7/9/23,5:07 PM ¢s480680_s23_homework2_solution.ipynb - Colaboratory

~ CS480/680, Spring 2023, Assignment 2, Solutions

Designer: Yimu Wang; Instructor: Hongyang Zhang

Released: June 5; Due: Extended: June 29, noon

Link of the Assignment

Tips:

Please save a copy of this notebook to avoid losing your changes.

Debug your code and ensure that it can run.

Save the output of each cell. Failure to do so may result in your coding questions not being graded.

To accelerate the training time, you can choose 'Runtime’ -> 'Change runtime type' -> 'Hardware accelerator' and set 'Hardware
accelerator' to 'GPU'. With T4, all the experiments can be done in 5 minutes. In total, this notebook can be run in 20 minutes. (You can
either use or not use GPU to accelearte. It is your choice and it does not affect your grades.)

Tips for sumbission:

Do not change the order of the problems.

Select 'Runtime’ -> 'Run all' to run all cells and generate a final "gradable" version of your notebook and save your ipynb file.
We recommend using Chrome to generate the PDF.

Also use 'File' -> 'Print' and then print your report from your browser into a PDF file.

Submit both the .pdf and .ipynb files.

We do not accept any hand-written report.

Question 0. [Important] Please name your submission as {Last-name}_{First-

name}_assignment2.ipynb and {Last-name}_{First-name}_assignment2.pdf. If you do not follow

this rule, your grade of assignment 2 will be 0.

~ Question 1. Basics of MLP, CNN, and Transformers (40 points)

1.1 Given an MLP with an input layer of size 100, two hidden layers of size 50 and 25, and an output layer of size

10, calculate the total number of parameters in the network. (10 points)

This MLP network is a standard MLP with bias terms. The activation function is ReLU. But you do not need to consider the parameters of the

activation function.

Solution:

First hidden layer: The first hidden layer has 50 neurons. Each neuron receives inputs from the 100 neurons in the input layer, and there is a bias

term associated with each neuron. Therefore, there are a total of (100 * 50) + 50 = 5,050 parameters in the first hidden layer.

Second hidden layer: The second hidden layer has 25 neurons. Each neuron receives inputs from the 50 neurons in the first hidden layer, and
there is a bias term associated with each neuron. Therefore, there are a total of (50 * 25) + 25 = 1,275 parameters in the second hidden layer.

Output layer: The output layer has 10 neurons. Each neuron receives inputs from the 25 neurons in the second hidden layer, and there is a bias

term associated with each neuron. Therefore, there are a total of (25 * 10) + 10 = 260 parameters in the output layer.

Total number of parameters in the network: Adding up the parameters from all the layers, we get:

5,050 + 1,275 + 260 = 6,585

Please note that the following alternative answer is also acceptable, and it will not result in a deduction of points for the final results:

Total number of parameters: 100 * 50 + 50 * 25 + 25 * 10 = 6,500

Explanation: This calculation does not consider any bias terms in the network.

https://colab.research.google.com/drive/locgBwa6kfd_oLRFuAz7b-ZXZDNpXnTbY#scrollTo=0d-030eEIPvY &printMode=true

1/6

https://colab.research.google.com/drive/1WjC7sUNiBRPga7M011Qope7lDuKaxNzc#scrollTo=PMvDlW7YuXD4

7/9/23,5:07 PM ¢s480680_s23_homework2_solution.ipynb - Colaboratory

~ and the predicted logit of a data example (before softmax) is [0.5, 0.3, 0.8], while the target of a data example is
[0.3, 0.6, 0.1], calculate the value of the loss (MSE and CE). (10 points)

The loss functions of MSE and CE are as follows,

ase 009) = D0 = yo) s

ieCc

C A
iy == Yy log(ze"&> ,
i=1

jetc) €XPU5)
where V7 is the i-th element of predict logit (before softmax), y is the ith element of target, and C is the number of classes.

Solution:

Mean squared error (MSE) loss:

Squared differences: (0.5 - 0.6)*2 = 0.01 (0.3 - 0.4)*2 =0.01 (0.7 - 0.8)*2 = 0.01
Mean squared error (MSE) loss: MSE = 0.01 +0.01 + 0.01 = 0.03

Therefore, the MSE loss is 0.03. (0.01 is also accetable if divided by 3.)

The cross-entropy (CE) loss:

CE =-[(0.6 * log(0.5)) + (0.4 * log(0.3)) + (0.8 * log(0.7))]

Please note that the base of the logarithm used is not specified in the question. All bases are acceptable, but it is recommended to use either
base 2 or base e (natural logarithm). Therefore, the cross-entropy (CE) loss is approximately 1.1828 (e for the base) or 1.7064 (2 for the base).

No grade deduction will be applied for the number of decimals.

1.3 Given a convolutional layer in a CNN with an input feature map of size 32x32, a filter size of 3x3, a stride of 1,
and no padding, calculate the size of the output feature map. (10 points)

You can refer to PyTorch Convolutional Layer for the definition of the convolutional layer.

Solution:

To calculate the size of the output feature map in a convolutional layer, we can use the following formula:
output_size = (input_size - filter_size + 2 * padding_size) / stride + 1

Given: Input feature map size: 32x32 Filter size: 3x3 Stride: 1 No padding

Applying the formula:

output_size =(32-3)/1+1=30/1+1=30+1=31

Therefore, the size of the output feature map in the convolutional layer is 31x31.

1.4 Given a Transformer encoder with 1 layer, the input and output dimensions of attention of 256, and 8 attention
heads, calculate the total number of parameters in the self-attention mechanism. (10 points)

You can refer to Attention is all you need (Transformer paper) for reference.

Solution:

For self-attention, the key, query, and value vectors are linearly transformed using separate learned weight matrices. In each attention head,
there are three weight matrices involved: one for the key, one for the query, and one for the value. Each weight matrix has a shape of
(embedding dimension) x (embedding dimension/number of attention heads).

Therefore, the total number of weight parameters involved in the self-attention mechanism of a single encoder layer can be calculated as
follows:

Number of weight parameters = Number of attention heads * (3 * embedding dimension * embedding dimension / number of attention heads)

Number of weight parameters = 8 * (3 * 256 * 256 / 8) = 8 * (3 * 256 * 32) = 196,608

https://colab.research.google.com/drive/locgBwa6kfd_oLRFuAz7b-ZXZDNpXnTbY#scrollTo=0d-030eEIPvY &printMode=true 2/6

https://en.wikipedia.org/wiki/Mean_squared_error
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://arxiv.org/abs/1706.03762

7/9/23,5:07 PM ¢s480680_s23_homework2_solution.ipynb - Colaboratory

Therefore, there are 196,608 weight parameters involved in the self-attention mechanism of a single encoder layer in this Transformer model.

No grade deduction if the final answer includes the parameter of FC after the attention.

v Question 2. Implementation of Multi-Layer Perceptron and understanding Gradients (60 points)

In this question, you will learn how to implment a Multi-Layer Perceptron (MLP) PyTorch, test the performance on CIFAR10, and learn what is
gradient. Please refer to CIFAR10 and PyTorch for details.

Assuming the MLP follows the following construction

V"= softmax(W, sigmoid(Wx + ¢|) + ¢2) ,
where yis the prediction (probability) of the input x by the MLP and W, W5, ¢, and ¢, are four learnable parameters of the MLP. softmax and
sigmoid are the softmax and sigmoid function.

Please note that the label is one-hot vectors, i.e., y; are either 0 or 1. And the sum of prediction is equal to 1, i.e., > =re) ¥; = 1. However,
usually in PyTorch, the labels are integers. You may need to transfer integers into one-hot vectors.

Tips: The process of using SGD to train a model is as follows:

1. Initialize the model parameters.

2. Calculate the gradients of the model parameters.

3. Update the model parameters using the gradients.

4. Test the model.

5. Repeat 2 - 4 until the model converges or for a given epochs.

You do not need to implement the training procedure. Please follow the instruction of each question. This is just set to help you understanding
the training procedure.
You can also refer to SGD and PyTorch Tutorial for inspiration.

Please note that you are allowed to use any PyTorch api and any public code to complete the following coding questions. This assignment is
help you to learn PyTorch.

~ 2.0 Get CIFAR10 data (0 points)

We will show you how to get the data using PyTorch. You are not allowed to edit the following code. Please see Dataset and Datal oaders for
details.

YOU ARE NOT ALLOWED TO EDIT THE FOLLOWING CODE.
import torch

import torchvision.datasets as datasets

import torchvision.transforms as transforms

from torch.utils.data import DatalLoader

def get CIFAR1O0():
Set the random seed for reproducibility
torch.manual_seed(480)

Load the CIFAR10 dataset and apply transformations

train dataset = datasets.CIFAR10(root='./data', train=True,
transform=transforms.ToTensor(),
download=True)

test_dataset = datasets.CIFAR1O(root='./data', train=False,
transform=transforms.ToTensor())

Define the data loaders
batch_size = 100
train loader = DatalLoader(train_dataset, batch size=batch size, shuffle=True)

test_loader = DatalLoader(test_dataset, batch_size=batch_size, shuffle=False)
return train_dataset, test_dataset, train_loader, test_loader

v 2.1 Implement the MLP with PyTorch (15 points)
The shape of W and W5 should be 256 x 3072 and 10 x 256.

You can refer to Define a NN for inspiration.

https://colab.research.google.com/drive/locgBwa6kfd_oLRFuAz7b-ZXZDNpXnTbY#scrollTo=0d-030eEIPvY &printMode=true 3/6

https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/
https://en.wikipedia.org/wiki/Softmax_function
https://en.wikipedia.org/wiki/Sigmoid_function
https://optimization.cbe.cornell.edu/index.php?title=Stochastic_gradient_descent
https://pytorch.org/tutorials/beginner/basics/optimization_tutorial.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/tutorials/recipes/recipes/defining_a_neural_network.html

7/9/23,5:07 PM ¢s480680_s23_homework2_solution.ipynb - Colaboratory

import torch.nn as nn
import torchvision.models as models

COMPLETE THE FOLLOWING CODE, YOU ARE ALLOWED TO CHANGE THE PARAMETERS OF EACH FUNCTION#####

Define the MLP model in PyTorch
class MLPinPyTorch(nn.Module):
def _ init_(self, input dim=3072, hidden_ dim=256, output_dim=10):

super (MLPinPyTorch, self)._ init_ ()
self.fcl = nn.Linear(input_dim, hidden_dim)
self.sigmoid = nn.Sigmoid()
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.stmx = nn.Softmax(dim=1)

def forward(self, x):
X = x.view(x.size(0), -1)
hidden = self.fcl(x)
hidden_activation = self.sigmoid(hidden)
output = self.fc2(hidden_activation)
return self.stmx(output)

~ 2.2 Calculate the accuracy given true labels and predicted labels (5 points)

You should complete the following code, including the calculation of the accuracy.

COMPLETE THE FOLLOWING CODE, YOU ARE ALLOWED TO CHANGE THE PARAMETERS OF EACH FUNCTION#####
import numpy as np
def accuracy(y, predicted):

predicted = np.array(predicted)

y = np.array(y)

return (predicted == y).mean()

v 2.3 Test your implementation on CIFAR10 and reports the accuracy on training and testing datasets (20 points)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
COMPLETE THE FOLLOWING CODE, YOU ARE ALLOWED TO CHANGE THE PARAMETERS OF EACH FUNCTION#####
def test(model, train_dataloader, test_dataloader):

predict_train = []

predict_test = []

train labels = []

test_labels = []

for ind, (inputs, labels) in enumerate(train_dataloader):
inputs = inputs.view(-1, 3072).to(device)
train_labels.extend(labels)

Forward pass
pred_label = torch.argmax(model(inputs), dim=1)
predict_train.extend(pred_label.cpu().detach().numpy().tolist())

for ind, (inputs, labels) in enumerate(test_dataloader):
inputs = inputs.view(-1, 3072).to(device)
test_labels.extend(labels)

Forward pass
pred_label = torch.argmax(model(inputs), dim=1)
predict_test.extend(pred label.cpu().detach().numpy().tolist())

train_acc = accuracy(train_labels, predict_train)
test_acc = accuracy(test_labels, predict_test)
return train_acc, test_acc

the following is served for you to check the functions, you can change but you have to ensure the following code can outp

model = MLPinPyTorch().to(device)

train dataset, test_dataset, train loader, test loader = get CIFAR1O0()
train_acc, test_acc = test(model, train_loader, test_loader)
print("train_acc: ", train_acc)

print("test_acc: ", test_acc)
Downloading https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz to ./data/cifar-10-python.tar.gz
100% || 170498071/170498071 [00:01<00:00, 99964010.81it/s]

Extracting ./data/cifar-10-python.tar.gz to ./data

https://colab.research.google.com/drive/locgBwa6bkfd_oLRFuAz7b-ZXZDNpXnTbY#scrollTo=0d-030eEIPvY &printMode=true

4/6

https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

7/9/23,5:07 PM ¢s480680_s23_homework2_solution.ipynb - Colaboratory

train_acc: 0.09694
test_acc: 0.0954

a9t oL

~ 2.4 Calculate the gradients W der AW,

The loss function we use for training the MLP is the log-loss, which is defined as follows:

c
1y y) ==) yilogy) ,
i=1
where C is the number of classes, y; and y; are the i-th index of y and y~

Considering the MLP model in question 2, please use chainrule to calculate the gradients. You can directly write LaTex/Markdown in the

following cell.

Solution:

1. Gradient with respect to W5:

oL at a9y
oW, — ay oW,
From the given loss function £()}y) = = X ic=1 v; log(y;), we have:
e
y ¥y

where f is element-wise.

The derivative of the softmax function with respect to W5 is given by:
ay” . .
Y =softmax(W, sigmoid(W;x + ¢;) + ¢;)
aW,
(1 — softmax(W, sigmoid(W;x + ¢;) + ¢3)) sigmoid(Wix + ¢y) .
Therefore, combining the above equations, we get:

d
t =- XAsoftmax(Wz sigmoid(Wix + ¢;) + ¢3)
6W2 y

(1 — softmax(W, sigmoid(Wx + ¢;) + ¢3)) sigmoid(Wx + ¢y) .

2. Gradient with respect to c,:

rel¢ _ at dy”
36‘2 - ayA(")Cz '
The derivative of the softmax function with respect to ¢, is simply:
9y
% =softmax(W, sigmoid(Wx + c|) + ¢»)
2

(1 = softmax(W, sigmoid(Wix + ¢1) + ¢3)) .
Therefore, we have:
ol y . .
— = — =softmax(W, sigmoid(Wx + ¢;) + ¢2)
302 y
(1 = softmax(W, sigmoid(Wx + ¢1) + 7)) .
3. Gradient with respect to W7:
ol ol ay” d sigmoid (W x + ¢;)

oW, _ aydsigmoid a(Wix +c;) W,

9
% =softmax(W, sigmoid(Wx + ¢|) + ¢3)
d sigmoid

(1 — softmax(W, sigmoid(Wx + ¢;) + ¢2)) W5 .
The derivative of the sigmoid function with respect to its input is:
d sigmoid

— = =5i 1 . l o . .
aWhx+cp) sigmoid(Wx + ¢;) - (1 — sigmoid(W;x + ¢;))

Now, we have
at ay" d sigmoid
dy"d sigmoid (W x + ¢;)

=-— %Asoftmax(Wz sigmoid(Wx + ¢;) + ¢;)

(1 — softmax(W, sigmoid(Wx + ¢;) + ¢2))
sigmoid(Wix + ¢;)(1 — sigmoid(Wix + ¢y)) .

https://colab.research.google.com/drive/locgBwa6kfd_oLRFuAz7b-ZXZDNpXnTbY#scrollTo=0d-030eEIPvY &printMode=true

and g—i using algebra given a data example (x, y) (20 points)

5/6

https://scikit-learn.org/stable/modules/model_evaluation.html#log-loss

7/9/23,5:07 PM ¢s480680_s23_homework2_solution.ipynb - Colaboratory
The derivative of the linear transformation (W7 X + c;) with respect to W is simply x:
IWix+cp) X
oW, B
Therefore, combining the above equations, we get:
L
aW,

=- ZAsoftmax(WQ sigmoid(Wx + c;) + ¢2)
y

(1 — softmax(W; sigmoid(Wx + ¢;) + ¢;)) sigmoid(Wx + ¢;)
(1 = sigmoid(Wx + ¢1))x .
4. Gradient with respect to ¢;:
ol al ay” d sigmoid d(Wix + cy)
dc; 9y 9sigmoid IWix+cy) o

The derivative of the linear transformation (W, x + c;) with respect to W is simply x:

6(W1x + C]) -
aC] '
Therefore, combining the above equations, we get:
at
oW,

=- XAsoftmax(Wz sigmoid(Wix + c;) + ¢3)
y

(1 — softmax(W, sigmoid(Wx + ¢;) + ¢2))
sigmoid(Wix + ¢;)(1 — sigmoid(Wx + cy)) .

https://colab.research.google.com/drive/locgBwa6kfd_oLRFuAz7b-ZXZDNpXnTbY#scrollTo=0d-030eEIPvY &printMode=true

6/6

