
CS480/680, Spring 2023

Assignment 1

Designer: Haochen Sun; Instructor: Hongyang Zhang

Released: May 15; Due: June 4, noon

Instructions

• We do not accept hand-written submissions.

• This assignment is due by noon on June 4, 2023.

• For questions labelled as “coding”, please follow the instructions provided and implement the required
features. The skeleton code is provided. Unless otherwise specified, all implementations should be in
Python using a Jupyter Notebook. Before submission, please make sure that your code can run without
any errors. Also, be sure to save the output of each cell, as any missing output may not be graded.

• Please submit the following TWO files to LEARN:

– A write-up in PDF format: the written answers to ALL questions, including the reported results
and plots of coding questions, in a single PDF file.

– An IPYNB file: your implementations for ALL coding questions. Please save the output of each
cell, or your coding questions may NOT be graded.
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https://colab.research.google.com/gist/jvhs0706/3f0778cc9fbbf4a077f752ea1edf956b/cs480-680-assignment1-coding.ipynb


Question 1: Perceptron (30 points)

1. [15 points] Consider the AND, OR and XOR datasets, each of which labels all two-dimensional binary

inputs

{(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
:

(
0
0

) (
0
1

) (
1
0

) (
1
1

)
AND 0 0 0 1
OR 0 1 1 1
XOR 0 1 1 0

Table 1: The AND, OR and XOR datasets

For each dataset, prove or disprove if it is linearly separable. For a linearly separable dataset, write down
the separating hyperplane. For a non-linearly separable dataset, argue that a separating hyperplane
does not exist.

Solution. AND is linearly separable: x1 + x2 − 1.5 = 0;

OR is linearly separable: x1 + x2 − 0.5 = 0;

XOR is not linearly separable. Assume otherwise, such that a separating hyperplane w1x1+w2x2+b =

0 exists. Therefore, on the one hand, by the labelling of

(
0
0

)
and

(
1
1

)
,

0 > b+ w1 + w2 + b = w1 + w2 + 2b;

on the other hand, by the labelling of

(
0
1

)
and

(
1
0

)
,

0 ≤ w2 + b+ w1 + b = w1 + w2 + 2b,

which is a contradiction. ■

2. [15 points, coding] Implement the perceptron algorithm on the Spambase dataset in Python using
Jupyter Notebook. You may use the provided skeleton code, which downloads and pre-processes the
dataset. Note that the target variable to be predicted is the last feature, is spam. Plot the accuracy
against the number of training steps and report the final accuracy.

Solution. See the sample solution. Credit to Leo Feng. ■

2

https://hongyanz.github.io/slides/cs480680_s23_Lecture2.pdf#page=13
https://archive.ics.uci.edu/ml/datasets/spambase
https://colab.research.google.com/gist/jvhs0706/3f0778cc9fbbf4a077f752ea1edf956b/cs480-680-assignment1-coding.ipynb
https://colab.research.google.com/gist/jvhs0706/2925265959bb07efb880c8d8fe77fdac/cs480-680-a1-coding-sample-solution.ipynb


Question 2: Generalized Linear Models (40 points)

In class, we have discussed linear regression and logistic regression. While these models are useful for specific
types of data, they belong to a broader class of models known as generalized linear models (GLMs). GLMs
are models for data where the response variable y follows a distribution from the exponential family, and the
mean of the response variable is related to the predictors via a link function. The GLM has the following
form:

p(y|x,w, τ) = h(y, τ) exp

[
yη −A(η)

d(τ)

]
, (1)

where p is the probability mass function or probability density function of y, η := w⊤x is the natural param-
eter, A(η) is the log normalizer, and τ is the dispersion parameter, which is typically related to the variance
of the conditional distribution. h(y, τ) is a normalization factor such that p(y|x,w, τ) sums/integrates to 1
over y. We denote the mapping from the linear input η = w⊤x to the conditional expectation of y (i.e.,
µ = E[y|x,w, τ ]) as µ = ℓ−1(η), where ℓ is known as the link function, and ℓ−1 is known as the mean
function. (For simplicity, omit the bias term throughout this question.)

1. [10 points] Show that linear regression and logistic regression are special cases of the GLM in (1).
Identify h(y, τ), A(η), d(τ), and the link function ℓ for each case.

Proof. For linear regression,

p
(
y|x,w, σ2

)
=

1√
2πσ

exp

(
− (y −w⊤x)2

2σ2

)
=

1√
2πσ

exp

(
− y2

2σ2

)
exp

(
yη − 1

2η
2

σ2

)
,

by setting τ = σ2, h(y, τ) = 1√
2πσ

exp
(
− y2

2σ2

)
, d(σ2) = σ2 and A(η) = 1

2η
2, linear regression satisfies

the definition of (1). The link function ℓ(µ) is the identity.

For logistic regression, denote µ = σ(η) = σ(w⊤x) where σ is the sigmoid function,

p (y|x,w) = (1− µ)(1−y)µy

= exp [(1− y) log(1− µ) + y logµ]

= exp

[
y log

µ

1− µ
+ log(1− µ)

]
= exp [yη − log(1 + eη)] .

Therefore, by setting h(y, τ) = 1, A(η) = log(1+eη), d(τ) = 1, logistic regression satisfies the definition
of (1). The link function ℓ(µ) = log µ

1−µ .

2. [6 points] Consider the Poisson regression model, which is defined by the following probability mass
function:

p(y|x,w) = Pois(y| exp(w⊤x)).

Here, Pois(y|µ) = µye−µ

y! is the Poisson distribution parameterized by µ, with support y ∈ N. Show

that Poisson regression belongs to the family of GLMs defined in Equation (1), and identify A(η) for
this model.
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Proof. For simplicity, denote µ = exp(η) = exp(w⊤x). Therefore,

p (y|x,w) =
1

y!
exp (y logµ− µ)

=
1

y!
exp (yη − eη) .

Therefore, Poisson regression belongs to the GLM, and A(η) = eη.

3. [8 points] Consider a dataset {(xn, yn)}Nn=1, where xn ∈ Rd and yn is the response variable. Derive
the negative log-likelihood (NLL) for the GLM on this dataset based on Equation (1). Explain how
the derived NLL is equivalent to the square loss (for linear regression) and binary cross entropy loss
(for logistic regression) for finding the optimal w.

Solution. By definition, the NLL of (1) can be written as

−
N∑

n=1

p (yn|xn,w, τ) =
1

d(τ)

N∑
n=1

(
A(w⊤xn)− ynw

⊤xn

)
−Nh(y, τ)

For linear regression, minimizing the above expression over w is equivalent to minimizing

N∑
n=1

(
1

2
(w⊤xn)

2 − ynw
⊤xn

)
=

N∑
n=1

(
1

2
(w⊤xn)

2 − ynw
⊤xn +

1

2
y2n

)
=

1

2

N∑
n=1

(
w⊤xn − yn

)2
,

which is the square loss. On the other hand, for logistic regression, denote ŷn = σ(w⊤x), then
log ŷn

1−ŷn
= w⊤xn. Therefore, minimizing the above express over w is equivalent to minimizing

N∑
n=1

(
− log

1

1 + ew⊤xn
− ynw

⊤xn

)
= − log(1− ŷn)− yn log

ŷn
1− ŷn

= −yn log ŷn − (1− yn) log(1− ŷn),

which is the binary cross entropy loss defined. ■

4. [6 points] Derive the negative log-likelihood (NLL) loss function for the Poisson regression model
using the results from sub-questions 2 and 3. Simplify the expression as much as possible.

Solution. Denote the predicted mean ŷn := exp(w⊤x), then the loss function can be designed as∑N
n=1(ŷn − yn log ŷn). ■

5. [10 points] Prove that in Equation (1), E [y|x,w, τ ] = A′(η) and Var [y|x,w, τ ] = A′′(η)d(τ). (Hint:
you may either assume that y is discrete or continuous. As the first step, sum/integrate both sides
of Equation (1) over y. You may switch the order of the summation/integration and the derivative
without justification.)

Proof. We assume that y is a continuous random variable (e.g., linear regression), such that

1 =

∫
y∈R

p(y|x,w, τ) dy =

∫
y∈R

h(y, τ) exp

[
yη −A(η)

d(τ)

]
dy

Taking derivatives on both sides w.r.t. η, we have

0 =

∫
y∈R

h(y, τ)
y −A′(η)

d(τ)
exp

[
yη −A(η)

d(τ)

]
dy.
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Therefore,

A′(η)

∫
y∈R

h(y, τ) exp

[
yη −A(η)

d(τ)

]
dy =

∫
y∈R

h(y, τ)y exp

[
yη −A(η)

d(τ)

]
dy = E [y|x,w, τ ] dy.

On the other hand, the LHS of the equation above equals A′(η) since
∫
y∈R h(y, τ) exp

[
yη−A(η)

d(τ)

]
dy = 1,

thus completing the proof of the first statement. Additionally, by taking the derivative of η in the
equation above, we have

A′′(η) =

∫
y∈R

h(y, τ)y
y −A′(η)

d(τ)
exp

[
yη −A(η)

d(τ)

]
dy,

such that

d(τ)A′′(η) = E
[
y2|x,w, τ

]
−A′(η)E [y|x,w, τ ] = E

[
y2|x,w, τ

]
− E [y|x,w, τ ]

2
= Var [y|x,w, τ ] ,

which completes the proof of the second statement.
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Question 3: SVM kernels (30 points)

1. [10 points] Given a natural number M , consider X = {0, 1, . . .M}. Define K(x, x′) = min{x, x′}.
Find a mapping ϕ : X → RM such that for all x, x′ ∈ X, K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩.

Solution. ϕ(x) =


1
1
...
0
0

, where the first x dimensions are 1 and the other M − x dimensions are 0. ■

2. [10 points] Show that there exist a Hilbert space H and a mapping ϕ : Rn → H such that

⟨ϕ(u), ϕ(v)⟩ = 4 ⟨u,v⟩2 + ⟨u,v⟩3

for all u,v ∈ Rn. (Hint: consider H = Rn2+n3

.)

Solution. See subquestion 3. ■

3. [10 points] More generally, consider a polynomial f with non-negative coefficients, and construct H
and ϕ such that

⟨ϕ(u), ϕ(v)⟩ = f(⟨u,v⟩)

for all u,v ∈ Rn.

Proof. Write f(z) = c0 + c1z + · · ·+ cKzK , where c0, c1, . . . cK ≥ 0, and u =


u1

u2

...
un

 ,v =


v1
v2
...
vn

 Then

for each 1 ≤ k ≤ K, note that

⟨u,v⟩k =

(
n∑

i=1

uivi

)k

=
∑

1≤i1,i2,...ik≤n

ui1vi1ui2vi2 . . . uikvik

=
∑

1≤i1,i2,...ik≤n

(ui1ui2 . . . uik)(vi1vi2 . . . vik).

Therefore, by defining ϕk : Rn → Rnk

such that ϕk(u) = (ui1ui2 . . . uik)1≤i1,i2,...ik≤n, ⟨u,v⟩k =
⟨ϕ(u), ϕ(v)⟩. Therefore, by defining

ϕ(u) =



√
c0√

c1ϕ1(u)√
c2ϕ2(u)

...√
cKϕK(u)

 ,

f(⟨u,v⟩) = ⟨ϕ(u), ϕ(v)⟩.
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