
CS480/680, Spring 2025

Assignment 3

Designer: Ahmad Rashid; Instructor: Hongyang Zhang

Released: July 2; Due: July 30, noon

Instructions

• We do not accept hand-written submissions.

• This assignment is due by noon on July 30, 2025.

• For questions labelled as “coding”, please follow the instructions provided and implement the required
features. Unless otherwise specified, all implementations should be in Python using a Jupyter Notebook.
Before submission, please make sure that your code can run without any errors. Also, be sure to save
the output of each cell, as any missing output may not be graded.

• Please submit the following TWO files to LEARN:

– A write-up in PDF format: the written answers to ALL questions, including the reported results
and plots of coding questions, in a single PDF file.

– An IPYNB file: your implementations for ALL coding questions. Please save the output of each
cell, or your coding questions may NOT be graded.

1



Question 1 (Large Language Model - Classification 10 points) Large language models (LLMs) such
as BERT can be fine-tuned for many downstream tasks. In this question, we will train a BERT model for
sentiment classification using the popular IMDB dataset. BERT is an encoder-only model and is typically
suited for classification. The IMDB dataset consists of movie reviews and positive or negative sentiment
labels. You can load the dataset and the model using the following:

from datasets import load_dataset

from transformers import AutoTokenizer, AutoModel

ds = load_dataset("stanfordnlp/imdb")

tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")

model = AutoModel.from_pretrained("google-bert/bert-base-uncased")

1. (3 points). Write a BERTSentiment class which modifies the base model with a task specific layer and
has methods to return the loss and the output when needed. You may implement that using a single
forward method which returns the loss during training and the output during evaluation.

2. (3 points) Write a training loop and train the model on the IMDB training data for 1 epoch. Plot the
training loss against the number of iterations.

3. (2 points) Write a function to calculate the accuracy of the trained model. Then evaluate and print the
accuracy on the test set.

4. (2 points) We will now observe the robustness of the model when the data has been adversarially
modified. Textfooler is a model-based adversarial attack method that is used to evaluate the robust-
ness of text classification systems. Download the adversarial imdb dataset from https: // drive.

google. com/ file/ d/ 1Nc_ GfqIv0fARNfqc8Rq0xyX7gyE2IIWT/ view? usp= drive_ link . Each sam-
ple has the original version and an adversarial version. Calculate the total number of times the label
changes when evaluating the normal versus adversarial sample.

Note: You may use the following tempelate for the BERTSentiment class or modify as necessary

2

https://drive.google.com/file/d/1Nc_GfqIv0fARNfqc8Rq0xyX7gyE2IIWT/view?usp=drive_link
https://drive.google.com/file/d/1Nc_GfqIv0fARNfqc8Rq0xyX7gyE2IIWT/view?usp=drive_link


import torch

import torch.nn as nn

from transformers import AutoTokenizer, AutoModel

class BERTSentiment(nn.Module):

def __init__(self):

super().__init__()

self.bert = AutoModel.from_pretrained("google-bert/bert-base-uncased")

self.num_labels = #IMPLEMENT ME

self.classifier = #IMPLEMENT ME

def forward(self, input_ids, attention_mask,token_type_ids=None):

if torch.cuda.is_available:

input_ids = input_ids.cuda()

attention_mask = attention_mask.cuda()

outputs = self.bert(

input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids)

features = outputs[1]

logits = self.classifier(features)

loss = #IMPLEMENT ME

if self.training:

#######################################################################

# IMPLEMENT ME

# return the loss

else:

#######################################################################

# IMPLEMENT ME

# return the class probabilities using softmax.

Question 2 (Large Language Model - Generation 10 points) In this question we will evaluate the
GPT2 language model for text summarization. GPT2 is a decoder only model and is typically better suited
for generation tasks such as summarization. We will be working with the Reddit based TL;DR dataset. For
this work we will be experimenting with different decoding algorithms.
You can load the model and the dataset using the following code.

from datasets import load_dataset

from transformers import AutoTokenizer, AutoModelForCausalLM

ds = load_dataset("trl-lib/tldr")

tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")

gpt2-small = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")

gpt2-medium = AutoModelForCausalLM.from_pretrained("openai-community/gpt2-medium")
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1. (5 points). The prompts in the dataset are appended with the TL;DR string at the end so that the
language model can generate a summary. Run the GPT2 medium model on the TL;DR test set and
evaluate the Rouge-L score. You can use the generate() function in the transformers library. Run the
experiment for a) greedy decoding, b) top-k sampling with k=20 and c) top-p sampling with p=0.9.
Print the relevant rouge scores. The rouge score can be calculated using the following library

import evaluate

rouge = evaluate.load(’rouge’)

2. (5 points) As the LLMs scale in size efficient inference is a concern. One of the ways of efficient
decoding is using speculative decoding. In speculative decoding, we use a small model to assist in the
decoding of the larger model to reduce the number of calls made to the larger model. You can use the
pretrained GPT2-medium as the target model and the pretrained GPT-2 model (GPT2-small) as the
assistant model. Speculative decoding is supported by the model.generate() function in the transformers
library. You can specify an assistant model by specifying the assistant model field and specify the number
of speculative tokens that are generated using the num assistant tokens field. Sample 100 prompts from
the TL;DR test set and record the generation time when a) using just the larger model and b) using
speculative decoding and setting num assistant tokens to 5, 10 and 15 respectively. Explain how the plot
changes when changing the assistant tokens. Fix a random seed to evaluate on the same prompts.

Note You can improve the performance of the GPT2 model by fine-tuning on the TL;DR training set using
trainers from the transformers library or standard Pytorch trainers. You will not be graded on this.
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