CS480/680, Spring 2023, Assignment 3

Designer: Chengjie Huang; Instructor: Hongyang
Zhang

Released: June 26; Due: July 16, noon
Notes:

* Please save a copy of this notebook to avoid losing your changes.

¢ Debug your code and ensure that it can run.

« Save the output of each cell. Failure to do so may result in your coding questions not being
graded.

* To accelerate the training time, you can use Google Colab and choose 'Runtime’ ->
'Change runtime type' -> 'Hardware accelerator' and set 'Hardware accelerator' to 'GPU'.
Question 1 may be more time-consuming, so you may need to plan ahead and leave
enough time for model training.

¢ Your grade is independent of the test accuracy.

In []: M # In addition to numpy, pytorch, and other standard Libraries, you will ne
I'pip install transformers datasets

Question 1: Large Language Model (? pts)

Large pre-trained language models such as GPT can be useful for many natural language tasks
other than text generation. In this question, we will take a look at one of such tasks: question-
answering (QA).

In QA task, the model is given some context text and a question related to the context. The
model is tasked to generate the correct answer based on the context and question. For
example, a context could be "Joe enjoys pizza but prefers pasta over anything else", and given
a question "What's Joe's favorite food", the model should output "pasta".

In this question, we will extend and fine-tune a pre-trained large language model (GPT2) to
perform question-answering task.

1.1 SQUAD Dataset (? pts)

A popular dataset for question-answering task is the Stanford Question-answering Dataset
(SQuAD) (Rajpurkar, Pranav, et al. "Squad: 100,000+ questions for machine comprehension of
text." arXiv preprint arXiv:1606.05250 (2016). (https://arxiv.org/abs/1606.05250)). The code
below will automatically download and load the dataset. The training and validation split can be
accessed with squad_dataset['train'] and squad_dataset['validation']

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#CS480/680,-Spring-2023,-Assignment-3
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#CS480/680,-Spring-2023,-Assignment-3
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Designer:-Chengjie-Huang;-Instructor:-Hongyang-Zhang
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Designer:-Chengjie-Huang;-Instructor:-Hongyang-Zhang
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Question-1:-Large-Language-Model-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Question-1:-Large-Language-Model-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#1.1-SQuAD-Dataset-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#1.1-SQuAD-Dataset-(?-pts)
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1606.05250

In []:

respectively.

First familiarize yourself with the format of the SQUAD dataset.
In the following cells, print the size of each split as well as one example from each split in the
following format:

M

Train/validation split: 10000 samples

Sample id: 56de57394396321400ea2830

Context: Joe enjoys pizza but prefers pasta over anything else
Question: What's Joe's favorite food

Answer: pasta

from datasets import load_dataset
squad_dataset = load_dataset("squad")

B B B B B B Bt B e Bt it e e i v
IMPLEMENT ME!

raise NotImplementedError

data = squad_dataset['train'][10000]

print(f'Sample id: {data["id"]}")

print(f'Context: {data["context"]}")

print(f'Question: {data["question"]}")

print(f'Answer: {data["answers"]["text"][0]}")

data = squad_dataset['validation'][100]

print(f'Sample id: {data["id"]}")

print(f'Context: {data["context"]}")

print(f'Question: {data["question"]}")

print(f'Answer: {data["answers"]["text"][0]}")

B B e et et e e T v

1.2 Extending GPT2 for question-answering task (? pts)

In this part, we will extend the GPT2 model to produce answers from the context based on the
questions. To make use of the pre-trained GPT2 model, we will treat it as a feature extractor to
compute token-wise feature vectors and add additional MLP layers to process the features for

the QA task. These additional task-specific layers are sometimes called "adapters".

Use the skeleton code below and implement the following three core components:

o [? pts] Add additional MLP layer(s) to predict the start and end location of the answer within

the tokenized input.

¢ [? pts] Compute the location of the answer using features extracted from pre-trained GPT2.
o [? pts] Task-specific loss for question-answering.

In this question, we formulate location prediction as a multi-class classification which can
be optimized using cross-entropy loss.

For example: given a input text of length 5 after tokenization, suppose the answer starts at
token 2 and ends at token 4, the model should predict [6 6 1 @ 0] and [0 © @ ©
1] as the start and end location respectively.

Unlike image data, text input can have varying length, which makes batch training and loss

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#1.2-Extending-GPT2-for-question-answering-task-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#1.2-Extending-GPT2-for-question-answering-task-(?-pts)

computation more challenging. For simplicity, you can assume the batch size is 1 in this
question. l.e., the question, context and answer belong to a single sample in the
dataset.

In [3]:

M import torch
import torch.nn as nn
from transformers import GPT2TokenizerFast, GPT2Model

class GPT2QuestionAnswering(nn.Module):

def

def

def

__init_ (self):

super()._ _init_ ()

self.tokenizer = GPT2TokenizerFast.from _pretrained('gpt2')
self.gpt2 = GPT2Model.from pretrained('gpt2')

HHAHBHB AU AR B HB AR AR HBABAH AR B AR AR AR B AR ARG AH A AR AR AR R B AR ARG A AR AB AR
IMPLEMENT ME!

Add additional Layers for classifying the start and end location
raise NotImplementedError

self.cls_start = nn.Linear(768, 1)

self.cls_end = nn.Linear(768, 1)

HUHRBHBABHRBABA B AR B R B A BAGF AR B AR AR AR B R B ABA AR B R BA AR R HBABA AR R A BA AR

forward(self, question, context, answer=None):
inputs = self.tokenizer(question, context, return_tensors='pt', re
self.inputs = inputs
input_ids = inputs.input_ids
attention_mask = inputs.attention_mask
if torch.cuda.is_available:
input_ids = input_ids.cuda()
attention _mask = attention_mask.cuda()
features = self.gpt2(input_ids=input_ids, attention_mask=attention

HHHBHBABAHBABABHHHHBABABARBABABHRHHBABABARBRBABH R R R B AR AR R R A BRI,
IMPLEMENT ME!

Compute Llocation of the answer based on the hidden state feature
raise NotImplementedError

shape = features.shape[:2]

start_logits = self.cls start(features.reshape(-1, 768)).reshape
end_logits = self.cls_end(features.reshape(-1, 768)).reshape(sha
HAHBHBAH AR B AP AR AR R R B AR AR R B AR AR AR R R B AR AR A R R AR AR AR R R B AR AR AR R AR AR AR

if self.training:
In training mode, we want to return the loss based on the gr
return self.loss(start logits, end logits, answer, inputs.offs
else:
B B B B B B B B B ot et Lt e et et B Tt e o2
IMPLEMENT ME!
In inference mode, we want to return the answer string based
answer_start_index = ...
answer_end_1index = ...
answer_start_index = int(torch.argmax(start_logits, dim=-1)[0]
answer_end_index = int(torch.argmax(end_logits, dim=-1)[0])
HHABHBHABHBHAHHBHBHA B AR A AR B AR R R AR ARG AR ABR AR AR R A AR A B R AR A R
return self.tokenizer.decode(inputs.input_ids[@, answer_start_

loss(self, start_logits, end_logits, answer, offset_mapping):
HHBHAHAHHBH AR AR HAH AR AR H AR AR AR AR AR AR AR AR
IMPLEMENT ME!

Compute the loss based on true answers

raise NotImplementedError

1. Compute the start and end location of the answer
Tip: use offset _mapping from the input tokenization.
See https://huggingface.co/docs/transformers/main_classe
answer_start = answer['answer_start'][0]
answer_end = answer['answer_start'][@] + len(answer['text'][0])
start_positions = -1
end_positions = -1
for i, offset in enumerate(offset_mapping[@]):
if np.abs(offset[0]-answer_start) < 2:
start_positions = i-1 if answer_start < offset[@] else i
elif offset[1l] >= answer_end:
end_positions = i
break
if start_positions < 9:
start_positions = ©
start_positions = torch.tensor([start_positions]).to(start_logits.
end_positions = torch.tensor([end_positions]).to(end logits.device

print(answer['text'][0])
return self.tokenizer.decode(self.inputs.input_1ids[0, start_posi

2. Compute the cross-entropy lLoss between prediction and ground
loss_fct = nn.CrossEntropyLoss()

start_loss = loss fct(start logits, start_positions)

end loss = loss_fct(end_logits, end positions)

total loss = (start_loss + end loss) / 2

return total loss

BHAR AT A A A A A A A

We can evaluate the pre-trained model's performance on the validation split. Since the model
has not been adapted to the question-answering task yet, and additional untrained layers have
been added, we expect the model to perform poorly.

In question-answering task, we use two evaluation metrics:

« Exact match: the percentage of predictions that match the ground truth answer exactly
* F1 score: the average overlap (in terms of tokens) between the prediction and ground truth
answer

Higher values are better for both metrics. For reference, humans can achieve 77.0% exact
match and 86.8% F1 score, while SOTA method achieves 90% exact match and over 95% F1
score.

In [4]: M def evaluate(model, dataset, metric):

from tqdm.autonotebook import tqgdm

model = model.eval()

preds = []

for data in tqdm(dataset['validation']):
preds.append(dict(id=data['id'], prediction_text=model(data['quest

references = [dict(answers=data['answers'], id=data['id']) for data in

return metric.compute(predictions=preds, references=references)

In [5]: M from datasets import load_metric

squad_metric = load_metric('squad"')
model = GPT2QuestionAnswering()
if torch.cuda.is_available:

model = model.cuda()

evaluate(model, squad_dataset, squad metric)

/tmp/ipykernel 292962/1889257040.py:3: FutureWarning: load_metric is depr

ecated and will be removed in the next major version of datasets. Use 'ev
aluate.load' instead, from the new library & Evaluate: https://huggingf
ace.co/docs/evaluate (https://huggingface.co/docs/evaluate)

squad_metric = load metric('squad')

100% 10570/10570 [01:47<00:00,
102.63it/s]

2023-06-21 13:51:01.790799: I tensorflow/core/platform/cpu_feature_guard.
cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Netwo
rk Library (oneDNN) to use the following CPU instructions in performance-
critical operations: AVX2 AVX512F FMA

To enable them in other operations, rebuild TensorFlow with the appropria
te compiler flags.

2023-06-21 13:51:02.599919: W tensorflow/compiler/xla/stream_executor/pla
tform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfe
r.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No suc
h file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nv
idia/lib64

2023-06-21 13:51:02.600011: W tensorflow/compiler/xla/stream_executor/pla
tform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfe
r_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared objec
t file: No such file or directory; LD_LIBRARY_PATH: /usr/local/nvidia/li

b:/usr/local/nvidia/lib64

2023-06-21 13:51:02.600022: W tensorflow/compiler/tf2tensorrt/utils/py ut
ils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you

would like to use Nvidia GPU with TensorRT, please make sure the missing

libraries mentioned above are installed properly.

Out[5]: {'exact_match': ©.02838221381267739, 'fl1': 3.4842183049907534}

1.3 Fine-tuning GPT2 on Squad (? pts)

To adapt a pre-trained model to a specific downstream task (in this case the question-
answering task), a common technique is to "fine-tune" the model. Fine-tuning simply means
training the model using task-specific data, typically with shorter epochs and smaller learning
rates. Certain part of the model (e.g., pre-trained layers or early layers) can also be frozen,
meaning the weights are not updated during training.

In this part, we will fine-tune the model on SQUAD dataset.
In the cell below, implement the training loop and record the loss values in a list to be plotted
later.

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#1.3-Fine-tuning-GPT2-on-Squad-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#1.3-Fine-tuning-GPT2-on-Squad-(?-pts)
https://huggingface.co/docs/evaluate
https://huggingface.co/docs/evaluate
https://huggingface.co/docs/evaluate
https://huggingface.co/docs/evaluate
https://huggingface.co/docs/evaluate
https://huggingface.co/docs/evaluate
https://huggingface.co/docs/evaluate
https://huggingface.co/docs/evaluate

Note: due to the size of the model and dataset, it is not required to train for too many iterations
since this question will not be graded purely based on the performance of your model.

Optional: freezing GPT2 layers

Depending on the additional layers you added to the network in the previous part, you may
choose to freeze the pre-trained GPT2 layers during fine-tuning. In PyTorch, this can be
achieved by setting requires_grad=False for the layers of interest. You are encouraged to
try both and note your observations.

Optional: gradient accumulation

The model from previous question is not suitable for batch training, which could increase the
stochasiticy of the training process and make convergence slower. One way to circumvent this
problem is via gradient accumulation, wherein the gradient is accumulated for multiple iterations
before the weights are updated, which increases the effective batch size. In PyTorch, this can
be implemented by accumulating the loss and performing zero_grad() , barkward() , and

<ctan(\ everv faw iteratinne inataad nf averv iteratinn

In [7]: M #HHASRAHIH I I R R R S S I I
IMPLEMENT ME!
raise NotImplementedError

import numpy as np
from tqgdm.autonotebook import tqgdm
num_epochs = 1
batch_size = 64
losses = []
optimizer = torch.optim.Adam(model.parameters(), lr=le-3)
model = model.train()
for e in range(num_epochs):
indices = np.arange(len(squad_dataset['train']))
np.random.shuffle(indices)
pbar = tqdm(indices[:5000])
for i, idx in enumerate(pbar):
data = squad_dataset['train'][int(idx)]
if i % batch_size ==
if i > 0:
loss = loss / batch_size
losses.append(loss.item())
pbar.set postfix(loss=loss.item())
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss = model(data[‘question'], data['context’], data['answers’
else:
loss += model(data['question'], data['context'], data['answers

100% 5000/5000 [02:13<00:00, 20.17it/s,
loss=4.28]

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Optional:-freezing-GPT2-layers
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Optional:-freezing-GPT2-layers
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Optional:-gradient-accumulation
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Optional:-gradient-accumulation

Plot the loss values over the iterations.

In [8]: M import matplotlib.pyplot as plt
plt.figure(dpi=99)
plt.plot(losses)
plt.show()

6.00 A

5.75 1

5.50 A

5.25 -

5.00 -

4.75 A

4.50 A

4.25 -

Evaluate the model performance after fine-tuning. You should see a much higher score
compared to the previous results.

Note: this question will not be graded based on the performance of your model. However,
together with the code and the loss plot in the previous parts, the performance will be used to
judge if the fine-tuning is implemented properly.

In [9]: M evaluate(model, squad_dataset, squad_metric)
100% 10570/10570 [01:48<00:00, 98.36it/s]

Out[9]: {'exact_match': 2.5165562913907285, 'f1': 7.227697924708394}
Try the model using your own text and question. Can it give you the correct answer?

In [10]: M model('What\'s Joe\'s favorite food', 'Joe enjoys pizza but prefers pasta

Out[10]: "What's Joe's favorite foodJoe enjoys pizza"

Question 2: GAN (? pts)

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Question-2:-GAN-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#Question-2:-GAN-(?-pts)

In this question, you will be designing and training a GAN to generate digits.

Training a GAN for image generation can be computationally demanding. Luckily, MNIST
dataset provides 28x28 images of handwritten digits, allowing a GAN to be trained more

- -

In [11]: M dimport numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load digits
from torchvision.datasets import MNIST

mnist = MNIST(root='.', download=True)

images = np.stack([data[@] for data in mnist]).astype(np.float32)

images = images / 128 - 1 # normalize between -1 and 1

plt.figure(dpi=90)

for i in range(25):
plt.subplot(5, 5, i+l)
plt.imshow(images[np.random.choice(len(images))])
plt.axis('off")

plt.show()

NENSR

2.1 Generator and Discriminator (? pts)

In this part, you need to implement a generator and discriminator model using the skeleton
code below. Recall that

¢ The generator takes a randomly sampled noise z as input and outputs an image with the
same size as the dataset
¢ The discriminator takes an image as input and performs a binary classification

In this case, both the generator and discriminator should be convolutional neural network. You
may not use a pretrained network, but other design decisions such as the depth and width of

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.1-Generator-and-Discriminator-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.1-Generator-and-Discriminator-(?-pts)

the network are up to you. Depending on the resources available to you, you may choose to
implement a small network.

In [12]:

M import torch
import torch.nn as nn
import torch.nn.functional as F

RUABHBHBHABAB AR R AB AR AR R BB AR AR AR R ABABARH R R AR A A BB ABRBA R R R R AR AR A R B AR RBR R
Part of the sample solution. Not provided to the student
def conv_layer(in_channels, out_channels, kernel size=3, stride=1, padding

dropout=False, output=False, deconv=False):

layer = nn.Conv2d if not deconv else nn.ConvTranspose2d
modules = [layer(in_channels, out_channels, kernel_size, stride, paddi
if not output:

modules.extend([nn.BatchNorm2d(out_channels), nn.LeakyReLU()])

if dropout:

modules.append(nn.Dropout(0.5))

return nn.Sequential(*modules)
HHUBHHBHBABHH PR PR LA B R R B ABA B AR B AR RBA B R R R AR AT AR B AR AR AR R AR AT AR B AR R AR R AR

class Discriminator(nn.Module):

def

def

__init_ (self):
super().__init__ ()
B B B B B Bl B et e e vt e
IMPLEMENT ME!
raise NotImplementedError
layer _conf = [
(1, 16, 3, 1, 0),
(16, 32, 3, 1, 0),
(321 64) 3: 2: @),
(641 32) 3) 2: @),
(321 16) 3) 1: 9):
(16, 1, 3, 1, 0, False, True)
]
self.layers = nn.Sequential(*[conv_layer(*conf) for conf in layer_
HEHAHH AR B R AR AR IR AR AR B R AR AR RA BB AR B AR AR R A BB AR A R AR A7

forward(self, x):

B B B Ll e et e e et e
IMPLEMENT ME!

raise NotImplementedError

X = X.unsqueeze(1l)

x = self.layers(x)

return x.reshape(x.shape[0], 1)

HUHABR AR PR AR AR B R AR AR R AR AR R A BB AR B R AR AR A BB A R A BB AR A AR

class Generator(nn.Module):

def

__init_ (self):
super()._ init_ ()
HUHRBHBABH BB ABABH BB R PR BAB R R R RBA B AR R R B A BA AR B RBABHHHHBHBA AR R A IR
IMPLEMENT ME!
raise NotImplementedError
layer_conf = [
(1, 16, 3, 2, 0, True, False, True),
(16, 32, 3, 2, 0, False, False, True),
(32, 64, 3, 2, 0, False, False, True),
(64, 32, 2, 2, 0, False, False, True),

In [13]:

(32, 16, 4, 1, 1),

(16, 1, 4, 1, 1, False, True)
]
self.layers = nn.Sequential(*[conv_layer(*conf) for conf in layer_
HHHBHB AU AR B HB AR AR B HBABAH AR B AR AR AR B R B ARG AH AR B AR AR AR B AR ARG A R AR AR AR

def forward(self, x):
B B B B B B B et B et e e it e
IMPLEMENT ME!
raise NotImplementedError
X = X.reshape(x.shape[0], 1, 1, 1)
x = self.layers(x).squeeze(l)
return torch.tanh(x)
HHHBHBAB AR B AR AR AR R HBABABF AR B A B AR AR AR AR AR AR B AR ARG AH R AR AR AR AR R AR AT

gen = Generator()

= Discriminator()

if torch.cuda.is_available:

gen = gen.cuda()
disc = disc.cuda()

2.2 Generate image samples from generator (? pts)

During the training and inference, the generator needs to generate batch of images from
random noise. Implement the generation function below.

Note: This function will later be used in training, therefore you need to be careful and avoid
cutting off the gradient accidentally

M def generate_samples(model, num_samples):

HHHBABABHHHABABABH R R AR AR R B AR ABABH R R AR A BRI R B AR AR AR R AR AR AR R R B AR AR H R R AR
IMPLEMENT ME!
raise NotImplementedError
noise = torch.normal(torch.zeros(num _samples,1), torch.ones(num_sample
if torch.cuda.is_available:
noise = noise.cuda()
return model(noise)
B B B L B B B e B B Bt e v

Without any training, the samples generated by the generator does not resemble any digit in the

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.2-Generate-image-samples-from-generator-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.2-Generate-image-samples-from-generator-(?-pts)

In [14]:

M gen.eval()
samples = generate_samples(gen, 25).detach().cpu().numpy()
plt.figure(dpi=90)
for i in range(25):
plt.subplot(5, 5, i+l)
plt.imshow(samples[i])
plt.axis('off")
plt.show()

2.3 GAN training algorithm (? pts)

In this part, you will implement the GAN training algorithm, which involves alternating the
training of discriminator and generator. Complete the skeleton code below. For more
information, refer to Goodfellow, lan, et al. "Generative adversarial networks." Communications
of the ACM 63.11 (2020): 139-144. (https://arxiv.org/abs/1406.2661).

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.3-GAN-training-algorithm-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.3-GAN-training-algorithm-(?-pts)
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661

In [15]: M def train_gan(gen, disc, images, num_epochs, batch_size):
from tqgdm.autonotebook import tqdm
from torch.utils.data import Dataloader

losses_gen = []
losses_disc = []

gen.train()
disc.train()

loader = Dataloader(images, batch_size=batch_size, shuffle=True)

B B B e T
IMPLEMENT ME!

1. [? pts] Build optimizer for each model and choose an appropriate

You may specify different optimizers or learning rates for genera
to balance the training loss and avoid one model overpowering the
Ideally we would Like to reach an equilibrium between the generat

optimizer_gen = torch.optim.Adam(gen.parameters(), lr=le-4)
optimizer_disc = torch.optim.Adam(disc.parameters(), lr=le-5)

pbar = tqdm(range(num_epochs))
for e in pbar:
for i, data_real in enumerate(loader):
if torch.cuda.is_available:
data_real = data_real.cuda()

2. Update discriminator

2.1. [? pts] Unfreeze discriminator

disc.train()

gen.eval()

for param in disc.parameters():
param.requires grad = True

2.2. [? pts] Construct input for discriminator

This should contain both real and fake samples
data_fake = generate_samples(gen, batch_size).detach().clone()
data = torch.cat([data_real, data_fake])

2.3. [? pts] Construct training Llabels for discriminator
labels = torch.cat([torch.ones(len(data_real), 1), torch.zeros

if torch.cuda.is_available:
labels = labels.cuda()

2.4. [? pts] Discrminator training
This should include loss computation and weight updates
optimizer _disc.zero_grad()
logits = disc(data)
loss disc = F.binary cross_entropy(torch.sigmoid(logits), Lla
loss_disc = F.mse_loss(logits, labels)
loss_disc.backward()
optimizer_disc.step()
losses_disc.append(loss_disc.item())

3. Update generator

3.1. [? pts] Freeze discriminator

disc.eval()

gen.train()

for param in disc.parameters():
param.requires_grad = False

3.2. [? pts] Construct input for the discriminator
data_fake = generate_samples(gen, 2*batch_size)

3.3. [? pts] Construct training labels for the discriminator
labels = torch.ones(len(data_fake), 1)
if torch.cuda.is_available:

labels = labels.cuda()

3.4. [? pts] Generator training
This should include Lloss computation and weight updates
optimizer _gen.zero_grad()
logits = disc(data_fake)
loss_gen = F.mse_loss(logits, labels)
loss_gen = F.binary_cross_entropy(torch.sigmoid(logits), Lab
loss_gen.backward()
optimizer_gen.step()
losses_gen.append(loss_gen.item())

B B B B T v

pbar.set postfix(loss_gen=losses gen[-1], loss_disc=losses dis

return losses_gen, losses_disc

You may change the number of epochs and batch size based on the time and resources

available to you.

In [16]: M losses_gen, losses_disc = train_gan(gen, disc, images, num_epochs=10, batc

100%

10/10 [01:25<00:00, 8.50s/it, loss_disc=0.288,

loss_gen=0.222]

2.4 Observations and Analysis (? pts)

[? pts] Plot the losses for the generator and discriminator. Do you see any problem with the

training process?

Do you think your GAN has converged? Why and why not?

Answer:

http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.4-Observations-and-Analysis-(?-pts)
http://mmeapollo2.uwaterloo.ca:2112/notebooks/cs480680_s23_homework3.ipynb#2.4-Observations-and-Analysis-(?-pts)

In [17]: M plt.figure(dpi=90)
plt.plot(losses_disc, label='Dicriminator')
plt.plot(losses_gen, label='Generator')
plt.legend()
plt.show()

—— Dicriminator

-~ (Generator
1.0 -

0.8 A

0.6 1

0.4 A

0.2

0.0 A

0 1000 2000 3000 4000

[? pts] Visualize some images generated by your GAN. Do you see any problem with the
samples generated by your GAN?
Do you think your GAN has mode collapse problem? Why and why not?

Answer: Likely yes, the student's GAN will likely repeatedly generate the same images

In [18]: M gen.eval()
samples = generate_samples(gen, 25).detach().cpu().numpy()
plt.figure(dpi=90)
for i in range(25):
plt.subplot(5, 5, i+1)
plt.imshow(samples[i])
plt.axis('off")
plt.show()

In[1: M

