x is fake, minimize $-\log(1 D(x))$
 - ► Assume that **x** being from real/fake distribution is with equal chance:

$$\min_{D} \underbrace{-\frac{1}{2}\mathbb{E}_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})]}_{\mathbf{x} \text{ is real with one half prob}} \underbrace{-\frac{1}{2}\mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0,\mathbf{I})}[\log(1-D(G(\mathbf{z})))]}_{\mathbf{x} \text{ is fake with another half prob}}$$

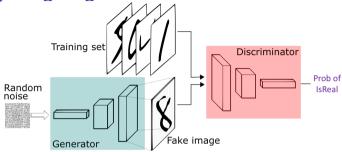
Generator's Goal



- For a fixed discriminator D, maximize a $\log \log (\text{due to zero-sum game})$ over G:
 - ▶ If x is real, maximize $-\log D(x)$; if x is fake, maximize $-\log(1-D(x))$
 - ► Assume that **x** being from real/fake distribution is with equal chance:

$$\max_{G} - \frac{1}{2} \mathbb{E}_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] - \frac{1}{2} \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})}[\log(1 - D(G(\mathbf{z})))]$$

Putting Everything Together



• Learn G and D simultaneously by a minimax problem:

$$\max_{G} \min_{D} - \frac{1}{2} \mathbb{E}_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] - \frac{1}{2} \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})}[\log(1 - D(G(\mathbf{z})))]$$

Replace expectation with empirical expectation:

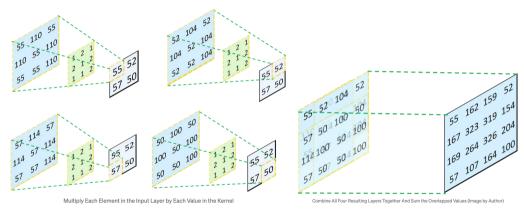
$$\min_{G} \max_{D} \hat{\mathbb{E}}_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] + \hat{\mathbb{E}}_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})}[\log(1 - D(G(\mathbf{z})))]$$

Solver

$$\min_{G} \max_{D} V(G, D) := \mathbb{E}_{\mathbf{x} \sim p_{data}}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})}[\log(1 - D(G(\mathbf{z})))]$$

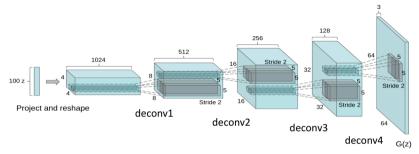
- Solved by alternative minimization-maximization:
 - ightharpoonup G step: Fix D and update G by one-step gradient descent
 - ▶ D step: Fix G and update D by one-step gradient ascent
 - Repeat until the algorithm reaches an approximate equilibrium

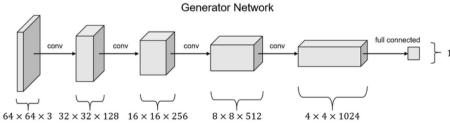
Deconvolution (Transposed Convolution)



A small-size (e.g., 2×2) matrix \rightarrow A large-size (e.g., 4×4) matrix

Network Architecture





Why does GAN work?

Proposition 1: solution of D^*

Let $p_g(\mathbf{x})$ be the density of \mathbf{x} estimated by the generator G. For G fixed, the optimal discriminator D is $D_G^*(\mathbf{x}) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}$.

Proof of Proposition 1:

$$V(G, D) := \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})} [\log(1 - D(G(\mathbf{z})))]$$

$$= \int_{\mathbf{x}} p_{data}(\mathbf{x}) \log D(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{z}} p_{\mathbf{z}}(\mathbf{z}) \log(1 - D(G(\mathbf{z}))) d\mathbf{z}$$

$$= \int_{\mathbf{x}} \underbrace{p_{data}(\mathbf{x}) \log(D(\mathbf{x})) + p_{g}(\mathbf{x}) \log(1 - D(\mathbf{x}))}_{f(D(\mathbf{x}))} d\mathbf{x}.$$

For any fixed \mathbf{x} , taking derivative = 0, $D_G^*(\mathbf{x}) := \operatorname{argmax}_{D(\mathbf{x})} f(D(\mathbf{x})) = \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})}$.

Why does GAN work?—Cont'

Theorem 1: solution of G^*

The global minimum of $\min_{G} \max_{D} V(G, D)$ is achieved if and only if $p_g = p_{data}$. The optimal objective value is $-\log 4$.

Therefore, the generator is able to learn the data distribution p_{data} exactly if we can solve $\min_{G} \max_{D} V(G, D)$ exactly.

Proof of Theorem 1

By proposition 1,

$$V(G, D_G^*) = \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log D_G^*(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})} [\log (1 - D_G^*(G(\mathbf{z})))]$$

$$= \mathbb{E}_{\mathbf{x} \sim p_{data}} [\log D_G^*(\mathbf{x})] + \mathbb{E}_{\mathbf{x} \sim p_g} [\log (1 - D_G^*(\mathbf{x}))]$$

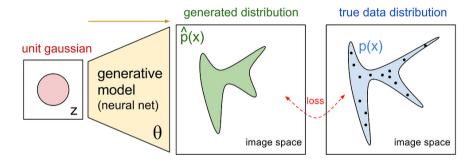
$$= \mathbb{E}_{\mathbf{x} \sim p_{data}} \left[\log \frac{p_{data}(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})} \right] + \mathbb{E}_{\mathbf{x} \sim p_g} \left[\log \frac{p_g(\mathbf{x})}{p_{data}(\mathbf{x}) + p_g(\mathbf{x})} \right].$$

By definition, $KL(P||Q) = \mathbb{E}_{\mathbf{x} \sim P} \left[\log \frac{p(\mathbf{x})}{q(\mathbf{x})} \right]$. So

$$V(G, D_G^*) = -\log 4 + KL\left(p_{data} \left\| \frac{p_{data} + p_g}{2} \right) + KL\left(p_g \left\| \frac{p_{data} + p_g}{2} \right) \right.$$
$$= -\log 4 + 2 \cdot JSD(p_{data} \| p_g) \ge -\log 4,$$

where JSD is the Jensen–Shannon divergence (distance between two distributions). The equality holds iff $p_{data}=p_g$.

Why does GAN work?



 Thus GAN is minimizing the Jensen–Shannon divergence between generated and real data distributions.

