
CS480/680, Spring 2025

Assignment 1

Designer: Argyris Mouzakis; Instructor: Hongyang Zhang

Released: May 7; Due: June 4, noon

Instructions

• We do not accept hand-written submissions.

• This assignment is due by noon on June 4, 2025.

• For questions labelled as “coding”, please follow the instructions provided and implement the required
features. Unless otherwise specified, all implementations should be in Python using a Jupyter Notebook.
Before submission, please make sure that your code can run without any errors. Also, be sure to save
the output of each cell, as any missing output may not be graded.

• Please submit the following TWO files to LEARN:

– A write-up in PDF format: the written answers to ALL questions, including the reported results
and plots of coding questions, in a single PDF file.

– An IPYNB file: your implementations for ALL coding questions. Please save the output of each
cell, or your coding questions may NOT be graded.

1

Question 1 (Perceptron and SVM - 6 points) In this question, we will run the perceptron algorithm
by hand, and then compare its performance to that of SVMs. Consider the following dataset consisting of
points in R2 with their labels:

(x1, y1) := ((−1, 1) ,−1) ,
(x2, y2) := ((1,−1) ,−1) ,
(x3, y3) := ((2, 2) , 1) ,

(x4, y4) := ((0, 3) , 1) .

1. (2 points). Run the perceptron algorithm for two epochs with initial weight vector w0 := (0, 0), initial
bias term b0 := 0, and learning rate η := 1. Show your calculations in detail, and give a plot of the
points and the line corresponding to the pair of (w, b) you get at the end of the last iteration. Calculate
the margin.

2. (4 points). Calculate the SVM solution for the same dataset. Again, plot the points and the resulting
decision boundary. What is the margin you get this time?

Question 2 (Multiclass Perceptron - 10 points) In this question, we will focus on multiclass classifi-
cation. We will consider various different ways of generalizing the perceptron algorithm to the multiclass
setting, and run the implementations on the MNIST dataset.

1. (2 points). The lectures covered the one vs. all and one vs. one reductions, which reduce multiclass
classification to training multiple binary perceptrons. Implement either of the two reductions, and train
it on the MNIST dataset. The training process should last 10 epochs. Report the final errors on the
training and test sets.

2. (2 points). We will now work towards developing another multiclass generalization of the perceptron
algorithm. To do that, we will first revisit the binary perceptron algorithm. Assume that we have a
dataset of size n, consisting of labeled points (x1, y1) , . . . , (xn, yn), where xi ∈ Rd yi ∈ {±1} for all i.
Also, let xi := (xi, 1). Consider the following objective function:

min
w

n∑
i=1

max {0,−yi ⟨w,xi⟩} . (1)

Assuming learning rate η = 1, show that the update rule which the perceptron algorithm performs in
each iteration is equivalent to choosing one term from the above sum, calculating its derivative g, and
then performing the gradient update w ← w − g.

[Hint: You do not have to consider the case ⟨w,x⟩ = 0. You will end up with a derivative that has two
different branches, depending on whether yi ⟨w,xi⟩ > 0 or yi ⟨w,xi⟩ < 0.]

3. (2 points). Assume now that we again have n labeled points (x1, y1) , . . . , (xn, yn), where xi ∈ Rd

yi ∈ {1, . . . , c} for all i, i.e., there are c classes. To attain as high accuracy as possible, we consider
training a model that will use c perceptrons, with weight vectors w1, . . . ,wc ∈ Rd+1 (For the training
process, we formulate the following objective:

min
w1,...,wc

n∑
i=1

max
k
{⟨wk,xi⟩ − ⟨wyi

,xi⟩} . (2)

Show that when c = 2, this reduces to the binary perceptron problem in (1).

[Hint: Try to identify a weight vector w using some transformation.]

How would you implement perceptron’s update rule in the setting where there are two weight vectors
w1 and w2, instead of just one weight vector w?

2

4. (4 points). Based on the analogy to the binary case made in the previous question, develop and im-
plement a multiclass perceptron algorithm that directly solves (2). Run your implementation on the
MNIST dataset for 10 epochs, and report the final errors on the training and test sets.

[Hint: we want to predict as follows: ŷ = argmax
k=1,...,c

⟨wk,x⟩, i.e., the class k whose corresponding wk

maximizes the inner product. Explain your algorithm (e.g., through pseudo-code).]

Question 3 (Robust Linear Regression and Lasso - 2 points) Consider the linear regression prob-
lem:

min
w∈Rd

∥Xw − y∥2 ,

where X ∈ Rn×d and y ∈ Rn (we omit the offset b for simplicity). Now, suppose we perturb each feature
independently, and we are interested in solving the robust linear regression problem:

min
w∈Rd

max
∥zj∥2≤λ,∀j

∥(X + Z)w − y∥2 ,

where Z := [z1, . . . , zd] ∈ Rn×d is the perturbation matrix.
Prove that robust linear regression is exactly equivalent to (square-root) Lasso:

min
w∈Rd

∥Xw − y∥2 + λ ∥w∥1 ,

where ∥w∥1 =
d∑

i=1

|wi|.

Show all your calculations.
[Hint: Repeatedly use the self-duality of the ℓ2-norm, i.e., ∥w∥2 = max

∥u∥2≤1
⟨w, u⟩ = max

∥u∥2=1
⟨w, u⟩.]

Question 4 (Ridge Regression - 2 points) The ridge regression problem is known as the linear regres-
sion that penalizes the ℓ2-norm of the weights, i.e:

min
W

1

n
∥WX − Y ∥2F + λ ∥W∥2F .

Prove that the solution to this problem is W = Y X⊤ (
XX⊤ + nλI

)−1
.

3

