CS480/680: Introduction to Machine Learning

Lecture 14: Generative Adversarial Networks
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Generative Models

® |n generative modeling, we'd like to train a network that models a distribution:

» For example, LLMs want to model the distribution of natural language.
> We want to design a generative model to generate images.
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Mathematical Model

e Given training data {x1,Xa,...,X,} ~ Pdata(X), the true data density

Parameterize pg(x), the data density estimated by model

Estimate @ by minimizing some “distance” between pgu, (the unknown data
density) and pg:

mgin dist(Pdata||pe)

After training, can generate new data x ~ pg(x)

Need a training set from pg.:, and an explicit form of pgy
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How to sample a new data: Push-forward Maps

Theorem: Representation through push-forward

Let r be any continuous distribution on R". For any distribution p on R¢, there exist
push-forward maps G : R* — R¢ such that

z~r = G(z)~p

® W.l.o.g. we may simply take r to be standard Gaussian noise
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Generating Samples

e Start by sampling the code vector z from a simple distribution (e.g., Gaussian)
® GAN computes a differentiable function G mapping z to an x in data space
» G maps one distribution to another

sample x = G(z)
X~p
1
generator G Network
i
code vector z
(Gaussian)
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Generating Samples—A 1-dimensional example

input
distribution

output
distribution

function
computed by

the network G /

® (G maps a sample from one distribution to a sample from another distribution

® The remaining question is how we can learn the G network
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How to learn G network?

_—

generated distribution

true data distribution

unit gaussian

generative
model
(neural net)

A

p(x)

image space

. |loss| .

image space

® How can we define the loss to distinguish two distributions?

» Use a discriminator/binary classifier!
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Generative Adversarial Networks

Log loss

Prob. of IsReal

i

D Network

binary classifier
a.k.a., discriminator

S

real image OR sample | x = G(z) |
X~p
generator | G Network |
code vector | z |
(Gaussian)
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Generative Adversarial Networks

Training set él/ / 1 N Discriminator

Prob of
/j’ I @ —— IsReal
- =]} [

Generator - Fake image

® /ero-sum game between the two parties:

» Discriminator’s goal: distinguish real images from fake images
P> Generator's goal: generate images that look like real one to confuse discriminator
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Recall how we derive Log Loss — Page 2, Lecture 4
o Let YV = {0, 1}; Let's directly learn confidence D(x) := Pr(Y = 1|X = x)
e Given (x;,y;),i =1,...,n, assume independence:

Pr(Yl = Y10y Yn = Yn|X1 =Xp,.. . Ky = Xn) = HPT(Yz' = Yi|xi = Xi)
i=1

il | LL2ICOIERIE0) g
i=1
® Maximizing the likelihood: maxp [[;_,[D(x)P [l — D(x)]* ¥
or minimizing the minus log (log loss):
1 n
in = [—y,log D(x) — (1 —y;)log(1 — D
mng[ yilog D(x) — (1 —y;) log( (x))]

D
i=1

= Hgn Exy)[—ylog D(x) — (1 —y)log(1l — D(x))]
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Discriminator’'s Goal

Training set &V / 1 N Discriminator
Prob of
/i;j I @ —— IsReal

Generator - Fake image

® For a fixed generator GG, minimize a log loss over D (output prob. of IsReal):
> If x is real, minimize —log D(x); if x is fake, minimize —log(1 — D(x))
» Assume that x being from real/fake distribution is with equal chance:

1 1
it =SB, 08 D(x)] ~ 5 Esnnonflog(l = D(G(2)))]

AN J/

x is real with one half prob x is fake with another half prob

10/19



Generator’'s Goal

Training set AV /

Random /
s Ef %

Generator Fake image

IsReal

Discriminator
. __ Probof

e For a fixed discriminator D, maximize a log loss (due to zero-sum game) over G:
> If x is real, maximize —log D(x); if x is fake, maximize —log(1 — D(x))
» Assume that x being from real/fake distribution is with equal chance:

1 1
mAX = 5o 108 D(X)] = S Eannonllog(l — D(G(2)))]

T
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Putting Everything Together

Training set &V / Discriminator
NN
Prob of
Random / ’—b I @ —— IsReal

" =] &

Generator Fake image

® Learn GG and D simultaneously by a minimax problem:
1 1
s i — B, log D(X)] = 5Eyerionllog(1 — D(G(2))]

® Replace expectation with empirical expectation:

min max Erpira 108 D(x)] + Epnvo,n log(1 — D(G(2)))]

G
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Solver

min mas V(G, D) == Eaupy,[log D)) + Exnonllog(1 — D(G(2))]

® Solved by alternative minimization-maximization:

» G step: Fix D and update G by one-step gradient descent
» D step: Fix G and update D by one-step gradient ascent
» Repeat until the algorithm reaches an approximate equilibrium
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Deconvolution (Transposed Convolution)
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Multiply Each Element in the Input Layer by Each Value in the Kernel ‘Combine All Four Resulting Layers Together And Sum the Overlapped Values (Image by Author)

A small-size (e.g., 2 x 2) matrix — A large-size (e.g., 4 X 4) matrix
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Network Architecture

A el

1024
—
NN
umm = )

Stride 2

Project and reshape deconvl

deconv2

64

deconv3
deconvd gy

Generator Network

e i S

—

64 x64x3 32x32x128 16 X 16 X 256 8x8x512 4x4x1024

Discriminator Network
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Why does GAN work?

Proposition 1: solution of D*

Let py(x) be the density of x estimated by the generator . For G fixed, the optimal
discriminator D is D,(x) = —Pdaa)__
Pdata(X)+Pg(X)

Proof of Proposition 1:
V(G, D) := Expyora 108 D(X)] + Eznvopllog(l — D(G(2)))]

= /pdata(x) logD(x)dx+/pz(Z) log(1 — D(G(2)))dz

z

~ [ a3 15(D(x) + ) log(1 — D)) .

-~

F(D(x))

For any fixed x, taking derivative = 0, D (x) := argmax ) f(D(x)) = 1#%.
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Why does GAN work?—Cont’

Theorem 1: solution of G*

The global minimum of ming maxp V' (G, D) is achieved if and only if py; = pagia. The
optimal objective value is —log4.

Therefore, the generator is able to learn the data distribution pg,., exactly if we can
solve ming maxp V (G, D) exactly.
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Proof of Theorem 1
By proposition 1,
V(G, Dgy) = Expyor, 108 DG (X)] + Eznopllog(l — D5 (G(2)))]
= Bxopiara 108 DG (X)] 4 Exnp, [log(1 — Dy (%))]

pdata(x> :| |:
= Expyara |10 + Ex~p, |log
b [ ® Paara) + P, (%) v

Py(%) } .

Pdata(X) + pg(x)

By definition, K L(P||Q) = Ex_p [log jj} So

aa_l_

= —log4 + 2 - JSD(Paatal|lpy) > —log4,

V(G,Df) = —logd+ KL (pdata

Pdata + Pg
2

where JSD is the Jensen-Shannon divergence (distance between two distributions).
The equality holds iff pga = py.
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Why does GAN work?

generated distribution true data distribution
A

p(x)

_—

unit gaussian

generative
maodel
(neural net)

*._ [loss| .

image space image space

® Thus GAN is minimizing the Jensen—Shannon divergence between generated and
real data distributions.
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